Models and Optimization Tools for a Novel 3D Printed Capacitive Shear Stress Sensor
DOI: 10.4121/19188098
Datacite citation style
Software
These files contain the models and optimization tools for study and development of a 3D-printed capacitive shear stress sensor. This research is described in our research paper:
Oprel, J., Wolterink, G., Schilder, J., Krijnen, G. (2023). Novel 3D Printed
Capacitive Shear Stress Sensor. Journal of Additive Manufacturing.
doi: 10.1016/j.addma.2023.103674
The models are used to study the electrical and the mechanical behavior of printed sensing structures. The main models are made using Matlab. Additionally, Finite Element (FE) models are used to verify these results. This is done using Comsol Multiphysics, which is controlled from a Matlab environment using 'Comsol livelink for Matlab'. The models are integrated in an optimization tool, in the form of a Matlab App.
History
- 2023-07-04 first online, published, posted
Publisher
4TU.ResearchDataFormat
*.m, *.stl, *mphAssociated peer-reviewed publication
Novel 3D printed Capacitive Shear Force SensorFunding
- 4TU Dutch Soft Robotics Consortium
Organizations
University of Twente, Faculty of Electrical Engineering, Mathematics & Computer Science;University of Twente, Faculty of Engineering Technology;
University of Twente, Faculty of Science and Technology
DATA
Files (35)
- 1,137 bytesMD5:
f2f1c910b874ec2a1e05168ec8995b85README.txt - 15,219,633 bytesMD5:
b876254100f4c109f771b75d21a5d4d33D-sensor parameter mechanics.mph - 30,634,893 bytesMD5:
4c7f10b993b78fe063d5a678da9649dcbeamMatlab.mph - 4,898,038 bytesMD5:
af1c58b4b6c8a5bea3dacdd9383d82e8beamMatlab3.mph - 18,346 bytesMD5:
205699d7696e6d451d9317b8c59ab1e5capacitanceDisplacment.m - 5,005 bytesMD5:
368f9260c392e4638e706e7e849e206dcapacitanceLinearization.m - 2,340 bytesMD5:
1524bf6a663d6ea3fd5d200e164f3118chargeToPotential.m - 1,865 bytesMD5:
3ae1f4bfa9ed0445248d1d7dbee6ecdecheckPotential.m - 46,871 bytesMD5:
87a9e6898d2ab0179cc418bf03035fcecopyUIAxes.m - 1,406 bytesMD5:
6d14b1a0afba59661ee2f1bcf9586e65createWireStructure.m - 58,693,754 bytesMD5:
82e7c02d09cd68b5325275164dc95eefDeformationData.mat - 10,777 bytesMD5:
fd0bab8c195f115007e39a022ac4accddemo.m - 22,526 bytesMD5:
ffe1b0afbfaa35588130fcbb366f93beFEMwireStructure.m - 26,648 bytesMD5:
c6c4e17fa28f8af9562c99af834ce485FEMwireStructure3.m - 2,063 bytesMD5:
f49ca395740bdce8cc95b974f5ef01b5findCapacitance.m - 3,845 bytesMD5:
3b4f56f6fd2440ab37fe917f0c75a0cdfindDeformation.m - 2,125 bytesMD5:
11a1f4bb97d53187a936ce25bd37ac03interpolateClosestValues.m - 23,884 bytesMD5:
ef0db63f3da2a91ea26cb82140c50a62Large-Conductive.stl - 28,484 bytesMD5:
fc159e2f9a4637e2a73d3a0fa78afa88Large-Insulator.stl - 1,284 bytesMD5:
f2569743d42a9f273507394b001a6423Large-Support.stl - 3,594 bytesMD5:
2d3fd461ada16f7cfc9b0479f1b66aa3mechanicalBeamFem.m - 6,914 bytesMD5:
935d0b68c5164edbfa29914b01cb5b5eneoHookean.m - 3,229 bytesMD5:
1bded9ef6a31f4ac2dc643b5d36f1410optimalWidthsLarge10.mat - 3,298 bytesMD5:
67ed5d5e019773f880dffa5006cb7cd3optimalWidthsLarge20.mat - 431,612 bytesMD5:
e5d379d9b3ae507371d3d26993a2bc16OptimizationApp.mlapp - 3,109,430 bytesMD5:
6c1dc8248a9dd2af4221b6a1aa4981edoutput.mph - 2,036 bytesMD5:
5328483b84e6654b598607ff69eb50cbplotWires.m - 3,170 bytesMD5:
a9fabd23e2c903dceabf1caf15bf55depotentialToCenteredCharge2.m - 6,024 bytesMD5:
d6dfdba4db15f9c2df154fd47f4d874asaveDeformation.m - 2,352 bytesMD5:
68ac38194bd213acf9cdf2e5d9705778saveDeformationsOfOptimalWidths.m - 2,734 bytesMD5:
d2782f5289c9d6590994008b6287078asaveFigure.m - 15,684 bytesMD5:
40521d9e619d74cc39d0a8b9469402dfSmall-Conductive.stl - 18,884 bytesMD5:
dfc6128566c99b3398f4998c6a22efeaSmall-Insulator.stl - 1,284 bytesMD5:
8d1aca558a89410f3873b6af5413f487Small-Support.stl - 5,343 bytesMD5:
155fe5a36637b96b1e717c5b89c374d0subplot_tight.m -
download all files (zip)
113,260,512 bytes unzipped





