Data underlying the publication "Mapping a 50-spin-qubit network through correlated sensing"
doi: 10.4121/aba1cc84-0aea-4cdc-93ca-68b0db38bd81
Spins associated to optically accessible solid-state defects have emerged as a versatile platform for exploring quantum simulation, quantum sensing and quantum communication. Pioneering experiments have shown the sensing, imaging, and control of multiple nuclear spins surrounding a single electron-spin defect. However, the accessible size and complexity of these spin networks has been constrained by the spectral resolution of current methods. Here, we map a network of 50 coupled spins through high-resolution correlated sensing schemes, using a single nitrogen-vacancy center in diamond. We develop concatenated double-resonance sequences that identify spin-chains through the network. These chains reveal the characteristic spin frequencies and their interconnections with high spectral resolution, and can be fused together to map out the network. Our results provide new opportunities for quantum simulations by increasing the number of available spin qubits. Additionally, our methods might find applications in nano-scale imaging of complex spin systems external to the host crystal.
This server contains the data and notebooks to reproduce the figures.
Also, it contains excel files detailing the positions, frequencies, measured couplings and predicted couplings of the 50-spin network mapped in this work.
- 2024-01-09 first online, published, posted
DATA
- 803 bytesMD5:
73e8a1f75982645f05acafb9e00bd102
README.txt - 3,651,215 bytesMD5:
d99504bc3065313d7d152d4654853006
4TU_server.zip - 110,502 bytesMD5:
f9dc48a2ac752ef95513bb164fdecb12
data_fig2_freq_sweep.json - 3,417 bytesMD5:
bd6936eda16c12152b7038f42e5faf0f
data_fig2_spin_params.json - 262,448 bytesMD5:
d6ba07f8c4b2286bc1a728068c48dc2f
data_fig2_tau_sweep.json - 6,904,957 bytesMD5:
23df23b6f191b026cbc5e6ed54bc4963
data_fig3.json - 693,893 bytesMD5:
c47aebb2815168bbf40c2fc93ad35d8c
data_fig4_1D_ENES.json - 278,366 bytesMD5:
bb7ffb772c9d472d484941499365078b
data_fig4_2D_ENES.json - 24,086 bytesMD5:
215196814dcb2d182e92df8d1d07f073
data_fig4_SEDOR_spectroscopy.json - 3,263 bytesMD5:
e9c4e9b20e608ec88245709c3f1e33e6
data_fig4_SEDOR_tau_sweep.json - 31,808 bytesMD5:
84aa628ed8f1c5ccadfe9f56b1082872
data_fig4_sim_1D.json - 156,591 bytesMD5:
dba271333e16838fea315dea9a562c39
data_fig4_sim_2D.json - 24,086 bytesMD5:
215196814dcb2d182e92df8d1d07f073
data_fig4_spectroscopy_data.json - 126,628 bytesMD5:
2185989a6f2a7b3daecc7cc98a20d005
figure_2.ipynb - 59,725 bytesMD5:
290aa8f58fc2c7ffed65a846bfbe2891
figure_2.pdf - 90,376 bytesMD5:
ce4db321c96facdb5b4da70077bd4a4a
figure_3.ipynb - 27,739 bytesMD5:
14ec9716ff4395dc9afd84051ee8bf4b
figure_3.pdf - 266,081 bytesMD5:
c99c46c14a68951625776b7d6a3022dc
figure_4.ipynb - 45,704 bytesMD5:
f309b6d87ec77aa4b339cb349abb503c
figure_4.pdf - 247,441 bytesMD5:
6906bb717d101f053f1ed8bf6be4418e
figure_5.ipynb - 23,987 bytesMD5:
c8d57afcb2a40f386c11b0d610552393
figure_5.pdf - 90,242 bytesMD5:
8b133fab0b45edbd43ecd330f21f3aa1
figure_s2.pdf - 84,875 bytesMD5:
2647167ac6a66066fe15321eb7fd8ca2
figure_s3.pdf - 3,981 bytesMD5:
38464148340faf8438dc0b9bde727e7e
spin_frequencies.pkl - 7,760 bytesMD5:
f1e17d5b0dcd09f545adbf019a463c83
spin_frequencies.xlsx - 24,708 bytesMD5:
f6c6abc71b9f77076039d62ab6344553
spin_measured_couplings.pkl - 13,036 bytesMD5:
a0a986c51d68c777022e68052644c070
spin_measured_couplings.xlsx - 19,626 bytesMD5:
1bfc1823e815c43fe75d9e5c484105aa
spin_positions.pkl - 7,711 bytesMD5:
6caa6b8e76e48cee8ce29e5214bbe229
spin_positions.xlsx - 31,110 bytesMD5:
932743aba6f216d80713ae7f86970a4c
spin_predicted_couplings.pkl - 14,551 bytesMD5:
b363e7b9ce6efb4bf59cbe269cda0b54
spin_predicted_couplings.xlsx - 6,841 bytesMD5:
31892a5f9e741cacecb5d16386715371
spin_table.pkl - 7,975 bytesMD5:
139b24872f149e01d93ce6cb7dd80ae0
spin_table.xlsx -
download all files (zip)
13,345,532 bytes unzipped