Extracted Features on AmsterTime Dataset
doi:10.4121/14572644.v4
The doi above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
doi: 10.4121/14572644
doi: 10.4121/14572644
Datacite citation style:
Yildiz, Burak; Khademi, Seyran (2022): Extracted Features on AmsterTime Dataset. Version 4. 4TU.ResearchData. dataset. https://doi.org/10.4121/14572644.v4
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
choose version:
version 4 - 2022-06-07 (latest)
version 3 - 2022-04-12
version 2 - 2021-06-08
version 1 - 2021-05-12
This collection contains feature files where the features are extracted on AmsterTime dataset using various methods and models such as SIFT, LIFT, and pre-trained VGG-16, ResNets, NetVLAD, AP-GeM and supervisely and self-supervisely trained models. The details of feature extraction procedure and other details can be found on https://github.com/seyrankhademi/AmsterTime.
history
- 2021-05-12 first online
- 2022-06-07 published, posted
publisher
4TU.ResearchData
format
Pickle file
associated peer-reviewed publication
AmsterTime: A Visual Place Recognition Benchmark Dataset for Severe Domain Shift
references
organizations
TU Delft, Faculty of Electrical Engineering, Mathematics and Computer Science Intelligent Systems
DATA
files (14)
- 20,282,404 bytesMD5:
91099171982d0e87ce2386b8a8f403ac
ap_gem_landmarks.p - 2,705,170 bytesMD5:
b2c3b30a622b05f8a19eab807075dcaa
lift_piccadilly_128.p - 322,832,359 bytesMD5:
ce32fec7843201fc40bcdbf7ba45a8d8
netvlad_pittsburgh250k.p - 20,282,404 bytesMD5:
a5a399839030986b593dcd407c834abf
resnet101_imagenet.p - 20,282,404 bytesMD5:
3c264112b53e464319b34cb0f642b4c0
resnet50_imagenet.p - 2,705,170 bytesMD5:
89c297423fe08eaba61c81fc437c8f75
sift_128.p - 20,282,404 bytesMD5:
812e4c62b7b042f2a696212e02d4e167
simsiam_resnet50_scratch_amstertime_ep10000_bs128.p - 20,282,404 bytesMD5:
2335e737bea264e62ca117717458176d
simsiam_resnet50_scratch_gldv2_ep100_bs128.p - 20,282,404 bytesMD5:
91fc99d22dd6afef11fc19d1fc846d06
simsiam_resnet50_scratch_imagenet_ep100_bs256.p - 247,199,719 bytesMD5:
65e5e811533dacbdb9f2d8c4c8c7c299
simsiam_vgg16_scratch_amstertime_ep10000_bs128.p - 247,199,719 bytesMD5:
13e9d4efcd279b942f80348c53bc87cc
simsiam_vgg16_scratch_gldv2_ep100_bs128.p - 247,199,719 bytesMD5:
e74387a8628fa6ec3fc676016ec1ba11
simsiam_vgg16_scratch_imagenet_ep100_bs128.p - 5,153,797 bytesMD5:
883aabaf2968e4b6f23730802cad0526
triplet_resnet18_imagenet.p - 247,199,717 bytesMD5:
ea1f6b6a7dd89bed2083931cbcb351fd
vgg16_imagenet.p -
download all files (zip)
1,443,889,794 bytes unzipped