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1 Introduction

In order to procedurally generate a given location, the common objects as well
as how those objects are placed in relation to one another, must be known
before generation. For example, when generating a bedroom-like location, it
should be expected that there are one or more beds, and each are placed in some
proximity to a wall. However, the types, frequency, and positioning of objects
in a location are variable. In the above example, terms such as “or more” and
“in some proximity” are not well defined, and can cause (desired) variations in
generated locations. To understand the overall pattern (what we call motif )
of a location, there have been attempts to learn the object distribution and
relationships from examples (either images or 3D environments).

The purpose of this report is to describe the methods that we used to obtain
the data-set for Mined Object and Relational Data for Sets of Locations1. We
did this not to replicate their work exactly, but to get a baseline set of motifs that
could be programmatically altered to fit the authorial requirements of a scene
designer. We first describe the two data-sets that we used, before discussing
the relationship mining methods. Specifically, we detail when and where we
diverged from the baseline methods, mainly from Kermani et al. [1]. Finally,
we quickly discuss the results that we obtained from our two data-sets.

2 Data Sets Used

We learn motifs from two types of data-sets: annotated images [2] and anno-
tated 3D environments [3]. Both data-sets have objects labeled with their name,
as well as 3D positional information for a variety of example scenes. For the
annotated images, we used the 3D positional information with no additional
modifications (see [2] for more details on their generation methods). For the
annotated 3D environment, walls were generated as the convex hull of the ac-
companying obj file attached to each example.

1http://doi.org/10.4121/uuid:1fbfd4a0-1b7f-4dec-8097-617fea87cde5
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There are locational differences between the two data-sets, as well as different
sets of objects used in the two rooms. Furthermore, using annotated images
creates a certain perspective such that the entire room is not captured in a
single photograph. While each photograph is treated as a single example, it is
not an example of the entire room. Conversely, the annotated environments do
contain the entire information attached to the room. For open concept rooms
that contain two or more rooms conjoined together, we simply concatenate
those locations and treat them as a separate type of location (e.g a Dining
Room/Office location is combined and treated as a different location than a
Dining Room or an Office).

3 Mining Rooms for Motifs

Motif Mining attempts to create a structured understanding, in the form of
relationships, between objects. In this context, relationships are loosely defined
spatial distributions. Similarly, the set of objects that can be found in a given
location create a distribution of their probability of appearance.

We learn two types of relationships from each location: High Level Rela-
tionships and Low Level Relationships. We define a low level relationship as
a numeric pairwise relation between two objects, regardless of their location.
Statistics between the distance and orientation of two objects make up the low
level relation, and location is disregarded to provide a higher base frequency be-
tween object pairs. One interesting extension of this work would be to compare
the difference between low level relationships among locations in a data-set.

High level relationships are semantic relations such as Parallel Orientation
or Vertical Support. Each of these are general ideas of placement and assist
in defining functions between objects. In many cases (such as orientation),
low level relationships are used to define the bounds of high level relationships.
Additionally, the fact that there is a high level relationship between two objects
makes them a candidate to determine low level relationships between them.

To determine the high level relationships, we implemented methods from
three sources, primarily consisting of the method of Kermani et al. [1]. We did
this due to the public availability of the base data-sets that they used (the SUN
RGB-D [2] data-set and NYU V2 [4] data-set). We also implemented part of the
higher order relationships found in Savva et al. [5]. This was done in order to
capture support relationships from the SUN-CG data-set. Finally, inspiration
for determining the closest points for Savva et al. came from Liang et al. [6].

Low level relationships were generated using two unsupervised learning meth-
ods: a K-Means clustering method outlined in Kermani et al. and a Gaussian
Mixture Model method outlined in Fisher et al. [7]. Each of these two methods
have a different search model for determining the correct number of cluster cen-
ters (K-Means) or components (Gaussian Mixture Model). To keep each search
method from getting stuck in a local minimum, we further augment the search
with Beam Search.
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3.1 Learning Higher Order Relationships

We learned higher order relationships independently of lower order relationships
on both of our target data-sets, mainly using Kermani et al. Their work utilizes
percent thresholds for each relationship to determine what are salient relations
(ones that should be kept) compared to noise. These thresholds can be thought
of as tunable parameters, with specific parameterization provided in the original
work. We found that when applied to the entire set of locations, these tunable
parameters more generally allowed in noisy relations. We therefore changed
the parameters to those seen in Table 3.1. It should be noted the only upward
change was to the symmetry parameter, which was increased. This was done due
to noticed noise from locations that contained a high number of examples. For
example, the bedroom motif contains 564 rooms. At Kermani et al.’s original
definition, a salient symmetry relationship must appear in 2.82 (3) examples2.
Furthermore, we ensure that any of the relationships that employ numerical
data (orientation, symmetry, side-to-side) have a error threshold that is used to
determine if the relationship exists or does not. For example, the error threshold
for the difference in size between two objects for the symmetric relation is 0.1
unit (10 cm). While not reported in Kermani et al., it is necessary for allowing
measurement and processing errors to exist in the data-sets.

