Paddy Rice Mapping using Deep ResU-Net CNN Segmentation
DOI:10.4121/21764192.v1
The DOI displayed above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
DOI: 10.4121/21764192
DOI: 10.4121/21764192
Datacite citation style
Onojeghuo, Alex (2022): Paddy Rice Mapping using Deep ResU-Net CNN Segmentation. Version 1. 4TU.ResearchData. dataset. https://doi.org/10.4121/21764192.v1
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
Usage statistics
807
views
171
downloads
Categories
Geolocation
Alberta, Canada
Licence CC0
Interoperability
The main objective of this study was to develop a workflow for paddy rice field mapping using a combination of high spatial and temporal optical and radar satellite data in a deep-learning residual CNN model.
History
- 2022-12-28 first online, published, posted
Publisher
4TU.ResearchDataFormat
Acrobat pdfOrganizations
Jolexy Environmental Services LimitedDATA
Files (2)
- 451 bytesMD5:
8ae6c33f7e3dbafec772de3dbeee6d70
README.txt - 2,697,319 bytesMD5:
c136277e27fe2bc4f6816b1e6636350a
Supplementary Materials.docx -
download all files (zip)
2,697,770 bytes unzipped