Data accompanying the doctoral thesis "Advancing non-rigid 3D/4D human mesh registration for ultra personalization"
doi:10.4121/3a5eb5a8-bbae-4dd9-9a8d-d621bc1e36d2.v1
The doi above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
doi: 10.4121/3a5eb5a8-bbae-4dd9-9a8d-d621bc1e36d2
doi: 10.4121/3a5eb5a8-bbae-4dd9-9a8d-d621bc1e36d2
Datacite citation style:
Tajdari, Farzam (2024): Data accompanying the doctoral thesis "Advancing non-rigid 3D/4D human mesh registration for ultra personalization". Version 1. 4TU.ResearchData. dataset. https://doi.org/10.4121/3a5eb5a8-bbae-4dd9-9a8d-d621bc1e36d2.v1
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
This dataset includes all the data and codes used in the doctoral thesis "Advancing non-rigid 3D/4D human mesh registration for ultra personalization", which contains six sections corresponding to each technical chapter (6 chapters in total from chapter 2 to chapter 7). Sections 1, and 2, discuss 3D non-rigid registration methods including datasets of human feet, full human body, and the human spine. Section 3 presents a volumetric detailed human body spine. Section 4 introduces a MATLAB code for designing an optimal scanner using Intel Realsense depth cameras. Sections 5 and 6 include a 4D dataset of walking human complete feet.
history
- 2024-03-22 first online, published, posted
publisher
4TU.ResearchData
format
folders/rar; image/fig; code/m; data/mat
associated peer-reviewed publication
Advancing non-rigid 3D/4D human mesh registration for ultra personalization
references
organizations
TU Delft, Faculty of Industrial Design Engineering, Department of Emerging Materials
DATA
files (2)
- 3,653 bytesMD5:
aa4e546c70c001883af34bd3c3034522
README.txt - 10,646,707,618 bytesMD5:
dceda62bd4be25fcb105baf42f4c8cd4
dataUpload.rar -
download all files (zip)
10,646,711,271 bytes unzipped