Code underlying research on: forecast CAPEX and deployment of electrolysers (AEC & PEM)
DOI:10.4121/29952e47-4482-47ba-aa6f-510417bff0d0.v2
The DOI displayed above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
DOI: 10.4121/29952e47-4482-47ba-aa6f-510417bff0d0
DOI: 10.4121/29952e47-4482-47ba-aa6f-510417bff0d0
Datacite citation style
van Eijden, Bram (2025): Code underlying research on: forecast CAPEX and deployment of electrolysers (AEC & PEM). Version 2. 4TU.ResearchData. dataset. https://doi.org/10.4121/29952e47-4482-47ba-aa6f-510417bff0d0.v2
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
Version 2 - 2025-07-07 (latest)
Version 1 - 2025-07-04
This code implements a probabilistic forecasting framework for electrolyser technologies, combining a logistic S-curve model to project future deployment and a stochastic Wright’s Law model to estimate future capital costs. It uses Monte Carlo simulations to explicitly capture uncertainty in growth rates, saturation levels, and learning effects, providing transparent and reproducible projections aligned with the methods described in the thesis.
History
- 2025-07-04 first online
- 2025-07-07 published, posted
Publisher
4TU.ResearchDataFormat
script/.py spreadsheet/.xlsxOrganizations
TU Delft, Faculty of Technology, Policy and Management, Complex Systems Engineering and ManagementDATA
Files (13)
- 4,082 bytesMD5:
079e443bc04989006d109f113a27fbb8
README.txt - 8,496 bytesMD5:
098938a0602b2ce788b8e0791d41ce30
CAPEX AEC.py - 9,001 bytesMD5:
d270d2053988a6f61b3eeca07d1a589a
CAPEX PEM.py - 7,013 bytesMD5:
d4d73b46a871160d7a2ec6917b45942d
Deployment AEC.py - 5,926 bytesMD5:
2a04713c180c0dbcf41bc310f48eeb82
DEPLOYMENT FORECAST AEC.xlsx - 9,265 bytesMD5:
d4b756713f83daf985d37ba9e4598686
DEPLOYMENT FORECAST PEM.xlsx - 6,370 bytesMD5:
c6ab90c5ead7c7214710c55a8b27e80c
Deployment PEM.py - 1,071 bytesMD5:
8fb8ccc7f91ad0785d4b8bc3eb78f652
LICENSE.txt - 16,077 bytesMD5:
6bdfc38200b35e59cac918afa7b0ca47
Scenario.xlsx - 3,798 bytesMD5:
8f9b3fd9f165591d963f6a6ed34bc0f6
Scenario_Costs (AEC).py - 3,777 bytesMD5:
7308fe7b4aeab7437726920931269c10
Scenario_Costs (PEM).py - 4,284 bytesMD5:
ff189c07222d51ad19e71243369e3fe9
Scenario_Growth rate (AEC).py - 4,164 bytesMD5:
873b98e68c20cdc831dd0cafa417c38a
Scenario_Growth rate (PEM).py -
download all files (zip)
83,324 bytes unzipped