Code underlying publication: Reinforcement Learning Compensated Extended Kalman Filter for Attitude Estimation
doi:10.4121/9da2c9da-9031-4b02-8c01-04f47494afd2.v1
The doi above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
doi: 10.4121/9da2c9da-9031-4b02-8c01-04f47494afd2
doi: 10.4121/9da2c9da-9031-4b02-8c01-04f47494afd2
Datacite citation style:
Tang, Yujie; Hu, Liang; Zhang, Qingrui; Pan, Wei (2024): Code underlying publication: Reinforcement Learning Compensated Extended Kalman Filter for Attitude Estimation. Version 1. 4TU.ResearchData. dataset. https://doi.org/10.4121/9da2c9da-9031-4b02-8c01-04f47494afd2.v1
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
categories
licence
MIT
This collection contains all code to produce the results of "Reinforcement Learning Compensated Extended Kalman Filter for Attitude Estimation," 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 2021, pp. 6854-6859, doi: 10.1109/IROS51168.2021.9635963. This paper leverages reinforcement learning to compensate for the classical extended Kalman filter estimation, i.e., to learn the filter gain from the sensor
measurements. The code is written in python. To use the code, the readers could set up the Python environment according to "requirements.txt." For details, please follow "README.md".
history
- 2024-10-29 first online, published, posted
publisher
4TU.ResearchData
format
written in python (.py)
associated peer-reviewed publication
Reinforcement Learning Compensated Extended Kalman Filter for Attitude Estimation
funding
- China Scholarship Council (CSC) under Grant 202006890020 (grant code 202006890020) China Scholarship Council
organizations
TU Delft, Faculty of Mechanical Engineering, Department of Cognitive robotics
DATA
files (26)
- 4,628 bytesMD5:
f286ff81a823b0b55cbdfef2ad19db92
README.md - 2,169,587 bytesMD5:
985f1f73214e01d737880b90bb8214f4
5.csv - 2,160,600 bytesMD5:
f983d9f3075b6e5f735e27f77a4d2e98
6.csv - 211 bytesMD5:
f78b0ff441389cf754be84b9747afc97
__init__.cpython-36.pyc - 188 bytesMD5:
5bc034adf6f67216528c99175b27b000
__init__.cpython-38.pyc - 0 bytesMD5:
d41d8cd98f00b204e9800998ecf8427e
__init__.py - 43,590 bytesMD5:
c9e0e6667325be6da074ae44bb388e00
dlac.py - 16,369 bytesMD5:
d7e80706a6f6c01213f2b921e83159c3
Ex3_EKF_gyro.cpython-36.pyc - 15,637 bytesMD5:
207eb86084db3869a0e3d3f63cd3c450
Ex3_EKF_gyro.cpython-38.pyc - 28,047 bytesMD5:
45d68f50f74c47071abb0d5f912e906d
Ex3_EKF_gyro.py - 23,229 bytesMD5:
311ecb66edf79faa928d90fd6ca31d82
inference.py - 26,211 bytesMD5:
84fee12907aa80cd8ae063614e8005d6
inference_ekf.py - 40,704 bytesMD5:
cb5f461fd50e46cff078e9e26e158665
lac.py - 1,868 bytesMD5:
ab41f65ba1a8d03a1bb7bc7bdaaeb84e
LAC_TF2_GRAPH_success_ekf+rl - Shortcut.lnk - 15,085 bytesMD5:
2b39b4f635528c93d14e363e68e46310
logger.py - 43,023 bytesMD5:
00768722959df1c33c5995c67f79cc4f
lsac.py - 3,886 bytesMD5:
3972d179d39ac7e0ce43b050d07a39f6
oscillator.cpython-38.pyc - 3,909 bytesMD5:
a414db4fb82c43b3b70c44b7475ccb29
oscillator_double_cost.cpython-38.pyc - 3,798 bytesMD5:
e01c2a47473d2c58eb17a2a34183f380
pool.py - 120 bytesMD5:
92bcc5ae73592aef9e763cac35ffd177
requirements.txt - 5,713 bytesMD5:
8bf17702b50348490a73648b4d5cd36a
SateLlite.cpython-38.pyc - 875 bytesMD5:
e80b73bc5a8e365baece5a3252f2244e
squash_bijector.py - 607 bytesMD5:
ea58e0b0935f12edb28e40c5332fe938
train.py - 25,924 bytesMD5:
2d66dd0bbe4f269af404416378fb450a
train_console4_console21.py - 29,300 bytesMD5:
d68f9e82c334268cdb65a20739a588f9
train_console4_haty.py - 4,361 bytesMD5:
b5dbe04a6f7dff1bbe79ec146e19e8fb
utils.py -
download all files (zip)
4,667,470 bytes unzipped