Dataset of continuous human activities performed in arbitrary directions collected with a distributed radar network of five nodes
Please review the document README_v3.pdf
The data can be extracted with the MATLAB Live Script dataread.mlx, or in Python with the file dataread_numpy.py.
Referencing the dataset
Guendel, Ronny Gerhard; Unterhorst, Matteo; Fioranelli, Francesco; Yarovoy, Alexander (2021): Dataset of continuous human activities performed in arbitrary directions collected with a distributed radar network of five nodes. 4TU.ResearchData. Dataset. https://doi.org/10.4121/16691500.v3
@misc{Guendel2022, author = "Ronny Gerhard Guendel and Matteo Unterhorst and Francesco Fioranelli and Alexander Yarovoy", title = "{Dataset of continuous human activities performed in arbitrary directions collected with a distributed radar network of five nodes}", year = "2021", month = "Nov", url = "https://data.4tu.nl/articles/dataset/Dataset_of_continuous_human_activities_performed_in_arbitrary_directions_collected_with_a_distributed_radar_network_of_five_nodes/16691500", doi = "10.4121/16691500.v3" }
Paper references are:
Guendel, R.G., Fioranelli, F.,Yarovoy, A.: Distributed radar fusion and recurrent networks for classification of continuous human activities. IET Radar Sonar Navig. 1–18 (2022). https://doi.org/10.1049/rsn2.12249
R. G. Guendel, F. Fioranelli and A. Yarovoy, "Evaluation Metrics for Continuous Human Activity Classification Using Distributed Radar Networks," 2022 IEEE Radar Conference (RadarConf22), 2022, pp. 1-6, doi: 10.1109/RadarConf2248738.2022.9764181.
R. G. Guendel, M. Unterhorst, E. Gambi, F. Fioranelli and A. Yarovoy, "Continuous human activity recognition for arbitrary directions with distributed radars," 2021 IEEE Radar Conference (RadarConf21), 2021, pp. 1-6, doi: 10.1109/RadarConf2147009.2021.9454972.
- 2021-11-02 first online
- 2024-07-15 published, posted
DATA
- 447,348 bytesMD5:
1ac7692439894543c8b87b9a53782f6e
README_v3.pdf - 15,779,804,713 bytesMD5:
6fe161a84d680fd0e72a402d33e46bf0
1.7z - 15,804,144,707 bytesMD5:
849a2b1ac7841042c73b6231f14f595c
10.7z - 15,812,572,081 bytesMD5:
1eecaad14c39d02ceea8e5b58df4bbf4
11.7z - 15,803,346,077 bytesMD5:
0b20b578cae03ab30b39ddf13324c054
12.7z - 15,788,874,530 bytesMD5:
349a5774cfadafed62cea6653516de93
13.7z - 15,798,694,429 bytesMD5:
2754ed81004e8d1f8234be4dcdd02e76
14.7z - 15,797,671,970 bytesMD5:
e7ff8b12cf622dcbf3663e917b64c82c
15.7z - 15,816,838,247 bytesMD5:
3cab09455c7f8a9b09d35e8bb142900a
2.7z - 15,264,883,585 bytesMD5:
3cf8ef2e1efd419d08f9ea56b08a3fb4
3.7z - 15,178,802,122 bytesMD5:
375e4afe39d36a076c58e202acda8a0f
4.7z - 15,806,228,841 bytesMD5:
d4aaeedaacf6a9264210110ba26fc4e7
5.7z - 15,284,905,780 bytesMD5:
bb007729c9f9657bf5f41e835e5eb624
6.7z - 15,282,621,058 bytesMD5:
a8322e6772c81771430dd2a5b9e5543b
7.7z - 15,793,103,469 bytesMD5:
19ad722e87952b5a091949ae4213648e
8.7z - 15,800,914,884 bytesMD5:
524a74853ec66861aa96b4e26cd87db6
9.7z - 1,282,659 bytesMD5:
94fb9d08165a4877c2fd4baeda0322c5
dataread.mlx - 2,347 bytesMD5:
32aa1e6df6a157e7cf458931ff2eaaaa
dataread_numpy.py -
download all files (zip)
234,815,138,847 bytes unzipped