data.rar (1.5 GB)

Download file# Physical model tests of the notional permeability on breakwaters

dataset

posted on 25.06.2013, 00:00 authored by J.G.M. (Janneke) KluwenIn the water laboratory three models were tested. Firstly, model 3 of Kik is repeated as model 3A, with a calculated value of notional permeability P 0.38. The construction of model 3A is build with a top layer, filter layer 1, filter layer 2 and a impermeable core.
Second, another variant of model 3 of Kik is designed and tested (model 4). However, the measured damage figures were too low and therefore they could not be used to calculate a value for the notional permeability P. The construction of model four is build with a top layer, filter layer 1, filter layer 2 which is thicker as model 3A and an impermeable core.
Finally, model 5 is tested with a calculated value of notional permeability of P 0.45. This model is designed from the fourth construction of Van der Meer. The construction of model 5 is build with a top layer, filter layer 1 and a permeable core with the same material of filter layer 2 of model 3A and model 4.
The results of this research show that the influences of the notional permeability P exists of the ratio of the armour layer thickness and the thickness of the second filter layer. If the layer thicknesses are equal the value for notional permeability P is 0.38, which follows from model 3A. If the second layer has an infinite thickness (permeable core), the value for notional permeability P is 0.45, which follows from model 5.
The value of the notional permeability P of model 5 corresponds to the design calculations of the computer model HADEER. Van der Meer discovered using this computer model that the ratio of dn50a/ dn50f = 5 has a value on the notional permeability P of 0.43 –0.44. During this research, while using two different methods, a value of the notional permeability P of 0.45 was calculated.