Data to incorporate air behaviour during pipe filling events in SWMM (AirSWMMv1.0)

doi: 10.4121/9a47ad4c-e6ae-4bd9-a920-f875481e494a.v1
The doi above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future. For a link that will always point to the latest version, please use
doi: 10.4121/9a47ad4c-e6ae-4bd9-a920-f875481e494a
Datacite citation style:
Ferreira, João Paulo; Covas, Didia; Ferras, David ; Kapelan, Zoran (2024): Data to incorporate air behaviour during pipe filling events in SWMM (AirSWMMv1.0). Version 1. 4TU.ResearchData. dataset.
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite

Stormwater management model (SWMM) software has recently become a modeling tool for the simulation of intermittent water supply systems. However, SWMM is not capable of accurately simulating the air behavior in the pipe-filling phase, missing therefore a relevant factor during pipe pressurization. This work proposes the integration of a conventional accumulator model in the existing SWMM hydraulic model to overcome this gap. SWMM source code was modified to calculate the air piezometric head inside the pipe based on the system boundary conditions, and the air piezometric head was incorporated in the SWMM flow rate pressure component. Experimental data were collected during the rapid filling of a pipe system for three possible configurations that are likely to occur in intermittent water supply pipe systems: no air release, small air release, and large air release. Results show that the improved SWMM better describes the effect of the air behavior using the extended transport (EXTRAN) surcharge method when compared to the original SWMM. Results also show that the SLOT method with predefined slot width is not suitable for this purpose; thus, further research is needed to assess if an adjusted slot width could provide better results.

  • 2024-07-08 first online, published, posted
.inp, .txt and .csv files
  • (grant code SFRH/BD/146709/2019) Fundação da CIência e Tecnologia (FCT)
  • New modelling paradigm for improved intermittent supply system modelling (grant code SFRH/BD/146709/2019) Fundação da Ciência e Tecnologia (FCT)
TU Delft, Faculty of Civil Engineering and Geosciences, Department of Water Management


files (2)