Relationship Threshold (Kermani et al.) Threshold (ours)
Support 10% 10%

Symmetry 0.5% 1%
Proximity 5% 5%

Orientation (Perpendicular) 5% 5%
Orientation (Parallel) 5% 1%

Side-To-Side 5% 5%

Table 1: The percent threshold reported in Kermani et al. and the thresholds
we used to determine saliency in high level relationships.

In addition to changing the tunable parameters, we also performed a num-
ber of preprocessing steps in order to reduce noise in the learned relations.
We created a threshold for locations that removed any location that did not
have enough example scenes. We also performed a renaming in order to create
consistency between object labels (e.g bathroom vanity and bathroomvanity).

Finally, we make a slight change to the learning method for proximity re-
lations. In Kermani et al.’s original definition, Proximity relations are learned
from using G-Span [8] on a minimum spanning tree of each example scene, where
objects are the nodes and the distances between objects are the edges. While
the original definition uses all objects in the scene as nodes, we only use objects
whose frequency of occurrence in all example scenes are greater than the percent
threshold for proximity. This means that we parse out our non-salient objects

2It should be noted that our interpretation is based on each example and not on simply
on its co-occurance
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from the scene before building the minimum spanning tree, causing our edges
to always be between two salient nodes. This increases the likelihood that we
find a relation between two objects.

3.2 Learning Lower Order Relationships

Our low level relations are based on our high level relations. After learning
high level relationships, we use the object pairs to determine numerical distance
relationships between them. Each data-point is generated from an example
location that has both objects in them, as the relative distance and difference
in rotation between them. As stated previously, we use two different disjoint
methods that produce two data-sets: the k-means method outlined in Kermani
et al. and the Gaussian Mixture method described in Fisher et al. As each of
these methods requires a seed for the number of clusters or Gaussian, we use
beam search. Each method provides a heuristic of improvement, which we also
use to guide the search.

4 Results and Discussion from the Data-Sets

From our examination of the SUN-RGBD data-set, we find that there 48 possible
locations in the data-set, and we found salient relations in all of them. This is
due to the fact that we did not remove locations that had only a few examples for
this data-set (which was only done in the larger SUNCG data-set). Furthermore,
we find that our system is able to determine salient relationships for 270 out
of the 855 objects in our data. This means that there were many objects that
appeared in very few example scenes specifically for locations that had several
example scenes. This is an indication of the amount of noise images inherent
in the data-set. Even when only requiring an object to appear in 1% of scenes
for it to be considered salient, 70% of objects did not meet that threshold and
therefore do not add to the overall understanding of a location.

We also examined low level behaviors for object pairs in the SUN-RGBD
data-set. From a total of 1559 unique pairwise relationships that could have
existed in our data-set, we find that both Kermani et al. and Fisher et al. find
around 900 unique relationships between object pairs (941 for Kermani et al.
and 938 for Fisher et al.). Pairwise objects that did not discover a low-level
relationship either only had one example (which was the majority of the cases)
or did not to converge using their clustering method. While they found similar
unique relationships, Fisher et al. found many more possible relationships than
Kermani et al. (13277 vs 1902). A closer inspection shows that there were
several area peaks with no spread between them, which means there is a failure
somewhere in the search for the correct number of gaussians. This could be
due to using Gaussian Mixture Models or the difference in heuristics used by
each method. While we did not perform further testing, it would be interesting
future work to examine which aspect of Fisher et al. caused this increase.

We further compare our implementation and assumption against what was

4



reported in Kermani et al. Specifically, Kermani et al. report on the number
of objects and relationship that they are able to extract from bedroom scenes.
Examining our data-set, we are also able to extract around 30 objects and
140 relationships between them (similar to their results). However, we did not
replicate their results exactly, specifically the symmetric relationships that they
found between night-stands. This is due, in part, to the change in the percent
threshold for the symmetry relationship in Table 3.1. However, in our tests,
simply tuning that parameter to what they reported was not sufficient to match
their work. In addition to changing the parameters, we also would have had to
increase the size bounds of what is considered a symmetric object from a 10cm
margin of error between the two similar object sizes to about a 50cm summed
margin of error (over all three dimensions)3. The tolerance error for similar sizes
(or orientation) is not mentioned within Kermani et al. and therefore becomes
another tunable parameter in our system.

The SUNCG data-set has a maximum of 72 locations, of which all were used
to generate high level relationships in Savva et al. However, for Kermani et
al., when we applied the threshold requiring at least 20 rooms per location, the
number of locations dropped to 54 locations. Upon further inspection, is appears
that the locations that were not considered are all agglomerations of multiple
rooms (open-design concepts). Furthermore, the total number of objects that
were available from the SUNCG data-set were calculated to be 185 types of
objects. When no frequency threshold was used (i.e Savva et al.) 156 distinct
object types were found to have some high level relationships between them.
When using Kermani et al., that value dropped to 44 objects, approximately
20% of the original possible number of types. This is similar to the 30% of
salient objects from the total set found in Kermani et al.. Finally, Kermani
et al. generated 792 distinct high level pairing for the SUNCG data-set, and
3478 when only examining the support relationships with no threshold value for
support (i.e. Savva et al.). This shows that the threshold and preprocessing
parameters removes several relationships that were not often seen.
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