Data underlying the publication: PowerFlowNet: Leveraging Message Passing GNNs for Improved Power Flow Approximation
DOI: 10.4121/b27152e4-4237-40f9-a72c-e6a1ca916960
Datacite citation style
Dataset
Synthetic power flow dataset consist of three cases: 14-bus, 118-bus and 6470-bus. The line parameters, generator/load injections, voltage setpoints are randomly sampled based on the standard scenario. The 14-bus case consists of 100000 scenarios, 118-bus 50000 scenarios, and 6470-bus 30000 scenarios.
If you use parts of this dataset, please cite as:
@misc{lin2023powerflownet,
title={PowerFlowNet: Leveraging Message Passing GNNs for Improved Power Flow Approximation},
author={Nan Lin and Stavros Orfanoudakis and Nathan Ordonez Cardenas and Juan S. Giraldo and Pedro P. Vergara},
year={2023},
eprint={2311.03415},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
History
- 2024-02-05 first online, published, posted
Publisher
4TU.ResearchDataFormat
numpy arraysAssociated peer-reviewed publication
PowerFlowNet: Leveraging Message Passing GNNs for Improved Power Flow ApproximationReferences
Organizations
TU Delft, Faculty of Electrical Engineering, Mathematics, and Computer Science, Department of Electrical Sustainable Energy, Intelligent Electrical Power Grids SectionDATA
Files (15)
- 1,585 bytesMD5:
fb17142b5c0ed5427593883209f54023readme.md - 111,520 bytesMD5:
d0da14c193c2e0ea3f2baedd1dc77cc4case118_adjacency_matrix.npy - 111,520 bytesMD5:
df07f726d4da52883ef146b7548f61b1case118v2_adjacency_matrix.npy - 377,600,128 bytesMD5:
deba0b30b74c8cc935c872f7c7784475case118v2_node_features_y.npy - 1,696 bytesMD5:
5e36ddcd8d40d643d1c1d40e9aadbc17case14_adjacency_matrix.npy - 800,128 bytesMD5:
63467c43597012aee0e5017446b9b538case14_graph_features.npy - 89,600,128 bytesMD5:
7fb45a6c746fccafb8a2c9ae23b28ff7case14_node_features_y.npy - 1,696 bytesMD5:
38c13ec205c8ade988f1e848b936f09acase14v2_adjacency_matrix.npy - 112,000,128 bytesMD5:
0a2b66acef6bac0f39b624d28f66c4b5case14v2_edge_features.npy - 100,800,128 bytesMD5:
d657c7413c6a110f7eee9ac0011291ffcase14v2_node_features_x.npy - 89,600,128 bytesMD5:
8277fc1a5749be8074cd5e9786a66e7fcase14v2_node_features_y.npy - 334,887,328 bytesMD5:
1ff065e1b6d3f8db8c99419ced7a4cadcase6470rtev2_adjacency_matrix.npy - 5,042,800,128 bytesMD5:
7b61e13ef89404a3e9ad1322d9ebae0ecase6470rtev2_edge_features.npy - 4,658,400,128 bytesMD5:
05c44fce2ee049e9b1e98f485d7c9d1dcase6470rtev2_node_features_x.npy - 4,140,800,128 bytesMD5:
a00457a5a2b386aa01ce21fcfeafe34dcase6470rtev2_node_features_y.npy -
download all files (zip)
14,947,516,497 bytes unzipped





