Source code for the publication: Nonmyopic Global Optimisation via Approximate Dynamic Programming
DOI:10.4121/45406971-2516-4306-a69f-b2ad68e6eaea.v1
The DOI displayed above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
DOI: 10.4121/45406971-2516-4306-a69f-b2ad68e6eaea
DOI: 10.4121/45406971-2516-4306-a69f-b2ad68e6eaea
Datacite citation style
Filippo Airaldi (2025): Source code for the publication: Nonmyopic Global Optimisation via Approximate Dynamic Programming. Version 1. 4TU.ResearchData. software. https://doi.org/10.4121/45406971-2516-4306-a69f-b2ad68e6eaea.v1
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Software
Categories
Licence
MITSource code for the implementation and simulation of nonmyopic multistep lookahead strategies for the gradient-free optimisation of black-box functions.
History
- 2025-01-08 first online, published, posted
Publisher
4TU.ResearchDataFormat
source code (.py) and simulation results (.csv)Associated peer-reviewed publication
Nonmyopic Global Optimisation via Approximate Dynamic ProgrammingCode hosting project url
https://github.com/FilippoAiraldi/global-optimizationFunding
- CLariNet (grant code 101018826) [more info...] European Research Council
Organizations
TU Delft, Faculty of Mechanical Engineering, Delft Center for Systems and ControlTo access the source code, use the following command:
git clone https://data.4tu.nl/v3/datasets/5b628284-f4c5-4756-bceb-baccad8aae20.git "global-optimization"