Scripts and data for "Historical shifts in seasonality and timing of extreme precipitation"
doi:10.4121/bac024f1-6c2e-4a09-bf0f-be78b6bbe21c.v3
The doi above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
doi: 10.4121/bac024f1-6c2e-4a09-bf0f-be78b6bbe21c
doi: 10.4121/bac024f1-6c2e-4a09-bf0f-be78b6bbe21c
Datacite citation style:
Gruendemann, Gaby; Zorzetto, Enrico; Nick van de Giesen; Ent, Ruud van der (2023): Scripts and data for "Historical shifts in seasonality and timing of extreme precipitation". Version 3. 4TU.ResearchData. dataset. https://doi.org/10.4121/bac024f1-6c2e-4a09-bf0f-be78b6bbe21c.v3
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
usage stats
284
views
212
downloads
categories
geolocation
global domain
time coverage
1959-2021
licence
CC BY 4.0
This dataset contains the python scripts and NetCDF data for the analyses and to recreate the figures of the manuscript: "Historical shifts in seasonality and timing of extreme precipitation" by Gaby GrĂ¼ndemann, Enrico Zorzetto, Nick van de Giesen, and Ruud van der Ent
history
- 2023-07-03 first online
- 2023-11-23 published, posted
publisher
4TU.ResearchData
format
netcdf, python
derived from
funding
- Transformative Environmental Monitoring to Boost Observations in Africa (grant code 101086209) [more info...] European Commission
organizations
Delft University of Technology, Faculty of Civil Engineering and Geosciences, Department of Water ManagementUniversity of Saskatchewan, Centre for Hydrology
Princeton University, Program in Atmospheric and Oceanic Sciences
DATA
files (8)
- 2,438 bytesMD5:
b3ffa7cb0b1e29488d7aabd6341a9336
ReadMe.txt - 12,079 bytesMD5:
9900f047d982d2cd153de8b7339d6e04
regional_D_C_Z.py - 404,137,812 bytesMD5:
f2a3dbbe2b41e4c34ef592a46d4992fe
seasonality_ERA5.nc - 1,008,116,585 bytesMD5:
8891dd8b83c013e90c146ac0312dffd9
seasonality_ERA5_additional_variables.nc - 101,157 bytesMD5:
560840a80e24fe416c09e2a372360b3b
seasonality_ERA5_regional.nc - 31,204 bytesMD5:
30f514f1acc875725cdd2def5cfa69ab
seasonality_figures.py - 5,798 bytesMD5:
bd9582d0862fa2bff8a22a065fbef4d9
seasonality_functions.py - 6,578 bytesMD5:
a28f4ecdb3ba7e88915221724f9fd960
seasonality_test_script.py -
download all files (zip)
1,412,413,651 bytes unzipped