Data and code underlying Chapter 3 of the PhD thesis "Advanced Magnetocaloric Regenerators for Heat Pump Applications"
DOI:10.4121/cd51b1e3-ab4a-4e6c-a668-f53da25475d4.v1
The DOI displayed above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
DOI: 10.4121/cd51b1e3-ab4a-4e6c-a668-f53da25475d4
DOI: 10.4121/cd51b1e3-ab4a-4e6c-a668-f53da25475d4
Datacite citation style
Pineda Quijano, Diego; Infante Ferreira, Carlos A.; Brück, Ekkes (2025): Data and code underlying Chapter 3 of the PhD thesis "Advanced Magnetocaloric Regenerators for Heat Pump Applications". Version 1. 4TU.ResearchData. software. https://doi.org/10.4121/cd51b1e3-ab4a-4e6c-a668-f53da25475d4.v1
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Software
This dataset contains the results of numerical simulations performed to investigate the influence of various layering strategies on the performance of active magnetocaloric regenerators (AMRs) for heat pump applications. These results were published in Applied Thermal Engineering 232 (2023) 120962. The simulations were performed using a one-dimensional numerical model of an AMR implemented in Python.
History
- 2025-06-12 first online, published, posted
Publisher
4TU.ResearchDataFormat
simulation data / .txt, Python scripts with simulation parameters / .pyAssociated peer-reviewed publication
Layering strategies for active magnetocaloric regenerators using MnFePSi for heat pump applicationsCode hosting project url
https://github.com/diego-pineda/FAME_AMR_model.gitFunding
- Integrale Energietransitie in Bestaande Bouw (grant code TEUE919003) Ministerie van Economische Zaken & Klimaat en het Ministerie van Binnenlandse Zaken & Koninkrijksrelaties
Organizations
TU Delft, Faculty of Applied Sciences, Department of Radiation Science and Technology, Fundamental Aspects of Materials and EnergyDATA
To access the source code, use the following command:
git clone https://data.4tu.nl/v3/datasets/43678a8e-4de4-4636-8a2f-4a5ea17d770e.git "FAME_AMR_model"
Files (2)
- 2,776 bytesMD5:
16059b66637d3141c14cc12b952f6ea6
README.txt - 2,733,296,877 bytesMD5:
6e837791060afced48ccc58fe0cadc0e
Chapter_3.zip -
download all files (zip)
2,733,299,653 bytes unzipped