Compute extremal point of a polyhedron in a given direction.
sol = P.extreme(y)
P |
Polyhedron in any format. Class: Polyhedron |
y |
Direction to compute the extreme point. Class: double |
sol |
Support of ![]() ![]() Class: struct |
sol.exitflag |
Integer value informing about the termination status of the optimization. Class: double |
sol.x |
An optimizer of ![]() Class: double |
sol.supp |
Optimal value of ![]() Class: double |
P = Polyhedron('H', [randn(20,2) ones(20,1)])
Polyhedron in R^2 with representations: H-rep (redundant) : Inequalities 20 | Equalities 0 V-rep : Unknown (call computeVRep() to compute) Functions : noneCompute extreme point in random direction
y = randn(2,1); sol = P.extreme(y);Plot the point sol.x and the supporting hyperplane
plot(P, 'alpha', 0.2); hold on; plot(sol.x(1),sol.x(2),'ro','markersize',10); Polyhedron('He', [y' sol.supp], 'lb', -[1;1], 'ub', [1;1]).plot;
[1] Fukuda: PolyFaq
◀ | slice | homogenize | ▶ |
© 2010-2013 Colin Neil Jones: EPF Lausanne, colin.jones@epfl.ch