Data underlying the publication: A Logit Mixture Model Estimating the Heterogeneous Mode Choice Preferences of Shippers Based on Aggregate Data
doi: 10.4121/3630e859-15ed-400b-b4ca-6b7eacb392b7
This research proposes a way to estimate heterogeneous mode choice preferences in the context of intermodal transport directly from aggregate data. To do so, we develop a Weighted Logit Mixture (WLM) methodology , which is compared to a benchmark consisting of a Multinomial Logit (MNL) model. In the WLM, we estimate the Lognormal distribution of the intermodal cost coefficient within the shippers' population. Then, we compare the performance of our WLM against the benchmark in terms of mode share predictions, elasticities, and correlations. Finally, we also investigate the influence of adding the Value Of Time (VOT) in the WLM on the model's performance.
- 2024-07-04 first online, published, posted
DATA
- 2,611 bytesMD5:
5771886ef31e32fa72988889f94e90d7
readMe.txt - 13,113,846 bytesMD5:
751a8e1c79a25c097dc24e600e5e71b2
Actual_Predicted.ipynb - 11,108 bytesMD5:
d0008d5198119bb61ef13ccb24a2ea4f
BENCHMARK.html - 8,248 bytesMD5:
828667368b84e8bcd36f67c17e976e76
Correlations.csv - 2,209,071 bytesMD5:
1cb3091f572bdb070b3835a25d80d552
finalASTRA.csv - 12,980 bytesMD5:
2b4b47a56ca0a3a4d3445f247cfe0403
LOGN_COSTinter.html - 13,004 bytesMD5:
1edfb93ef09902cbf55ced269fbb7a1f
LOGN_COSTVOTinter.html - 21,596 bytesMD5:
e66e426109c51133323c4857e8c5b22c
Lognormal_distribution_plot.ipynb - 22,794 bytesMD5:
cd85a8bc3d4ef70d803dcd5b90ac1d24
LognormalVOT_distribution_plot.ipynb - 6,943 bytesMD5:
43f035bb735bf3c72e150206d6ac34d9
MNL-ASTRA.ipynb - 2,951,477 bytesMD5:
c0ce852aaa25ed660e9c507ec3aa140d
MNL_withPredictions.csv - 1,844 bytesMD5:
820f291d139bddb085e8661334cb7580
Results_BENCHMARK.csv - 1,845 bytesMD5:
d8a48150608d0dd930f443b797d9c25c
Results_BENCHMARK_otherOD.csv - 1,845 bytesMD5:
f2046b38d65790fd04b2fb026e4c1270
Results_BENCHMARK_ROTANT.csv - 1,835 bytesMD5:
a5ec318b59b826b919258d563dacb494
Results_WLM.csv - 1,841 bytesMD5:
6c0b1f9af07371c3a035fd4430382694
Results_WLM_otherOD.csv - 1,846 bytesMD5:
0c4c9d68a6be44260daaa9a90ce7bcc5
Results_WLM_ROTANT.csv - 2,254 bytesMD5:
bbb0d196494a1064d96adc7ad6cb189b
WLM_COSTinter_lognormal.py - 2,286 bytesMD5:
242a16eab446816e14c2e958b1a4bd8d
WLM_COSTVOTinter_lognormal.py - 2,946,130 bytesMD5:
d7f7a8ce5d936fd9ba80e8ba768a3253
WML_withPredictions.csv -
download all files (zip)
21,335,404 bytes unzipped