Data and code used in the article "A deep learning method for predicting soil moisture in unsaturated areas based on physical constraints"
DOI:10.4121/f1c54b90-a69c-4bd5-a55d-bfa9fa16fa40.v1
The DOI displayed above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
DOI: 10.4121/f1c54b90-a69c-4bd5-a55d-bfa9fa16fa40
DOI: 10.4121/f1c54b90-a69c-4bd5-a55d-bfa9fa16fa40
Datacite citation style
Wang, Yi (2023): Data and code used in the article "A deep learning method for predicting soil moisture in unsaturated areas based on physical constraints". Version 1. 4TU.ResearchData. dataset. https://doi.org/10.4121/f1c54b90-a69c-4bd5-a55d-bfa9fa16fa40.v1
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
Data and code used in the article "A deep learning method for predicting soil moisture in unsaturated areas based on physical constraints",specifically included are water content data from 55 in situ observations for the years 2018-2020 (observation frequency of 5min or 10min), and example code for implementing LSTM and PCDL using python (mainly the tensorflow library).These data can help the reader to better understand and replicate our research
History
- 2023-05-15 first online, published, posted
Publisher
4TU.ResearchDataFormat
code/.py; tables/.xlsxOrganizations
Chang'an UniversityDATA
Files (19)
- 13,566,212 bytesMD5:
9f27e8e4a6c29e3afc3993cc398954542018E1 .xlsx - 11,836,202 bytesMD5:
8a126f42edb7211e57f6287156c1450c2018E2.xlsx - 238,609 bytesMD5:
887af00b73caca9705b752598b51d7282018Homogenization.xlsx - 13,027,044 bytesMD5:
7909d1d3a6077de15e596745b69744752018M1.xlsx - 12,377,657 bytesMD5:
45df9546758cbfddcc3e8bb7aef9c6ed2018W1 .xlsx - 11,603,523 bytesMD5:
dd3cb515a8d34348cfa2966bc9a17d9b2018W2 .xlsx - 7,786,952 bytesMD5:
fae48f75fcdbb179c81637e8f9400d182019E1 .xlsx - 6,826,883 bytesMD5:
55477088a7147673aa1e3e2333e2f5622019E2.xlsx - 2,284,319 bytesMD5:
90d5c85d243694611406ccf59f49e0762019Homogenization.xlsx - 7,020,322 bytesMD5:
8fe46dfb6745967710b0ec15bed478c52019M1.xlsx - 7,090,633 bytesMD5:
bb0bd4e7046e4ce7c4c7408e9a3c97df2019W1 .xlsx - 6,853,672 bytesMD5:
67a896a2eeb8403687c47df84a6bba8c2019W2 .xlsx - 30,991,872 bytesMD5:
cf5c20296a64ee4d2e04fa90daf34b142020E1.xls - 15,717,376 bytesMD5:
2396cb374672d605224206913cf4deb12020E2.xls - 79,360 bytesMD5:
ba1249970ee9def39d9da3f13ed8aef42020Homogenization.xls - 14,697,472 bytesMD5:
68cf85f15cd0ba3bad0156bee4b713142020M.xls - 14,801,920 bytesMD5:
d591ae6f1f5143a2086784662dd399802020W1.xls - 14,829,056 bytesMD5:
2be63c8d02cd9593ddd4280186d06e6d2020W2.xls - 21,392 bytesMD5:
7dc6a149fa7fc566d8f29b16e27b8964PGNN.py -
download all files (zip)
191,650,476 bytes unzipped




