Data underlying the publication: PowerFlowNet: Leveraging Message Passing GNNs for Improved Power Flow Approximation
DOI: 10.4121/b27152e4-4237-40f9-a72c-e6a1ca916960
Dataset
Synthetic power flow dataset consist of three cases: 14-bus, 118-bus and 6470-bus. The line parameters, generator/load injections, voltage setpoints are randomly sampled based on the standard scenario. The 14-bus case consists of 100000 scenarios, 118-bus 50000 scenarios, and 6470-bus 30000 scenarios.
If you use parts of this dataset, please cite as:
@misc{lin2023powerflownet,
title={PowerFlowNet: Leveraging Message Passing GNNs for Improved Power Flow Approximation},
author={Nan Lin and Stavros Orfanoudakis and Nathan Ordonez Cardenas and Juan S. Giraldo and Pedro P. Vergara},
year={2023},
eprint={2311.03415},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
History
- 2024-02-05 first online, published, posted
Publisher
4TU.ResearchDataFormat
numpy arraysAssociated peer-reviewed publication
PowerFlowNet: Leveraging Message Passing GNNs for Improved Power Flow ApproximationReferences
Organizations
TU Delft, Faculty of Electrical Engineering, Mathematics, and Computer Science, Department of Electrical Sustainable Energy, Intelligent Electrical Power Grids SectionDATA
Files (15)
- 1,585 bytesMD5:
fb17142b5c0ed5427593883209f54023
readme.md - 111,520 bytesMD5:
d0da14c193c2e0ea3f2baedd1dc77cc4
case118_adjacency_matrix.npy - 111,520 bytesMD5:
df07f726d4da52883ef146b7548f61b1
case118v2_adjacency_matrix.npy - 377,600,128 bytesMD5:
deba0b30b74c8cc935c872f7c7784475
case118v2_node_features_y.npy - 1,696 bytesMD5:
5e36ddcd8d40d643d1c1d40e9aadbc17
case14_adjacency_matrix.npy - 800,128 bytesMD5:
63467c43597012aee0e5017446b9b538
case14_graph_features.npy - 89,600,128 bytesMD5:
7fb45a6c746fccafb8a2c9ae23b28ff7
case14_node_features_y.npy - 1,696 bytesMD5:
38c13ec205c8ade988f1e848b936f09a
case14v2_adjacency_matrix.npy - 112,000,128 bytesMD5:
0a2b66acef6bac0f39b624d28f66c4b5
case14v2_edge_features.npy - 100,800,128 bytesMD5:
d657c7413c6a110f7eee9ac0011291ff
case14v2_node_features_x.npy - 89,600,128 bytesMD5:
8277fc1a5749be8074cd5e9786a66e7f
case14v2_node_features_y.npy - 334,887,328 bytesMD5:
1ff065e1b6d3f8db8c99419ced7a4cad
case6470rtev2_adjacency_matrix.npy - 5,042,800,128 bytesMD5:
7b61e13ef89404a3e9ad1322d9ebae0e
case6470rtev2_edge_features.npy - 4,658,400,128 bytesMD5:
05c44fce2ee049e9b1e98f485d7c9d1d
case6470rtev2_node_features_x.npy - 4,140,800,128 bytesMD5:
a00457a5a2b386aa01ce21fcfeafe34d
case6470rtev2_node_features_y.npy -
download all files (zip)
14,947,516,497 bytes unzipped