Data underlying the research of Quality prediction of strawberries with RGB image segments
Datacite citation style:
Wen, Junhan; de Weerdt, Mathijs; Thomas Abeel; Camiel Verschoor; LIsanne Schuddebeurs et. al. (2023): Data underlying the research of Quality prediction of strawberries with RGB image segments. Version 1. 4TU.ResearchData. dataset. https://doi.org/10.4121/21864590.v1
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
choose version:
version 2 - 2023-07-14 (latest)
version 1 - 2023-03-14
In this research, we validate our hypothesis of using in-field data that are acquirable via commodity hardware to obtain acceptable accuracies in predicting the quality attribute of strawberries. This dataset consists of image segments of strawberries in the wild, their quality measurements, and climate data during cultivation.
history
- 2023-03-14 first online, published, posted
publisher
4TU.ResearchData
format
.png, .csv, .xlsx
associated peer-reviewed publication
``How sweet are your strawberries?": predicting sugariness using non-destructive and affordable hardware
funding
- Topsector Tuinbouw & Uitgangsmaterialen
- Innovatiefonds Hagelunie
- Interpolis
organizations
TU Delft, Faculty of Electrical Engineering, Mathematics and Computer Science, Algorithmics group
DATA
files (6)
- 2,227 bytesMD5:
561c16184c0da006642260777dac01ff
README.md - 665,372 bytesMD5:
2b1a7495e290e7ca172be358b956cb24
Greenhouse_Environment_Hourly_20210401-1118.csv - 17,529 bytesMD5:
a0c3ccb2bbb5573e3b4e2ec8df4a056d
License.md - 11,579,696 bytesMD5:
56583f28fa2afd04f98d31969292bf24
Segments.zip - 15,633 bytesMD5:
08f617a642886cd90cabde24d0606dcc
Strawberry_Measurements_with_Seg_Connections_mtd1.csv - 12,089 bytesMD5:
fe6b4d195157bf4dc8e222d5401a67bd
Strawberry_Plant_Load_2021.xlsx -
download all files (zip)
12,292,546 bytes unzipped