Supplementary data for the paper 'Blinded windows and empty driver seats: The effects of automated vehicle characteristics on cyclists’ decision-making'

doi: 10.4121/20103188.v2
The doi above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future. For a link that will always point to the latest version, please use
doi: 10.4121/20103188
Datacite citation style:
Bazilinskyy, Pavlo; Dodou, Dimitra; Eisma, Yke Bauke; Vlakveld, W.P. (Willem); de Winter, Joost (2022): Supplementary data for the paper 'Blinded windows and empty driver seats: The effects of automated vehicle characteristics on cyclists’ decision-making'. Version 2. 4TU.ResearchData. dataset. https://doi.org/10.4121/20103188.v2
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
choose version:
version 2 - 2022-07-13 (latest)
version 1 - 2022-07-06
Delft University of Technology logo
usage stats
788
views
1
citations
378
downloads
licence
cc-0.png logo CC0

Automated vehicles (AVs) may feature blinded (i.e., blacked-out) windows and external Human-Machine Interfaces (eHMIs), and the driver may be inattentive or absent, but how these features affect cyclists is unknown. In a crowdsourcing study, participants viewed images of approaching vehicles from a cyclist’s perspective and decided whether to brake. The images depicted different combinations of traditional versus automated vehicles, eHMI presence, vehicle approach direction, driver visibility/window-blinding, visual complexity of the surroundings, and distance to the cyclist (urgency). The results showed that the eHMI and urgency level had a strong impact on crossing decisions, whereas visual complexity had no significant influence. Blinded windows caused participants to brake for the traditional vehicle. A second crowdsourcing experiment aimed to clarify the findings of Experiment 1 by also requiring participants to detect the vehicle features. It was found that the eHMI ‘GO’ and blinded windows yielded high detection rates and that driver eye contact caused participants to continue pedalling. To conclude, blinded windows increase the probability that cyclists brake, and driver eye contact stimulates cyclists to continue cycling. Our findings, which were obtained in large international samples, may help elucidate how AVs (in which the driver may not be visible) affect cyclists’ behaviour.

history
  • 2022-07-06 first online
  • 2022-07-13 published, posted
publisher
4TU.ResearchData
format
.csv; .m; .mat; .xlsx; .pdf; .docx; .jpg; .mp4
funding
  • This research is supported by grant 016.Vidi.178.047 ( “How should automated vehicles communicate with other road users?”), which is financed by the Netherlands Organisation for Scientific Research (NWO).
organizations
Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology

DATA

files (3)