Compute a point in the relative interior of the Polyhedron.
sol = P.interiorPoint
sol = P.interiorPoint(facetIndex)
P |
Polyhedron in any format Class: Polyhedron |
facetIndex |
Index of an inequality of ![]() Class: integer |
sol |
Class: struct |
sol.x |
The interior point Class: double vector |
sol.isStrict |
The output is true if ![]() Class: logical |
sol.r |
Radius of the largest ball centered at ![]() ![]() ![]() ![]() Class: double |
P = Polyhedron('V', randn(20,3), 'R', -[1 0 0]);
sol = P.interiorPoint
sol = x: [3x1 double] isStrict: 1 r: []
P = Polyhedron('H',[sin([0:0.5:2*pi])' cos([0:0.5:2*pi])' ones(13,1)]);Polyhedron must be in its minimal representation to compute facets. Perform redundancy elimination.
P.minHRep();Compute the center of the fourth facet
sol = P.interiorPoint(4)
sol = x: [2x1 double] isStrict: 1 r: 0.122417438109627
plot(P); hold on; pplot(sol.x, 'ro', 'markerfacecolor', 'r', 'markersize', 10);
P = Polyhedron('H',[randn(20,3) ones(20,1)], 'He', [0 0 1 0]);
sol = P.interiorPoint
sol = x: [3x1 double] isStrict: 0 r: 0.39490124253373
plot(P); hold on; pplot(sol.x, 'ro', 'markerfacecolor', 'r', 'markersize', 10);
◀ | isemptyset | chebycenter | ▶ |
© 2010-2013 Colin Neil Jones: EPF Lausanne, colin.jones@epfl.ch