Data underlying the publication: An assessment methodology for a modular terminal concept for container barging in seaports
doi:10.4121/af4b64a1-996c-485c-96a5-70ea8dd01553.v1
The doi above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
doi: 10.4121/af4b64a1-996c-485c-96a5-70ea8dd01553
doi: 10.4121/af4b64a1-996c-485c-96a5-70ea8dd01553
Datacite citation style:
Nicolet, Adrien; Shobayo, Peter (2024): Data underlying the publication: An assessment methodology for a modular terminal concept for container barging in seaports. Version 1. 4TU.ResearchData. dataset. https://doi.org/10.4121/af4b64a1-996c-485c-96a5-70ea8dd01553.v1
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
This research evaluates the potential of a Modular Mobile Terminal (MMT) concept to improve the operations of container barges in seaports. To do so, a time and cost assessment method is developed. The MMT concept is then further evaluated using choice-driven models consisting of a demand model (mode choice), a supply model (services design and pricing of a barge operator), and a competition model (reactions and interactions of barge operators to this innovation). All these choice-driven models are applied to the situation with and without MMTs.
history
- 2024-07-04 first online, published, posted
publisher
4TU.ResearchData
format
py/ipynb/xlsx/sh
associated peer-reviewed publication
An assessment methodology for a modular terminal concept for container barging in seaports
organizations
TU Delft, Faculty of Mechanical Engineering, Department of Maritime and Transport Technology
DATA
files (17)
- 1,935 bytesMD5:
cab651e97ca8f1b3fcd0d510a39264be
readMe.txt - 71,769 bytesMD5:
ca0ab0997c7f4f022542206a6308567f
CDSNDP_deter_MMT.ipynb - 70,330 bytesMD5:
12d24a4b173759e5b512a6ea10256d2d
CDSNDP_deter_noMMT.ipynb - 401 bytesMD5:
d40cc44841d01a896fe69a84604f437d
Competition_9n.sh - 18,235 bytesMD5:
aa2e2db8f497fac83e59699ee2941760
Competition_MMT.py - 18,152 bytesMD5:
5cd34cb58408b19ae05f5cf6e9467733
Competition_noMMT.py - 629 bytesMD5:
7105fe80a113b077a93846b6badafa33
fleet.py - 38,027 bytesMD5:
d34f49e2517274e9d50868899ed97cfa
iwtoperator.py - 19,906 bytesMD5:
7d8b2e68ded976402d361c0330cb5ed1
MMT_modechoice.ipynb - 27,195 bytesMD5:
c28b2af10ac7c47167ed89778634f5ec
MMT_timecost.py - 11,808 bytesMD5:
a374cf435f7933f170058092e19cc56d
ModeShares_MMT.xlsx - 2,762 bytesMD5:
8de0dd61d626b4882fc34e9dada525a1
network.py - 3,959 bytesMD5:
2fe2f1e527c4565fb8257b93d8902e98
postprocess.py - 4,947 bytesMD5:
9acea5ee3e5ac8cfbb7facf98b60478a
shipper.py - 27,418 bytesMD5:
4f7a41846f3e1a126223320bf1351ecc
Simulation_MMT.ipynb - 27,043 bytesMD5:
4e3b1c79e2a42249e8edc2147e4eecfd
Simulation_noMMT.ipynb - 1,237 bytesMD5:
bea6de07719dff55f40a984c31544fec
utility.py -
download all files (zip)
345,753 bytes unzipped