Paddy Rice Mapping using Deep ResU-Net CNN Segmentation
doi:10.4121/21764192.v1
The doi above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
doi: 10.4121/21764192
doi: 10.4121/21764192
Datacite citation style:
Onojeghuo, Alex (2022): Paddy Rice Mapping using Deep ResU-Net CNN Segmentation. Version 1. 4TU.ResearchData. dataset. https://doi.org/10.4121/21764192.v1
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
The main objective of this study was to develop a workflow for paddy rice field mapping using a combination of high spatial and temporal optical and radar satellite data in a deep-learning residual CNN model.
history
- 2022-12-28 first online, published, posted
publisher
4TU.ResearchData
format
Acrobat pdf
organizations
Jolexy Environmental Services Limited
DATA
files (2)
- 451 bytesMD5:
8ae6c33f7e3dbafec772de3dbeee6d70
README.txt - 2,697,319 bytesMD5:
c136277e27fe2bc4f6816b1e6636350a
Supplementary Materials.docx -
download all files (zip)
2,697,770 bytes unzipped