Data underlying the MSc research project: Human-nature connectedness of the Teplica stream of Senica
DOI:10.4121/874e9667-a19b-4e1b-83d9-ec324c93df52.v1
The DOI displayed above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
DOI: 10.4121/874e9667-a19b-4e1b-83d9-ec324c93df52
DOI: 10.4121/874e9667-a19b-4e1b-83d9-ec324c93df52
Datacite citation style
Rajmane, Shreya; Letsios, Vasileios; Lee, Youjin (2025): Data underlying the MSc research project: Human-nature connectedness of the Teplica stream of Senica. Version 1. 4TU.ResearchData. dataset. https://doi.org/10.4121/874e9667-a19b-4e1b-83d9-ec324c93df52.v1
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
This dataset contains quantitative data on urban stream restoration of the Teplica River in Senica, Slovakia, as part of the research project Human-Nature Connectedness of the Teplica Stream in Senica.
In this research, a combined approach across three themes —Biodiversity, Quality of Life, and Climate Adaptation—was used to assess the current condition of the Teplica stream.
For this case study:
- The river was divided into stream segments at 200-meter intervals.
- In each segment, different criteria were measured to determine the current situation, using buffer zones of varying radii around the stream, depending on the specific criteria measured.
Two data-driven methods were applied:
- Spatial Multi-Criteria Decision Analysis (S-MCDA). S-MCDA was used to weigh and compare the different measured criteria within the objectives of biodiversity, climate adaptation, and quality of life. This method supports decision-making by evaluating and ranking the criteria to identify priority areas for intervention.
- Typology Construction. Typology construction, using the k-clustering means, was used to group criteria into homogenous clusters based on similarities, allowing the identification of patterns within the dataset. These clusters help to understand which types of interventions would be most impactful within specific segments of the Teplica stream.
In this dataset both the units of measure and the criteria measured can be found.
History
- 2025-06-30 first online, published, posted
Publisher
4TU.ResearchDataFormat
.gkpgOrganizations
TU Delft, Faculty of Architecture and the Built EnvironmentDATA
Files (39)
- 16,629 bytesMD5:
7eb7a5dcbfae3e86c98264cff7da12aa
README.md - 5 bytesMD5:
ae3b3df9970b49b6523e608759bc957d
buffer_100.cpg - 660 bytesMD5:
d1e274f141be3a1c10a0ce0897f9582d
buffer_100.dbf - 404 bytesMD5:
8b6df9710202f654b13f178d7fbd3c47
buffer_100.prj - 2,369 bytesMD5:
877c29970513a08ba036d93689e16879
buffer_100.qmd - 21,060 bytesMD5:
a2e4f42abbdd38bd833b7f4031b85432
buffer_100.shp - 532 bytesMD5:
00f8dcc6fd698c590667559f71ab2294
buffer_100.shx - 5 bytesMD5:
ae3b3df9970b49b6523e608759bc957d
buffer_1000.cpg - 660 bytesMD5:
d1e274f141be3a1c10a0ce0897f9582d
buffer_1000.dbf - 404 bytesMD5:
8b6df9710202f654b13f178d7fbd3c47
buffer_1000.prj - 2,369 bytesMD5:
877c29970513a08ba036d93689e16879
buffer_1000.qmd - 11,476 bytesMD5:
2e0d7812356f6bf93d41e9566d34296b
buffer_1000.shp - 532 bytesMD5:
fb137eb8bcee073344eb8b4acc0821f5
buffer_1000.shx - 5 bytesMD5:
ae3b3df9970b49b6523e608759bc957d
buffer_200.cpg - 660 bytesMD5:
d1e274f141be3a1c10a0ce0897f9582d
buffer_200.dbf - 404 bytesMD5:
8b6df9710202f654b13f178d7fbd3c47
buffer_200.prj - 2,369 bytesMD5:
877c29970513a08ba036d93689e16879
buffer_200.qmd - 17,828 bytesMD5:
d5e9325b6bb25b6fff0d348ba9d49ddb
buffer_200.shp - 532 bytesMD5:
2a1cd0898db688fea6a6791406954527
buffer_200.shx - 5 bytesMD5:
ae3b3df9970b49b6523e608759bc957d
buffer_2000.cpg - 660 bytesMD5:
d1e274f141be3a1c10a0ce0897f9582d
buffer_2000.dbf - 404 bytesMD5:
8b6df9710202f654b13f178d7fbd3c47
buffer_2000.prj - 750 bytesMD5:
67eeed9a35531c92687342966a89ecd0
buffer_2000.qmd - 10,212 bytesMD5:
b8934adaf108b1ff5d5750fb9a6c154f
buffer_2000.shp - 532 bytesMD5:
f27b1012e0d68ddbdafe65a2f5b77dcd
buffer_2000.shx - 5 bytesMD5:
ae3b3df9970b49b6523e608759bc957d
buffer_500.cpg - 660 bytesMD5:
d1e274f141be3a1c10a0ce0897f9582d
buffer_500.dbf - 404 bytesMD5:
8b6df9710202f654b13f178d7fbd3c47
buffer_500.prj - 750 bytesMD5:
67eeed9a35531c92687342966a89ecd0
buffer_500.qmd - 13,860 bytesMD5:
b9a13fb6c727d2e306d3f2648b75786d
buffer_500.shp - 532 bytesMD5:
578e425192e4cca25119adb009935e79
buffer_500.shx - 118,784 bytesMD5:
a4a5066b92fb211a44c93104423214cd
MCDA+Clustering.gpkg - 131,072 bytesMD5:
95321e6fbc65c94990c8dd5bb65234dd
MCDA.gpkg - 5 bytesMD5:
ae3b3df9970b49b6523e608759bc957d
units.cpg - 2,312 bytesMD5:
843e0ea8285ac5c94fcb7e7a647449d6
units.dbf - 404 bytesMD5:
8b6df9710202f654b13f178d7fbd3c47
units.prj - 2,536 bytesMD5:
ffb328657e21644bb71c9d7a730c6892
units.qmd - 10,708 bytesMD5:
368f095a6b663b7e7f50c8a0dfe1ee00
units.shp - 532 bytesMD5:
4f480b703b6c776bf40fe0b4e9266c1d
units.shx -
download all files (zip)
374,030 bytes unzipped