Data underlying the paper: Application of ensemble transform data assimilation methods for parameter estimation in nonlinear problems
DOI:10.4121/12987719.v1
The DOI displayed above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
DOI: 10.4121/12987719
DOI: 10.4121/12987719
Datacite citation style
Ruchi, S. (Sangeetika); Dubinkina, Svetlana; de Wiljes, Jana (2021): Data underlying the paper: Application of ensemble transform data assimilation methods for parameter estimation in nonlinear problems. Version 1. 4TU.ResearchData. dataset. https://doi.org/10.4121/12987719.v1
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
This dataset contains data used for the article "Application of ensemble transform data assimilation methods for parameter estimation in nonlinear problems" S.Ruchi, S.Dubinkina, and J. de Wiljes in Nonlin. Processes Geophys. Discuss, 2020, https://doi.org/10.5194/npg-2020-24.
The purpose of this work is to compare ensemble transform data assimilation methods for estimating high-dimensional parameters in a model of groundwater flow with uncertain rock properties.
The purpose of this work is to compare ensemble transform data assimilation methods for estimating high-dimensional parameters in a model of groundwater flow with uncertain rock properties.
History
- 2021-01-11 first online, published, posted
Publisher
4TU.ResearchDataAssociated peer-reviewed publication
Application of ensemble transform data assimilation methods for parameter estimation in nonlinear problemsFunding
- Shell-NWO/FOM 14CSER007
- SFB 1294: Data Assimilation – The Seamless Integration of Data and Models (grant code 318763901) [more info...] Deutsche Forschungsgemeinschaft
Organizations
Centrum Wiskunde & Informatica, Amsterdam, The NetherlandsDATA
Files (15)
- 2,277 bytesMD5:
59c6d627ca32a886f90ff7609dc2d9b7README.txt - 2,962 bytesMD5:
26f66ea2fc3341f2a27410e932866b13F1_field.m - 1,884 bytesMD5:
101f962a8f8482a3e956c07bd6b5b824F1_metrics.m - 3,154 bytesMD5:
b83c48aca2b9bf75b3b8595a27e1fba1F2_field.m - 2,360 bytesMD5:
976e8a0119766494cc249d5b29d59c2eF2_metrics.m - 2,360 bytesMD5:
b654441fd4bb395b66b90f3c65ad610fF2_posterior.m - 1,219 bytesMD5:
ed4ab19bce371c676c8a633f3e6f6f19KLdivChan.m - 473 bytesMD5:
82924d99dddf459aaa864d2fb404b896NumGrid_F1.m - 469 bytesMD5:
60d490ecd31ec2406b4f26d12a05e614NumGrid_F2.m - 554 bytesMD5:
274e777b1022d6ee1945d031e78b3aedphysicalPlot.m - 2,845 bytesMD5:
2e519d9736d930ce66e1351f86d87bfaplot_boxOnTop.m - 238,246,263 bytesMD5:
a42d610cbdc76a0b3bdd0a7513a78fe4Results_F1.zip - 144,615,222 bytesMD5:
7aeb0561517a31c5a4cfad5ea72ce6e5Results_F2.zip - 94 bytesMD5:
27fd2ba3f07047f16b9c4e787e28e6abTruth_F1.m - 193 bytesMD5:
4de97062264e25b81672f7be37dbbf38Truth_F2.m -
download all files (zip)
382,882,329 bytes unzipped




