Dataset concerning: Controlled Yet Natural: A Hybrid BDI-LLM Conversational Agent for Child Helpline Training
DOI:10.4121/5c5b69b7-f727-42d0-983f-07ab910b8460.v1
The DOI displayed above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
DOI: 10.4121/5c5b69b7-f727-42d0-983f-07ab910b8460
DOI: 10.4121/5c5b69b7-f727-42d0-983f-07ab910b8460
Datacite citation style
Al Owayyed, Mohammed; Denga, Adarsh (2025): Dataset concerning: Controlled Yet Natural: A Hybrid BDI-LLM Conversational Agent for Child Helpline Training. Version 1. 4TU.ResearchData. dataset. https://doi.org/10.4121/5c5b69b7-f727-42d0-983f-07ab910b8460.v1
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
This dataset was collected as part of an evaluation study submitted to the IVA25 conference, titled "Controlled Yet Natural: A Hybrid BDI-LLM Conversational Agent for Child Helpline Training." It includes data from experimental measures, double-coding, and the analysis code. Supplementary materials are also provided, including a screenshot of the tool, materials used in Study 1, and additional explanations of the LLM prompts employed.
History
- 2025-06-25 first online, published, posted
Publisher
4TU.ResearchDataFormat
*.Rmd, *.pdf, *.py, *.md, *.png, *.csvOrganizations
TU Delft, Faculty of Electrical Engineering, Mathematics and Computer Science, Department of Intelligent SystemsDATA
Files (17)
- 4,852 bytesMD5:
d826ac390c40dd04a691374fe8e9d17c
README.md - 2,143 bytesMD5:
0f31209c3a17a7c5ad7eac3545ab9dfe
construct_split.py - 1,238 bytesMD5:
dc92b7812a409f167811fc664a2fd13a
constructs_averaged_llm.csv - 1,291 bytesMD5:
fa74fa9a4f3ca82564871d0980ddb4ca
constructs_averaged_rbs.csv - 3,137 bytesMD5:
a961d566fd30be74e8b07b2e9c35532d
data_raw_llm.csv - 3,228 bytesMD5:
a358a86c2f13766fd35dea4add5382d5
data_raw_rbs.csv - 2,129 bytesMD5:
61631d0325ed1010c2bdf7aca48b60d2
Dockerfile - 18,609 bytesMD5:
3fc8c55f98e277f1214be020ce1c479f
Experiment Analysis.Rmd - 307,812 bytesMD5:
84a6bd6cf6faae39225d7eb2016c5121
Experiment-Analysis.pdf - 2,627 bytesMD5:
6b061199cd8c3d9b1bc65ca4f7358fff
NLG.csv - 481 bytesMD5:
bf76dc32377a73ba6c9703bb67ef1467
NLP.csv - 267,031 bytesMD5:
44883d62f31a4c8a2f044e5144de558f
Non-inferiorityTest.pdf - 9,917 bytesMD5:
2feceeb5d7b96983b86b354e0c208aff
Non-inferiorityTest.Rmd - 231,196 bytesMD5:
d1b3fe406702c4dcf33ddc134156568e
prompts.pdf - 16,557 bytesMD5:
f806eba0fc3dc138f8002c0f4b5aeae5
qual.csv - 126,120 bytesMD5:
22e6944723faebadc5e613b93754a10f
Screenshot - experiment interface.png - 486,886 bytesMD5:
b1835324cfbaa88746c6990e06dbe916
Study 1 Materials.pdf -
download all files (zip)
1,485,254 bytes unzipped