The AMLM algorithm for parameter fitting of discrete data
doi:10.4121/9ba76916-6abe-4d75-bfaf-a22bc87787e1.v1
The doi above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
doi: 10.4121/9ba76916-6abe-4d75-bfaf-a22bc87787e1
doi: 10.4121/9ba76916-6abe-4d75-bfaf-a22bc87787e1
Datacite citation style:
Liu, Le (2023): The AMLM algorithm for parameter fitting of discrete data. Version 1. 4TU.ResearchData. dataset. https://doi.org/10.4121/9ba76916-6abe-4d75-bfaf-a22bc87787e1.v1
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
This MATLAB code, which pertains to the Adaptive Multi-step Levenberg-Marquardt (AMLM) algorithm, can be utilized for the nonlinear parameter fitting of discrete data. The input data is particularly required for power system current or voltage signals, which are supposed to be fitted to an exponential function.
history
- 2023-09-14 first online, published, posted
publisher
4TU.ResearchData
format
.mat
associated peer-reviewed publication
Single-Ended DC Fault Location Method For MMC-Based HVDC Power System Using Adaptive Multi-Step Levenberg-Marquardt Algorithm
organizations
TU Delft, Faculty of Electrical Engineering, Mathematics and Computer Science, Department of Electrical Sustainable Energy, IEPG Group
DATA
files (2)
- 13,567 bytesMD5:
7df6d9ad32fa7f8831ddef56519181c0
AMLM_parameterfitting.asv - 12,874 bytesMD5:
d1548413264c2e79b3b39848e03ff961
AMLM_parameterfitting.m -
download all files (zip)
26,441 bytes unzipped