Data underlying the publication: A Choice-Driven Service Network Design and Pricing Including Heterogeneous Behaviors
doi:10.4121/8072452c-7d1b-4e4d-814c-df1d6a48f858.v1
The doi above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
doi: 10.4121/8072452c-7d1b-4e4d-814c-df1d6a48f858
doi: 10.4121/8072452c-7d1b-4e4d-814c-df1d6a48f858
Datacite citation style:
Nicolet, Adrien (2024): Data underlying the publication: A Choice-Driven Service Network Design and Pricing Including Heterogeneous Behaviors. Version 1. 4TU.ResearchData. dataset. https://doi.org/10.4121/8072452c-7d1b-4e4d-814c-df1d6a48f858.v1
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
This research proposes a way to incorporate advanced choice models directly into a Service Network Design and Pricing (SNDP) problem. To do so, we develop a Choice-Driven Service Network Design and Pricing (CD-SNDP) methodology , which is assessed against a benchmark where the choice model is simply a cost minimization. Deterministic and stochastic versions of the method are proposed and compared through an out-of-sample simulation. For the stochastic versions, a heuristic is also developed to speed up the solution time. These models are applied to a small 3-node network and a larger 9-node network.
history
- 2024-07-04 first online, published, posted
publisher
4TU.ResearchData
format
ipynb/py/sh
organizations
TU Delft, Faculty of Mechanical Engineering, Department of Maritime and Transport Technology
DATA
files (19)
- 2,352 bytesMD5:
7ccbefef98fda35e7d886a47f12df5aa
readMe.txt - 58,596 bytesMD5:
30c8dc9a456cbce5f5659c633338c91f
CDSNDP_deter.ipynb - 18,281 bytesMD5:
83fdf1209fe390d4ee87e6ebe57c517c
Exact_Mixed_3n.py - 18,130 bytesMD5:
ea3fb163bdb4b46419602f5fc8d49dd5
Exact_MNL_3n.py - 1,846 bytesMD5:
032b5251814f2ac71dc183f082ca1c7b
exactMixed_3n.sh - 1,844 bytesMD5:
947b786d7be17d324eb1f9361ef8d35b
exactMNL_3n.sh - 19,675 bytesMD5:
7c5a9dff22242d9c84a5024db4e85047
Heur_Mixed_3n.py - 27,193 bytesMD5:
013051ad20ba93c23adf413f2af5f983
Heur_Mixed_9n.py - 19,574 bytesMD5:
064c2d350cb675f240a3cbc6e30c83d8
Heur_MNL_3n.py - 26,705 bytesMD5:
2483501f66e69e416c7ef87acc37e6f4
Heur_MNL_9n.py - 1,862 bytesMD5:
e8e01a3644b40d9fa2f77535d9ae82c8
heurMixed_3n.sh - 1,866 bytesMD5:
1a9e8ef92c8c55b8b63d872723eb6c08
heurMixed_9n.sh - 1,855 bytesMD5:
fbd0116175b8211fcd23b78e12fd1783
heurMNL_3n.sh - 1,861 bytesMD5:
07ccf686cc83fa7f1e0f03526079f6c4
heurMNL_9n.sh - 86,558 bytesMD5:
1acc7883563b851023bb58d6f437dd3b
Simulation.ipynb - 42,964 bytesMD5:
e9eb5a92fd41e3ccf6a8d3c3a3f90f73
Simulation_benchmark.ipynb - 48,638 bytesMD5:
0244184a0e8533942fc7cf67c23186f1
SND_Benchmark.ipynb - 103,131 bytesMD5:
c0d12735156c721e7b2b0c5638e0bb72
SND_toyexample.ipynb - 42,410 bytesMD5:
74665b275581bd47651036274b9f7b0c
SNDP_cycles.ipynb -
download all files (zip)
525,341 bytes unzipped