Data used in the paper: Hydrological drought forecasts using precipitation data depend on catchment properties and human activities
DOI:10.4121/302cd0fd-59da-46e8-ac82-f98fad865751.v1
The DOI displayed above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
DOI: 10.4121/302cd0fd-59da-46e8-ac82-f98fad865751
DOI: 10.4121/302cd0fd-59da-46e8-ac82-f98fad865751
Datacite citation style
Samuel Sutanto; Syaehuddin, Wahdan (2024): Data used in the paper: Hydrological drought forecasts using precipitation data depend on catchment properties and human activities. Version 1. 4TU.ResearchData. dataset. https://doi.org/10.4121/302cd0fd-59da-46e8-ac82-f98fad865751.v1
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
Usage statistics
472
views
2127
downloads
Geolocation
Europe
Time coverage 2024
Licence CC BY 4.0
Interoperability
Here I provide the SSI-1 derived using the LISFLOOD SFO data from 1991 to 2022. The SPI-x were derived from the ERA5 dataset from 1991-2022. The SGI-1 was derived using the LISFLOOD SFO data from 1990 to 2018. The drought forecasts derived using the Standardized Indices (SSI, SGI, SPI) for European rivers with a lead time of 7-month from 2002 to 2022 can be obtained from the author because the data exceed the limit. Scripts used in the study are provided. Please look at the script readme file.
History
- 2024-02-23 first online, published, posted
Publisher
4TU.ResearchDataFormat
NetCDF, PythonDerived from
Funding
- ERC Starting Grant
Organizations
Wageningen university and research, Department of Environmental Sciences, Earth Systems and Global ChangeDATA
Files (18)
- 615 bytesMD5:
668f769c59630985a321fa88283ef617README_script.txt - 2,199 bytesMD5:
96930162a9ef23f177cc059a458a2916boxplot.py - 1,603 bytesMD5:
de72186cbe2c9172fa7c89a0440972cbbrier_score.py - 1,062 bytesMD5:
0dc6fb3b1adfc70908ff0c0aa81e11b1correlation_p_value.py - 1,767 bytesMD5:
1d8dbb47af3ae174e59457fdc64eb0d0forecast_lag_shift.py - 2,023 bytesMD5:
f40b636d87463d65645a50611e98372blag_time.py - 1,500 bytesMD5:
f6ec3e6a6a61df6b5abb259213d023dbline_plot.py - 3,705 bytesMD5:
91bea9e7938ff2a222a87de8da491d6emap_plotting.py - 1,119 bytesMD5:
1334a4ee08540a13b48d442ad312ec9emasking.py - 611 bytesMD5:
0e2f7056f22cce78fa90da793bf9f7c7observed_and_probability_for_bs.py - 1,322,416,712 bytesMD5:
163c4abef98b975b196a5041bde11425SGI1_Lisflood_New_18.nc - 1,459,216,311 bytesMD5:
86bafb789f66ee323dce8e5d26278646SPI-12_1991_2022_New.nc - 1,459,217,528 bytesMD5:
697ea70e281bef93828ea38a3950edf4SPI-1_1991_2022_New.nc - 1,459,217,528 bytesMD5:
07261ace166d542e807191194acb1e75SPI-3_1991_2022_New.nc - 1,459,217,528 bytesMD5:
ee12ddb32a2c51d75e8973664152c27cSPI-6_1991_2022_New.nc - 7,637 bytesMD5:
9b23992166d49ce7eb362dc988fe6337SPI_Grid.py - 62,515 bytesMD5:
590490e5eee160e3f17432f3e6e40f82SPI_Grid_Forecast.py - 1,459,217,528 bytesMD5:
0427558a3215e0b61736e8c640cf1195SSI-1_1991-2022_New.nc -
download all files (zip)
8,618,589,491 bytes unzipped





