Code for the paper "Does residential segregation align with urban barriers?"
DOI:10.4121/be216b07-ba91-41ad-98c7-3115d319fda7.v2
The DOI displayed above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
DOI: 10.4121/be216b07-ba91-41ad-98c7-3115d319fda7
DOI: 10.4121/be216b07-ba91-41ad-98c7-3115d319fda7
Datacite citation style
Spierenburg, Lucas; Sander van Cranenburgh; Cats, Oded (2025): Code for the paper "Does residential segregation align with urban barriers?". Version 2. 4TU.ResearchData. dataset. https://doi.org/10.4121/be216b07-ba91-41ad-98c7-3115d319fda7.v2
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
Version 2 - 2025-07-09 (latest)
Version 1 - 2025-07-03
Categories
Geolocation
Western Europe (France, Germany, Ireland, Italy, the Netherlands, Portugal, Spain, the United Kingdom)
Licence MIT
Interoperability
Collection
This code is used for computing the results of the paper "Does residential segregation align with urban barriers?".
This code quantifies the spatial alignment between residential segregation patterns and urban fragmentation across 520 European cities using a Monte Carlo approach. The analysis generates synthetic urban fragmentation patterns using Voronoi tessellation and compares observed spatial overlap against null distributions to test whether urban barriers (railways, motorways, waterways) act as social frontiers more than expected by chance.
History
- 2025-07-03 first online
- 2025-07-09 published, posted
Publisher
4TU.ResearchDataFormat
.py, .shFunding
- Delft AI Initiative
Organizations
TU Delft, Faculty of Civil Engineering and Geosciences, Department of Transport and PlanningDATA
Files (19)
- 3,431 bytesMD5:
d84b0b0d5db08ab978ed2e7842a3ddff
README_code.md - 2,686 bytesMD5:
11068e882b4e8366689245baa950d02e
build_adjacency_matrix.py - 5,129 bytesMD5:
3428fa0a8c798a0dd30772143a76b1ef
build_covariance_matrix.py - 9,106 bytesMD5:
f68ec180b02abafa822d0412f5b48942
build_urban_fragments.py - 7,082 bytesMD5:
ed15641bf1272d958905b3e1db0bcccb
coef_variance.py - 4,343 bytesMD5:
008856a09dc50bf1c43c727d15612fde
demographic_preprocess.py - 8,672 bytesMD5:
acf78a6b6b4567060a73adc3c24a2949
environment.yml - 6,026 bytesMD5:
7c1440d989ee8d08e3f46529657f6192
extract_pbf.sh - 19,898 bytesMD5:
6e9ee4da53fa064eb58b37dd840a34b4
generate_synthetic.py - 11,274 bytesMD5:
6a097fc5791a4d43a97fbc711663e5cb
measure_city_indicators.py - 3,343 bytesMD5:
f2e393c605afc61f247b668e71d353e1
merge_data.py - 4,859 bytesMD5:
c5edb82a77cb8ab22cedd0cb5d0924ce
moving_average.py - 6,881 bytesMD5:
701c0732a7ff802046d03482520b6c6c
overlap_analysis.py - 21,086 bytesMD5:
419e3cb1a704e4522fd97ae830f03b2e
perimeter_study.py - 19,574 bytesMD5:
48f09227917f7e92c725f090c4d790cb
perimeter_study_Northern_Ireland.py - 6,303 bytesMD5:
c4d1ba720caf1ae16bebaf7a2156a2d1
proximity_table.py - 7,490 bytesMD5:
b0266c60fb7feb91c1141757bade521e
quantile_dist.py - 8,885 bytesMD5:
6df98f8352f5811f7d770a87b3c43294
regionalization.py - 7,314 bytesMD5:
0ba38d74a6b75c7b25c213dde9a6d48a
regression.py -
download all files (zip)
163,382 bytes unzipped