Extension to IndustReal Dataset: Assembly State Recognition with Error States
DOI:10.4121/611adbc7-7935-43a6-8c3f-b2260a508e73.v2
The DOI displayed above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
DOI: 10.4121/611adbc7-7935-43a6-8c3f-b2260a508e73
DOI: 10.4121/611adbc7-7935-43a6-8c3f-b2260a508e73
Datacite citation style
Schoonbeek, Tim J.; Balachandran, Goutham; Onvlee, Hans; Houben, Tim; Hung, Shao-Hsuan et. al. (2025): Extension to IndustReal Dataset: Assembly State Recognition with Error States. Version 2. 4TU.ResearchData. dataset. https://doi.org/10.4121/611adbc7-7935-43a6-8c3f-b2260a508e73.v2
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
Version 2 - 2025-09-25 (latest)
Version 1 - 2024-10-28
Update to dataset, now including all synthetic data as well.
This dataset contains the assembly state images and annotations as an extension to the public. Whereas the original dataset only classifies assembly errors as error class, we define fine-grained annotations and error type classifications for every assembly error in the dataset. These labels enable researchers to continue studying procedural and execution errors in assembly and maintenance tasks.
History
- 2024-10-28 first online
- 2025-09-25 published, posted
Publisher
4TU.ResearchDataFormat
images/jpg, annotations/jsonAssociated peer-reviewed publication
Supervised Representation Learning towards Generalizable Assembly State RecognitionOrganizations
Eindhoven University of Technology, Department of Electrical Engineering, andASML Research
DATA
Files (7)
- 1,480 bytesMD5:
b746fc195460e8fddd0f45bea7b3e878
readme.txt.txt - 3,328,000 bytesMD5:
ff7fc4e10c207ca9bac40eb2efc28eb5
anchors.tar - 412,456,960 bytesMD5:
fb2e8551df9b5f97dfba39562e6a4e77
assembly_states_errors.tar - 6,445,557,760 bytesMD5:
f1514cc8f0f7569fc0ad6f141a81fb93
synth.tar - 11,199,733,760 bytesMD5:
4dbfcc4df01be2ade8f73f718cdc824d
test.tar - 9,655,879,680 bytesMD5:
b98ff54bbb138a1a8e4f860f8d3a2b71
train.tar - 4,592,240,640 bytesMD5:
f463c948ff27ef15c57bfdcb4eb8e954
val.tar -
download all files (zip)
32,309,198,280 bytes unzipped