Roessingh Research & Development-MyLeg database for activity prediction (MyPredict)

doi: 10.4121/20418720.v1
The doi above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future. For a link that will always point to the latest version, please use
doi: 10.4121/20418720
Datacite citation style:
Schulte, Robert (2023): Roessingh Research & Development-MyLeg database for activity prediction (MyPredict). Version 1. 4TU.ResearchData. dataset.
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite

Roessingh Research & Development-MyLeg database for activity prediction (MyPredict). The general aim of this database is to promote research in data-driven intent recognition strategies and activity prediction strategies in the lower-limb using electromyography and to promote research and development in the area of multi-array sEMG in the lower limb. The database contains three data sets, each containing kinematics and sEMG from able-bodied subjects. In total 55 subjects participated over 85 measurement sessions. Each data set contained a different sEMG measuring protocol containing either traditional bipolar sEMG or multi-array sEMG or a combination of both. In these data sets the subjects transitioned freely from one activity to the next, providing challenging data sets for activity recognition and providing the possibility to investigate human kinematics and sEMG during gait-related activities. This dataset is described in detail in Database of lower limb kinematics and electromyography during gait-related activities in able-bodied subjects (Schulte et al.)

MyPredict consists of three datasets, denoted by MP1XX, MP2XX and MP3XX.

  • MyPredict 1: MP101-MP110, 10 able-bodied subjects (sex: 7m, 3f; age: 24±2 years; weight: 77±10 kg; height: 183±9cm), measured once
  • MyPredict 2: MP201-MP235, 35 able-bodied subjects (sex: 14m, 21f; age: 23±2 years; weight: 73±11 kg; height: 179±9 cm), measured once
  • MyPredict 3: MP301-MP310, 10 able-bodied subjects (sex: 4m, 6f; age: 24±2 years; weight: 71±9 kg; height: 174±6 cm), measured 4 times

These files contain the measurement moment named `Day_X' with X the number of the measurement moment. Inside these measurement moments there are files called `Trial_YY', with YY the trial number, containing the different data types and `MVC' containing the EMG maximum voluntary contractions of each measurement moment. Note that only MyPredict 3 contains multiple measurement moments per subject.

The different data types are acceleration (Acc), angular velocity (Gyr), joint angles (Ang), Orientation (Ori) and electromyography (EMG). Inside each file there are trials containing data arrays with the corresponding data. Data arrays are named as follows: Type_Side_Loc. Type is one of the six data types, Loc is the location of the sensor and Side is the side of the location, either Left, Right or empty. For example Ang_Right_Knee contains the 3D joint angles of the knee, Gyr_Pelvis contains the 3D angular velocity of the pelvis IMU and EMG_Left_VL contains the EMG data of the left vastus lateralis. Orientation is the orientation of the pelvis in space, expressed in Euler angles. Separate data types are 'Labels', which contains manual placed activity labels for each timestamp and 'Time' which indicates the timestamps per file. Marker data (Mrk) are stored in a separate group, `Markers' with their own `Time' array, as they have a different sample frequency (100Hz) compared to the other data types (1000Hz).

Code supporting this dataset can be found in the github repository:

  • 2023-05-26 first online, published, posted
Roessingh Research & Development, Enschede, The Netherlands
University of Twente, Faculty of Electrical Engineering, Mathematics and Computer Science, Biomedical Signals and Systems


