code underlying publication: Reinforcement Learning for Orientation Estimation Using Inertial Sensors with Performance Guarantee
DOI: 10.4121/71bb6fd6-0983-442c-a266-fe3b7bee77e4
Datacite citation style
Dataset
This collection contains all code to produce the results of "Reinforcement Learning for Orientation Estimation Using Inertial Sensors with Performance Guarantee," 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi'an, China, 2021, pp. 10243-10249, doi: 10.1109/ICRA48506.2021.9561440. This paper presents a deep reinforcement learning (DRL) algorithm for orientation estimation using inertial sensors combined with a magnetometer. To the best of our knowledge, this is the first DRL-based orientation estimation method using inertial sensors combined with a magnetometer. The code is written in Python. The packages used are listed in "requirements.txt". To reproduce the code, please refer to "README.md".
History
- 2024-10-29 first online, published, posted
Publisher
4TU.ResearchDataFormat
.pyAssociated peer-reviewed publication
Reinforcement Learning for Orientation Estimation Using Inertial Sensors with Performance GuaranteeOrganizations
TU Delft, Faculty of Mechanical Engineering, Department of Cognitive roboticsDATA
Files (25)
- 1,241 bytesMD5:
8b1283926e4dfbc0c8022aab9733c081README.md - 6,148 bytesMD5:
194577a7e20bdcc7afbb718f502c134c.DS_Store - 176 bytesMD5:
120a29e30be15dc3aeee12fc673c5050__init__.cpython-36.pyc - 0 bytesMD5:
d41d8cd98f00b204e9800998ecf8427e__init__.py - 8,731 bytesMD5:
56377d295b406ed65218e7734cd1d8baeval.py - 18,780 bytesMD5:
ab55bf91f3d797c997f1d93f2054a1bdEx3_EKF_gyro.cpython-36.pyc - 35,055 bytesMD5:
ccc17033d0b5d2acdd5b751bd826f965Ex3_EKF_gyro.py - 11,577 bytesMD5:
9c467e5c38cdb90d038d80c54ede8e44Ex3_EKF_gyro_no_mag.cpython-36.pyc - 20,627 bytesMD5:
a7b044aa3fc7633c32843c17a6724aa3Ex3_EKF_gyro_no_mag.py - 18,835 bytesMD5:
e67e040d8ebf8720933f916ac27070e1Ex3_EKF_gyro_profile.cpython-36.pyc - 33,925 bytesMD5:
2320c553d7fa4701b459945279e09494Ex3_EKF_gyro_profile.py - 34,001 bytesMD5:
dda3fa6be22ce401ef5ec0dc6d9aea72Ex3_EKF_gyro_profile_bak.py - 1,490 bytesMD5:
7a19404c773715ba1fe519752a7ee30dgenerateProfile.m - 25,683 bytesMD5:
e2f9415d9198a9dac7aecc7d076810c4inference.py - 38,524 bytesMD5:
d63440a1a0d696a6b2bd778e1f5081f2lac.py - 38,156 bytesMD5:
a749199e1d0bb1aa02c9d7ebb6b83433lac_bak.py - 15,085 bytesMD5:
2b39b4f635528c93d14e363e68e46310logger.py - 3,851 bytesMD5:
bf3c0047fc41196f6f563bb97b6c1f82oscillator.cpython-36.pyc - 6,327 bytesMD5:
f84530208de5d1548d041cb06084e309oscillator.py - 3,694 bytesMD5:
e8bb5339147fb62a05adab7c8d6d2bafplotEKFResults.py - 3,806 bytesMD5:
e8506461e279c8812e8f6afcf5bdc5f4pool.py - 140 bytesMD5:
006beab907e27bee16c78b8b619483efrequirements.txt - 794 bytesMD5:
32a1a077ab83db1c495154696f01e772squash_bijector.py - 552 bytesMD5:
198cab082e3f4f9bd5f23dfe90ace232train.py - 3,361 bytesMD5:
c382b6a0e3445610137e53b0b6c3b822utils.py -
download all files (zip)
330,559 bytes unzipped





