Code underlying: Implementation of explicit and switched MPC using data-driven surrogate models
DOI:10.4121/b6dd9d97-118d-406e-867d-b821fb6d08d4.v2
The DOI displayed above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
DOI: 10.4121/b6dd9d97-118d-406e-867d-b821fb6d08d4
DOI: 10.4121/b6dd9d97-118d-406e-867d-b821fb6d08d4
Datacite citation style:
Koo, Ja-Ho; Edo Abraham; Solomatine, Dimitri; Jonoski, Andreja (2025): Code underlying: Implementation of explicit and switched MPC using data-driven surrogate models. Version 2. 4TU.ResearchData. dataset. https://doi.org/10.4121/b6dd9d97-118d-406e-867d-b821fb6d08d4.v2
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
choose version:
version 2 - 2025-03-10 (latest)
version 1 - 2025-02-25
Categories
Geolocation
the Daecheong reservoir, South Korea
lat (N): 36.4775
lon (E): 127.480833
view on openstreetmap
Licence CC BY 4.0
Python codes to implement explicit and switched MPC using data-driven surrogate models.
The python files starting with PDMPC are for generating PDMPC results to train surrogate models.
O_results_check and W_results_check files are for arranging results from the explicit MPC surrogate model and switched MPC surrogate model, respectively.
W_ML.py is to build and test the switched MPC surrogate model, and O_DNN_hyper_opt.py is to find the optimal hyperparameters for the explicit MPC surrogate model as well as to train it.
The datasets for this research are included.
History
- 2025-02-25 first online
- 2025-03-10 published, posted
Publisher
4TU.ResearchDataFormat
.py, .txt, .xlsxOrganizations
IHE Delft, Department of Hydroinformatics and Socio-Technical InnovationTU Delft, Faculty of Civil Engineering and Geosciences, Department of Water Management
Korea Water Resources Public Corporation (K-water)
DATA
Files (13)
- 1,216 bytesMD5:
8da1c277077096163b8a3a01048a3ed1
Readme.txt - 53,315 bytesMD5:
c3e6328964aaf988c89209470fa9ccd9
Inflow_original.xlsx - 47,207 bytesMD5:
7391fa6f2fa06035177b57256b7883a4
Inflow_wavelet.xlsx - 697 bytesMD5:
8c4df4fba705606d16a73ceedda97e3f
LV_curve.csv - 4,350 bytesMD5:
bc42226bce3ff0cede09d18ebb911e88
O_DNN_hyperopt_GS.py - 3,274 bytesMD5:
bc0f9c32820d6cad243d7ef619405dcb
O_result_check.py - 4,440 bytesMD5:
bb121c49c60d0cb2fb35eee0a6804f2c
PDMPC_BO_P_4O_3W_6O_simple.py - 2,898 bytesMD5:
e602633b38494636b6b670357e4b0b29
PDMPC_Evaluator_6O_simple.py - 4,473 bytesMD5:
30965f2ec3bf2c8c5c7678b88fa5d917
PDMPC_formulation_4O_3W.py - 3,400 bytesMD5:
190685d8eddebea4fe54bba1911d4b58
PDMPC_main_P_4O_3W_6O_simple.py - 404 bytesMD5:
45b617c54a1dc30676f44365c7eefb34
PDMPC_solver.py - 5,228 bytesMD5:
9a24ea4200f21fbe66e5b5423dedb09d
W_ML.py - 4,549 bytesMD5:
2b32e2936fc07de8fe132b19b8d673ab
W_result_check.py -
download all files (zip)
135,451 bytes unzipped