code underlying publication: Reinforcement Learning for Orientation Estimation Using Inertial Sensors with Performance Guarantee
doi: 10.4121/71bb6fd6-0983-442c-a266-fe3b7bee77e4
This collection contains all code to produce the results of "Reinforcement Learning for Orientation Estimation Using Inertial Sensors with Performance Guarantee," 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi'an, China, 2021, pp. 10243-10249, doi: 10.1109/ICRA48506.2021.9561440. This paper presents a deep reinforcement learning (DRL) algorithm for orientation estimation using inertial sensors combined with a magnetometer. To the best of our knowledge, this is the first DRL-based orientation estimation method using inertial sensors combined with a magnetometer. The code is written in Python. The packages used are listed in "requirements.txt". To reproduce the code, please refer to "README.md".
- 2024-10-29 first online, published, posted
DATA
- 1,241 bytesMD5:
8b1283926e4dfbc0c8022aab9733c081
README.md - 6,148 bytesMD5:
194577a7e20bdcc7afbb718f502c134c
.DS_Store - 176 bytesMD5:
120a29e30be15dc3aeee12fc673c5050
__init__.cpython-36.pyc - 0 bytesMD5:
d41d8cd98f00b204e9800998ecf8427e
__init__.py - 8,731 bytesMD5:
56377d295b406ed65218e7734cd1d8ba
eval.py - 18,780 bytesMD5:
ab55bf91f3d797c997f1d93f2054a1bd
Ex3_EKF_gyro.cpython-36.pyc - 35,055 bytesMD5:
ccc17033d0b5d2acdd5b751bd826f965
Ex3_EKF_gyro.py - 11,577 bytesMD5:
9c467e5c38cdb90d038d80c54ede8e44
Ex3_EKF_gyro_no_mag.cpython-36.pyc - 20,627 bytesMD5:
a7b044aa3fc7633c32843c17a6724aa3
Ex3_EKF_gyro_no_mag.py - 18,835 bytesMD5:
e67e040d8ebf8720933f916ac27070e1
Ex3_EKF_gyro_profile.cpython-36.pyc - 33,925 bytesMD5:
2320c553d7fa4701b459945279e09494
Ex3_EKF_gyro_profile.py - 34,001 bytesMD5:
dda3fa6be22ce401ef5ec0dc6d9aea72
Ex3_EKF_gyro_profile_bak.py - 1,490 bytesMD5:
7a19404c773715ba1fe519752a7ee30d
generateProfile.m - 25,683 bytesMD5:
e2f9415d9198a9dac7aecc7d076810c4
inference.py - 38,524 bytesMD5:
d63440a1a0d696a6b2bd778e1f5081f2
lac.py - 38,156 bytesMD5:
a749199e1d0bb1aa02c9d7ebb6b83433
lac_bak.py - 15,085 bytesMD5:
2b39b4f635528c93d14e363e68e46310
logger.py - 3,851 bytesMD5:
bf3c0047fc41196f6f563bb97b6c1f82
oscillator.cpython-36.pyc - 6,327 bytesMD5:
f84530208de5d1548d041cb06084e309
oscillator.py - 3,694 bytesMD5:
e8bb5339147fb62a05adab7c8d6d2baf
plotEKFResults.py - 3,806 bytesMD5:
e8506461e279c8812e8f6afcf5bdc5f4
pool.py - 140 bytesMD5:
006beab907e27bee16c78b8b619483ef
requirements.txt - 794 bytesMD5:
32a1a077ab83db1c495154696f01e772
squash_bijector.py - 552 bytesMD5:
198cab082e3f4f9bd5f23dfe90ace232
train.py - 3,361 bytesMD5:
c382b6a0e3445610137e53b0b6c3b822
utils.py -
download all files (zip)
330,559 bytes unzipped