Data from modeling published in the paper "Phase-space analysis of a two-section InP laser as an all-optical spiking neuron: dependency on control and design parameters"
DOI: 10.4121/fa5c829d-0304-4c55-97d5-be1cafa318f9
Datacite citation style
Dataset
This upload contains the complete Python code to generate the figures as shown in the paper "Phase-space analysis of a two-section InP laser as an all-optical spiking neuron: dependency on control and design parameters". The code comprises the Yamada rate equation model to calculate the carrier densities and photon number, as well as underlying compact models to simulate an integrated two-section laser neuron in the generic InP technology platform as mentioned in the paper. To calculate the outcome of the model, Pythons ODE solver is used. A 2D sweep function is implemented to generate the data for the 2D parameter sweep plot (figure 7). Alternatively, two addition folders with pre-generated data using this model is provided to generate this figure. All generated data is saved as figures directly, or in the numpy format.
History
- 2024-07-10 first online, published, posted
Publisher
4TU.ResearchDataFormat
py, npy, pngAssociated peer-reviewed publication
Phase-space analysis of a two-section InP laser as an all-optical spiking neuron: dependency on control and design parametersOrganizations
Eindhoven University of Technology, Photonic Integration GroupDATA
Files (24)
- 2,141 bytesMD5:
1ea4048b76c8e4ef860ad4cf7accd36fREADME.txt - 340,334 bytesMD5:
a704d2effe1b2e652ff1cff515174564Fig.2.png - 287,522 bytesMD5:
dca0051a108e314911127c347a17dab0Fig.3.png - 224,689 bytesMD5:
2d0f62fa706cf1f2a202130f31032e81Fig.4.Bottom.png - 2,163,398 bytesMD5:
9eede92f48c9c856f01562f07cef161fFig.4.Top.png - 591,571 bytesMD5:
58af84910cfdf406f511cd580f374eabFig.5.a_0.0871_mA_1.8000_V_S0,Ng0,Nq01.0000e+00,-11.5100,0.0000e+00.png - 652,303 bytesMD5:
2bbd04082752df30d34b7b8e3556de72Fig.5.b_0.0871_mA_1.7970_V_S0,Ng0,Nq01.0000e+00,-11.5100,0.0000e+00.png - 613,420 bytesMD5:
26264a1c47e9d3c82ae9e665b21ef0e5Fig.5.c_0.0550_mA_1.0000_V_S0,Ng0,Nq01.0000e+00,-11.5100,0.0000e+00.png - 628,326 bytesMD5:
181edc891e7b1ed9d924b7efffe448f3Fig.5.d_0.0550_mA_1.5000_V_S0,Ng0,Nq01.0000e+00,-11.5100,0.0000e+00.png - 1,562,304 bytesMD5:
bf8634f300e5de4a8f20a0e935189dedFig.6.a_r1_0.866_I_0.050000_mA_V_bias_[0, 1, 2, 3]_V_S0,Ng0,Nq01.0000e+02,54.7000,2.0000e+22.png - 432,593 bytesMD5:
f9b275c1f35b62fdb3c1ba7e049fb1aaFig.6.b_r1_0.866_I_0.050000_mA_V_bias_[0, 1, 2, 3]_V_S0,Ng0,Nq01.0000e+02,54.7000,2.0000e+22.png - 1,584,135 bytesMD5:
9fce2a9cab15af97cedaf6e58cf935fbFig.6.c_r1_0.4_I_0.050000_mA_V_bias_[0, 1, 2, 3]_V_S0,Ng0,Nq01.0000e+02,54.7000,2.0000e+22.png - 392,470 bytesMD5:
0e0586341a41a5101a89665965c87f89Fig.6.d_r1_0.4_I_0.050000_mA_V_bias_[0, 1, 2, 3]_V_S0,Ng0,Nq01.0000e+02,54.7000,2.0000e+22.png - 157,189 bytesMD5:
fe2e6b2d1a41889ccbf21fd0fa475171Fig.7.(a)-(d)_r1_0.3_marked_False.png - 158,654 bytesMD5:
044ac977d3f726608f0eb2389e8a86e2Fig.7.(a)-(d)_r1_0.3_marked_True.png - 157,464 bytesMD5:
44542a133f5d712330f891d0ffbdbf67Fig.7.(a)-(d)_r1_0.5_marked_False.png - 158,969 bytesMD5:
5932342a50a4b9807276a288769717b3Fig.7.(a)-(d)_r1_0.5_marked_True.png - 157,788 bytesMD5:
768c5d9eef387af9a77b7bd0d8649a57Fig.7.(a)-(d)_r1_0.7_marked_False.png - 159,244 bytesMD5:
5cbcd716fbdcbdcdc1b984a90b295253Fig.7.(a)-(d)_r1_0.7_marked_True.png - 157,931 bytesMD5:
23ac430527beee2e3304ffae2f50ab45Fig.7.(a)-(d)_r1_0.9_marked_False.png - 159,370 bytesMD5:
422ca97b6919666bc317739827fc4bfeFig.7.(a)-(d)_r1_0.9_marked_True.png - 238,056 bytesMD5:
e6d244ec7640a562d4f39533a654c955Fig.7.(e)-(f)_r_vs_I_at_V=0.14V.png - 232,911 bytesMD5:
670f5252b866dff86ea7c808edf71ad9Fig.7.(e)-(f)_r_vs_I_at_V=1.0V.png - 43,456 bytesMD5:
6899477cd8b49074d9a992193a370866model.py -
download all files (zip)
11,256,238 bytes unzipped





