Open water evaporation of Lake IJssel, scripts and data used for regression analyses in the study 'Evaporation from a large lowland reservoir – observed dynamics during a warm summer'.
Datacite citation style:
Jansen, Femke; Uijlenhoet, Remko; Jacobs, Cor; Teuling, Adriaan J. (2022): Open water evaporation of Lake IJssel, scripts and data used for regression analyses in the study 'Evaporation from a large lowland reservoir – observed dynamics during a warm summer'. Version 2. 4TU.ResearchData. dataset. https://doi.org/10.4121/16913308.v2
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
usage stats
1704
views
2
citations
3778
downloads
categories
geolocation
Lake IJssel
time coverage
2019-2020, only the summer periods taken as 1st of May - 31st of August.
licence
CC BY-NC-SA 4.0
Scripts in the programming language R and accompanying datasets that are used for regression analysis in the study 'Evaporation from a large lowland reservoir – observed dynamics during a warm summer'. The analysis provides insight in which variables can explain open water evaporation of Lake IJssel, the Netherlands, measured at two locations for the years 2019 and 2020. There are 4 scripts for each location (i.e. Stavoren and Trintelhaven): for (1) the hourly and (2) daily temporal scale, and for analysis based on (3) our own observations (doi: 10.4121/16601675), and (4) routinely measured data by the Royal Netherlands Meteorological Institute (KNMI -https://www.knmi.nl/nederland-nu/klimatologie/uurgegevens (last access: 01-11-2021)) and the Directorate-General for Public Works and Water Management (Rijkswaterstaat - https://waterinfo.rws.nl/#!/kaart/watertemperatuur/ (last access: 01-11-2021)). The datasets consist of evaporation data, and five possible explanatory variables: global radiation, wind speed, vertical vapour pressure gradient,vapour pressure deficit, and water temperature. The datasets of the routinely measured data consist of combined data that is sourced from KNMI (global radiation, wind speed, vapour pressure gradient, vapour pressure deficit) and Rijkswaterstaat (water temperature). For more information about the datasets that are based on our own observations, have a look at doi:10.4121/16601675 (related dataset).
history
- 2021-11-02 first online
- 2022-05-20 published, posted
publisher
4TU.ResearchData
format
.R and .txt
references
funding
- SWM-EVAP: Smart Water Management in a complex environment: improving the monitoring and forecasting of surface evaporation (grant code ALWTW.2016.049) [more info...] Dutch Research Council
organizations
Hydrology and Quantitative Water Management, Wageningen University & Research
DATA
files (25)
- 4,949 bytesMD5:
2bd88924361c9a83329c8eddc905232c
README.txt - 10,425 bytesMD5:
1d363f367b16ccb0be128515efdfdc36
Regression_Stavoren_daily_revised.R - 8,241 bytesMD5:
64ebbc71444d893d0e357e9e3f3f5c14
Regression_Stavoren_daily_routine_revised.R - 10,284 bytesMD5:
07a9c0b9967c7d2df5f372e6bd6a52e3
Regression_Stavoren_hourly_revised.R - 8,204 bytesMD5:
c4f5d633f543b02b348eb334b4faa327
Regression_Stavoren_hourly_routine_revised.R - 10,056 bytesMD5:
ce55ad519865e41c9e99b16eae2a4273
Regression_Trintelhaven_daily_revised.R - 7,755 bytesMD5:
37bc06e85dfdd7c2de3639bd4dd80616
Regression_Trintelhaven_daily_routine_revised.R - 10,351 bytesMD5:
babe06aacd0dadacef3450e418093832
Regression_Trintelhaven_hourly_revised.R - 8,567 bytesMD5:
9490bf41f37310f2e20f34616ba48521
Regression_Trintelhaven_hourly_routine_revised.R - 40,640 bytesMD5:
6775b0bfc56584231834265d61244a01
Stavoren_daily_2019_revised.txt - 45,167 bytesMD5:
8fc0a52a38242352ee6e337ca2361f2d
Stavoren_daily_2019_routine_revised.txt - 29,084 bytesMD5:
d8b24a72ede38944e0014005bffe4369
Stavoren_daily_2020_revised.txt - 34,882 bytesMD5:
3b09c31d823e40ac3ebee32c4a744e62
Stavoren_daily_2020_routine_revised.txt - 430,095 bytesMD5:
62ea811264cee9092ac240281bd843d8
Stavoren_hourly_2019_revised.txt - 566,599 bytesMD5:
362722d324de66da0a2252fef0dbe0f2
Stavoren_hourly_2019_routine_revised.txt - 370,429 bytesMD5:
80467a55bfaf48c769ddc30ae1f79d78
Stavoren_hourly_2020_revised.txt - 459,099 bytesMD5:
e823021b93a7c3bc599d0d7a47a80b29
Stavoren_hourly_2020_routine_revised.txt - 35,409 bytesMD5:
ac051aea1f5825a2bf41aef7ee2e3a87
Trintelhaven_daily_2019_revised.txt - 53,852 bytesMD5:
b6e29713c44553b9c892b40dca272232
Trintelhaven_daily_2019_routine_revised.txt - 38,236 bytesMD5:
a038812cac4022b5abd5005deba3ab08
Trintelhaven_daily_2020_revised.txt - 57,726 bytesMD5:
6e72e17e20243faa909924d7b66ce20a
Trintelhaven_daily_2020_routine_revised.txt - 411,827 bytesMD5:
ec466fdeb3f17fa44f6c0f649fb2007d
Trintelhaven_hourly_2019_revised.txt - 748,281 bytesMD5:
40c3b2b085bb5f0382744c8bea1adf6e
Trintelhaven_hourly_2019_routine_revised.txt - 530,623 bytesMD5:
4135147036922642f8668a33d546948f
Trintelhaven_hourly_2020_revised.txt - 998,015 bytesMD5:
aceaadc805f937c34a12eb9044e93428
Trintelhaven_hourly_2020_routine_revised.txt -
download all files (zip)
4,928,796 bytes unzipped