InfNormFunction

Purpose

Class representing inf-norm function.

Syntax

f = InfNormFunction(Q)

Description

The object for representing infinity-norm function given as ../../../../../../fig/mpt/modules/geometry/functions/@InfNormFunction/infnormfunction1.png. The function is given as a maximum absolute value over elements of the vector ../../../../../../fig/mpt/modules/geometry/functions/@InfNormFunction/infnormfunction2.png.

../../../../../../fig/mpt/modules/geometry/functions/@InfNormFunction/infnormfunction6.png

where ../../../../../../fig/mpt/modules/geometry/functions/@InfNormFunction/infnormfunction3.png is the dimension of the vector ../../../../../../fig/mpt/modules/geometry/functions/@InfNormFunction/infnormfunction4.png. The weight Q does not need to be square. Function value is always scalar.

Input Arguments

Q

Weighing matrix where the number of columns determines the dimension of the vector argument.

Class: double

Output Arguments

f

The InfNormFunction object.

Class: InfNormFunction

Example(s)

Example 1

Construct infinity-norm function ../../../../../../fig/mpt/modules/geometry/functions/@InfNormFunction/infnormfunction5.png.
f = InfNormFunction(diag([1,-1,2]))
Inf-norm function in R^3
Evaluate the function in the point [1;-2;3].
 f.feval([1;-2;3]) 
ans =

     6

See Also

onenormfunction, afffunction, quadfunction


© 2003-2013 Michal Kvasnica: STU Bratislava, michal.kvasnica@stuba.sk

© 2010-2013 Martin Herceg: ETH Zurich, herceg@control.ee.ethz.ch