TY - DATA T1 - Data underlying the publication: PowerFlowNet: Leveraging Message Passing GNNs for Improved Power Flow Approximation PY - 2024/02/05 AU - Nan Lin AU - Stavros Orfanoudakis UR - DO - 10.4121/b27152e4-4237-40f9-a72c-e6a1ca916960.v1 KW - power system KW - smart grid KW - power flow N2 -

Synthetic power flow dataset consist of three cases: 14-bus, 118-bus and 6470-bus. The line parameters, generator/load injections, voltage setpoints are randomly sampled based on the standard scenario. The 14-bus case consists of 100000 scenarios, 118-bus 50000 scenarios, and 6470-bus 30000 scenarios.


If you use parts of this dataset, please cite as:


@misc{lin2023powerflownet,

   title={PowerFlowNet: Leveraging Message Passing GNNs for Improved Power Flow Approximation}, 

   author={Nan Lin and Stavros Orfanoudakis and Nathan Ordonez Cardenas and Juan S. Giraldo and Pedro P. Vergara},

   year={2023},

   eprint={2311.03415},

   archivePrefix={arXiv},

   primaryClass={cs.LG}

}

ER -