Process Discovery Contest 2019
doi:10.4121/14625996.v1
The doi above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
doi: 10.4121/14625996
doi: 10.4121/14625996
Datacite citation style:
J. (Josep) Carmona; Massimiliano de Leoni; Benoît Depaire (2021): Process Discovery Contest 2019. Version 1. 4TU.ResearchData. dataset. https://doi.org/10.4121/14625996.v1
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
This is the data set that was used for the Process Discovery Contest of 2019 (PDC 2019). The data set contains 10 training logs, 10 corresponding test logs, and 10 corresponding ground truth logs. The logs are all stored using the IEEE XES file format (see either https://www.xes-standard.org/ or https://ieeexplore.ieee.org/document/7740858).
In each ground truth log, the additional boolean “pdc:isPos” attribute denotes whether the trace is positive (fits the model, true) or negative (does not fit the model, false).
In each ground truth log, the additional boolean “pdc:isPos” attribute denotes whether the trace is positive (fits the model, true) or negative (does not fit the model, false).
history
- 2021-05-21 first online, published, posted
publisher
4TU.ResearchData
format
IEEE XES
organizations
Task Force on Process Mining (https://tf-pm.org)
DATA
files (4)
- 718 bytesMD5:
e3b5fd92844340788e1c94832b69edaf
readme.txt - 80,011 bytesMD5:
30f01e14c76c27348842a33f032ba8e5
Ground Truth Logs.zip - 78,055 bytesMD5:
c7ac0932e3c6dc191cc371b13b91000d
Test Logs.zip - 468,146 bytesMD5:
af26b88e0651268d13d491d40ce7fff2
Training Logs.zip -
download all files (zip)
626,930 bytes unzipped