Data accompanying the research on Emotional user engagement of a food reporting game-based mobile app

Datacite citation style:
K. A. (Kadian) Davis-Owusu; Natalia Romero Herrera; S. (Sonja) van Oers; M. (Marian) de van der Schueren; T. (Tippi) de Bruin et. al. (2020): Data accompanying the research on Emotional user engagement of a food reporting game-based mobile app. Version 1. 4TU.ResearchData. dataset.
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
The study aimed to investigate the long term impact of experiences in user engagement of a food reporting mobile game app. The study recruited 10 participants, with 8 being able to complete the study. The period consider at least 6 weeks of continuous use of the DigestInn application. A one year licence of the DigestInn mobile app was given for free to each participant. A mixed dataset was collected: Daily mood reporting: Experience Sampling Method [1] was used to sample daily participants' mood towards their experience using the application. Whatsapp [2] and the visual Pick-A-Mood tool [3] were used to prompt participants daily. Weekly user engagement reporting: a user engagement scale was used and adjusted for this purpose [4]. The survey was implemented in TypeForm [5]. The prompt/reminder was done through whatsapp via a visual summary of the mood reporting, based on Daily reconstruction method [6] 6 weeks interviews: individual interviews were conducted in person and via Skype. Focus group were conducted in the establishment of Arhnem-Nijmegen Applied Science University. In all cases visual prompts of food and mood reports were presented as probes [6] Raw data was processed for analysis. Coded transcripts: two students assistant and a code manager processed the transcripts using the software Atlas.ti [7] version 8.4.4. A coding scheme was initially developed, code manager trained the student assistant till a higher than .9 interrelated coder was achieved [8] Parsed json files: a json file containing the complete dataset of the complete study period was parsed to extract each participants food reports during. First the file was split in 8 files (one for each participant). A python program and a bash script were developed in Mac OSX to parse the json files into .csv files. In excel, .csv files were parsed by means of two Visual Basic macros to obtain a tabular view of the food reports per participant. [1] Larson, R., & Csikszentmihalyi, M. (2014). The experience sampling method. In Flow and the foundations of positive psychology (pp. 21-34). Springer, Dordrecht. [2] [3] Desmet, P., Vastenburg, M., and Romero, N. (2016) Mood measurement with Pick-A-Mood: review of current methods and design of a pictorial self-report scale. Journal Design Research, 14 (3), pp. 241-279 [4] O’Brien, H. L., Cairns, P., & Hall, M. (2018). A practical approach to measuring user engagement with the refined user engagement scale (UES) and new UES short form. International Journal of Human-Computer Studies, 112, 28-39 [5] [6] Kahneman, D., Krueger, A. B., Schkade, D. A., Schwarz, N., & Stone, A. A. (2004). A survey method for characterizing daily life experience: The day reconstruction method. Science, 306(5702), 1776-1780. [7] Atlas.ti [8] Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. sage.
  • 2020-07-01 first online, published, posted
4TU.Centre for Research Data
media types: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet, application/zip, text/plain
  • ZonMw, 40-44300-98-133
Arhnem-Nijmegen Applied Science University
TU Delft, Faculty of Industrial Design Engineering, Department Human-Centered Design


files (1)