files (56)
  • 3,967 bytesMD5:c59bf15c1cf126b569b4f4cd5a9fe2ab
  • 1,987,031,184 bytesMD5:f12a7f3a31004dd6a6d24054900e6a0d MP101.hdf5
  • 2,066,894,960 bytesMD5:947f300d1b55c3860a5a9ceae3977d55 MP102.hdf5
  • 2,861,287,792 bytesMD5:be4ad1a428d10e315c206e72c615340f MP103.hdf5
  • 1,489,209,832 bytesMD5:a80f4b5e2bf7ae12e06fb4ee229ea900 MP104.hdf5
  • 1,989,880,728 bytesMD5:839d474b0a7576b2ffbe7ef1a2f6f53c MP105.hdf5
  • 1,320,955,576 bytesMD5:5e408a075ce8b60bd8dfd6eebcb7c864 MP106.hdf5
  • 2,386,279,504 bytesMD5:ed3b03e24539d3d5c94e5840839d7f07 MP107.hdf5
  • 2,274,530,672 bytesMD5:0c3cb4aff205ef464d1145d81f4e4066 MP108.hdf5
  • 2,003,734,664 bytesMD5:cc9620e20828691736f20b01a60ebe74 MP109.hdf5
  • 2,183,776,616 bytesMD5:c3969b9028fd4539806d4c2d7b79ef45 MP110.hdf5
  • 3,779,139,624 bytesMD5:f544df4838cee2c1ccfec3e1f38587e3 MP201.hdf5
  • 3,805,614,288 bytesMD5:783e2a67321f3c55c7ee1e3cc8c868d3 MP202.hdf5
  • 3,578,656,896 bytesMD5:9f66fb76d6aae77ecf02864e8964f102 MP203.hdf5
  • 2,696,928,984 bytesMD5:24803e1d65867dcf364d32fc0bbc1f20 MP204.hdf5
  • 3,941,417,376 bytesMD5:ab344cb8c0db91172a9b443713e6efbb MP205.hdf5
  • 3,562,354,688 bytesMD5:85dce489e5d77baa509c83b9d7f185b4 MP206.hdf5
  • 3,806,573,272 bytesMD5:12a50e95859d6e1d201f739a7dcb23cd MP207.hdf5
  • 4,049,831,376 bytesMD5:5e0704b894b003c34ed2ccc63c488ce5 MP208.hdf5
  • 3,563,053,496 bytesMD5:734359b8182d838ce6a56e0438ffa345 MP209.hdf5
  • 3,686,863,352 bytesMD5:ea23e78d9c781b21fa099445ba2cecd4 MP210.hdf5
  • 4,459,691,328 bytesMD5:0e241c84027804fe2aa04d6127b0f419 MP211.hdf5
  • 4,298,579,896 bytesMD5:a1714e0d2e0af0c2c658055d370c2092 MP212.hdf5
  • 3,899,316,536 bytesMD5:00f08d08dda599fde9c04f03eb0638f6 MP213.hdf5
  • 3,614,908,416 bytesMD5:e278821d89c950d0a8886bc1cc53f0ae MP214.hdf5
  • 3,621,046,984 bytesMD5:dc48d1c8a06e6e7cf5dbdb0787251ce6 MP215.hdf5
  • 4,789,053,768 bytesMD5:28a5a1d4cafef66ab640e750bd30c08d MP216.hdf5
  • 3,891,383,888 bytesMD5:d3502ab6332430f3c015226cbd17070e MP217.hdf5
  • 3,875,632,240 bytesMD5:a9b7a568ed9ef0f16624a9f13c66a0e2 MP218.hdf5
  • 3,358,728,416 bytesMD5:bb5b68d8506010a2b4ca6b5bbba5d92d MP219.hdf5
  • 3,555,814,472 bytesMD5:63bb8e41f6d1f75b58b2b7347d7e10dc MP220.hdf5
  • 3,981,793,064 bytesMD5:9e2b5d86d79f99e1e4f864f06a74c398 MP221.hdf5
  • 4,438,460,352 bytesMD5:cd0be44c11e77809f4d1b476c8436df8 MP222.hdf5
  • 3,565,540,848 bytesMD5:3d438e05ff446f87e64c61322d9b8277 MP223.hdf5
  • 4,015,908,216 bytesMD5:c58e9b453f0b15640f121a62bca71cdf MP224.hdf5
  • 4,041,680,560 bytesMD5:0deeab8466d2d7d6a0dbe68bf1f766e8 MP225.hdf5
  • 3,300,353,920 bytesMD5:79e48cbeb3067df36b5ababb79164926 MP226.hdf5
  • 4,096,653,192 bytesMD5:598de9d4a9ddd85f0bf347c3c6a1c641 MP227.hdf5
  • 3,435,624,328 bytesMD5:b046b38f5885751c350a6e6446e8b4ca MP228.hdf5
  • 3,726,500,544 bytesMD5:1e26b80c7a11d9d4b86dcccba1455640 MP229.hdf5
  • 3,397,056,024 bytesMD5:a65e255266a013e4644ad69329b3a7a8 MP230.hdf5
  • 4,322,613,080 bytesMD5:1ea3275793e22d280b87caab67ed7394 MP231.hdf5
  • 3,781,501,992 bytesMD5:c17a1b0b121be1e5747cdaa4d1229abc MP232.hdf5
  • 3,914,658,088 bytesMD5:74e0a4aab9bfad51a6c131da3e7cc42d MP233.hdf5
  • 3,536,622,160 bytesMD5:79c799f540de0da3c443b6cc27b46368 MP234.hdf5
  • 3,496,774,064 bytesMD5:eca3a7c43c2a0482026528de8c3c950c MP235.hdf5
  • 19,606,272,224 bytesMD5:c42337efd45dd866c5dc82df4765fbf0 MP301.hdf5
  • 17,727,808,208 bytesMD5:a69eb4e46659930182f15095ce108661 MP302.hdf5
  • 18,518,080,736 bytesMD5:0853b8feb77c0205a23523049dc20bb5 MP303.hdf5
  • 15,541,045,560 bytesMD5:74de0a620807001a2252adf958980c9d MP304.hdf5
  • 18,688,264,464 bytesMD5:51ce652bab53239a05e9e11103244bf3 MP305.hdf5
  • 19,075,736,000 bytesMD5:0adcaa45ecea88b9779a72bf79a15ff8 MP306.hdf5
  • 17,528,672,088 bytesMD5:275d4d743d9d85472619e650c5e17f33 MP307.hdf5
  • 20,689,637,520 bytesMD5:2b88f67217e541da0d7ec7c4c0b02e44 MP308.hdf5
  • 17,735,901,184 bytesMD5:5f975d0f92fe98c6d2e7cd2d10fcc5eb MP309.hdf5
  • 19,126,848,552 bytesMD5:1ef1f5f10869f93d2c7b65e346b57265 MP310.hdf5
  • download all files (zip)
    337,688,181,759 bytes unzipped