Dataset associated to the project "Spatial regression of multi-fidelity meteorological observations using a proxy-based measurement error model"
doi:10.4121/ffa71bf6-b605-4719-acb5-83b733208e4b.v1
The doi above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
doi: 10.4121/ffa71bf6-b605-4719-acb5-83b733208e4b
doi: 10.4121/ffa71bf6-b605-4719-acb5-83b733208e4b
Datacite citation style:
de Baar, Jouke H. S.; Garcia-Marti, Irene (2023): Dataset associated to the project "Spatial regression of multi-fidelity meteorological observations using a proxy-based measurement error model". Version 1. 4TU.ResearchData. dataset. https://doi.org/10.4121/ffa71bf6-b605-4719-acb5-83b733208e4b.v1
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
usage stats
194
views
660
downloads
categories
geolocation
the Netherlands
lat (N): [50 - 54]
lon (E): [3 - 8]
time coverage
29-06-2021
licence
CC0
Dataset associated to the project "Spatial regression of multi-fidelity meteorological observations using a proxy-based measurement error model" presented at the European Meteorological Society (EMS) 2022 conference in Bonn (Germany). The present dataset contains the code and data collections to run the examples that can be found in the manuscript. An abstract associated to this manuscript (currently under revision) can be found following this link: https://meetingorganizer.copernicus.org/EMS2022/EMS2022-53.html
history
- 2023-06-05 first online, published, posted
publisher
4TU.ResearchData
format
csv; txt; octave; matlab; png
organizations
KNMI - Royal Netherlands Meteorological Institute
DATA
files (21)
- 345 bytesMD5:
27d7ec4e4c315c51fd989dad5c9cfd8d
1pd_lat.csv - 309 bytesMD5:
a2f6142e7b968dd7ff5e0444eda9ac1f
1pd_lon.csv - 96 bytesMD5:
53d22a75696d94d3aace3ebf4c4fa491
1pd_windspeed.csv - 4,279 bytesMD5:
7c3e1229634d3dddbefd0a6efd1f5426
3pd_lat.csv - 3,998 bytesMD5:
27e74d9d655bfa556d3b554370dac10c
3pd_lon.csv - 10,749 bytesMD5:
10aa7695796ec9d411ab757ff062564a
3pd_windspeed.csv - 1,503,551 bytesMD5:
59e51345125e5fad4f7d8a52c763422e
cov_dist2coast.csv - 1,873,500 bytesMD5:
164f83646333b353ca88e6762a17a030
cov_lat.csv - 1,874,700 bytesMD5:
9fbf4ff2a86ef1c6f8c408f1d7a37d5d
cov_lon.csv - 577,816 bytesMD5:
5e0a0bf3e33bf247b97e9430149557c3
cov_population.csv - 975,396 bytesMD5:
f55f9465d25d073caf366f8c7784de5f
cov_tree.csv - 1,346 bytesMD5:
8457106a195e071049675e114f7113a4
hyperxvalGoalFunction.m - 1,049 bytesMD5:
5911c3b6eeab2e98aa4457907c83b949
license.txt - 4,898 bytesMD5:
edf46bbf66cf98c186730f8b8aa0877b
main.m - 210,300 bytesMD5:
c9ff256259641226a8c38900b1c2adc2
mask.csv - 24,313 bytesMD5:
c56a53c63e1bcd1715e68eb4e77409d6
posterior_mean.png - 34,932 bytesMD5:
6f7bf222e1519ee20c3795ed76246e84
posterior_std.png - 1,003 bytesMD5:
4aea2134bf8e1ee5aea9f88fdc4c416b
references.txt - 7,202 bytesMD5:
350d9d36badd1985da65fe856f25b75a
regressionkriging.m - 488 bytesMD5:
5944f0f158adfef6214629c19a8a5647
running_the_example.txt - 58,568 bytesMD5:
e52303c257ba26659bc4fcdaabdec127
station_data.png -
download all files (zip)
7,168,838 bytes unzipped