OneNormFunction

Purpose

Class representing 1-norm function.

Syntax

f = OneNormFunction(Q)

Description

The object for representing 1-norm function given as ../../../../../../fig/mpt/modules/geometry/functions/@OneNormFunction/onenormfunction1.png. The function is given as a sum of absolute values of the product ../../../../../../fig/mpt/modules/geometry/functions/@OneNormFunction/onenormfunction2.png.

../../../../../../fig/mpt/modules/geometry/functions/@OneNormFunction/onenormfunction6.png

where ../../../../../../fig/mpt/modules/geometry/functions/@OneNormFunction/onenormfunction3.png is the dimension of the vector ../../../../../../fig/mpt/modules/geometry/functions/@OneNormFunction/onenormfunction4.png. The weight Q does not need to be square. Function value is always scalar.

Input Arguments

Q

Weighing matrix where the number of columns determines the dimension of the vector argument.

Class: double

Output Arguments

f

The OneNormFunction object.

Class: OneNormFunction

Example(s)

Example 1

Construct 1-norm function ../../../../../../fig/mpt/modules/geometry/functions/@OneNormFunction/onenormfunction5.png.
f = OneNormFunction(diag([5,-2]))
1-norm function in R^2
Evaluate the function in the point [-1;2].
 f.feval([-1;2]) 
ans =

     9

See Also

infnormfunction, afffunction, quadfunction


© 2003-2013 Michal Kvasnica: STU Bratislava, michal.kvasnica@stuba.sk

© 2010-2013 Martin Herceg: ETH Zurich, herceg@control.ee.ethz.ch