1/1
2 files

Perceived Mental Workload Detection using Multimodal Physiological Data - Deep Learning, GitHub Linked

Download all (1.4 GB)
dataset
posted on 22.09.2020, 06:17 by Tenzing Dolmans, Mannes Poel, Jan-Willem van 't Klooster, Bernard P. Veldkamp
- - See README.md for a more complete overview. - -


This dataset contains data collected during research into mental workload (MWL) detection using deep learning. It is being made public as supplementary data for publications, as well as for reuse in research that seeks to classify MWL using multimodal physiological data.
The data in this dataset was collected in the Behavioural, Management, and Social Sciences Lab, University of Twente, Enschede, The Netherlands in June/July 2020.

Mental workload detection has been attempted using various bio-signals. Recently, deep learning has allowed for novel methods and results within the BCI community. However, studies currently often only use a single modality to classify mental workload, whereas a plethora of modalities have proven to be valuable in this task. The goal of this dataset is to serve as a testing ground for the creation of deep neural networks that can classify MWL using multimodal physiological data.

Please refer to the following GitHub repository for the code that was used to create this dataset: https://github.com/Tech4People-BMSLab/mwl-detection, or find it using the following DOI: https://doi.org/10.5281/zenodo.4043058

Funding

OP-OOST EFRO PROJ-00900

History

Publisher

4TU.ResearchData

Time coverage

June 2020 - July 2020

Format

.rar, .md, .csv, .tfrecord, .xdf

Organizations

University of Twente, Faculty of Electrical Engineering, Mathematics, and Computer Science (EEMCS); Faculty of Behavioural, Management and Social Sciences (BMS)