BlueSky ATC Simulator Project:
an Open Data and Open Source Approach

Jacco M. Hoekstra

Control & Simulation section
Faculty of Aerospace Engineering
TU Delft, Delft, Netherlands

Abstract—To advance ATM research as a science, ATM research
results should be made more comparable. A possible way to do
this is to share tools and data. This paper presents a project that
investigates the feasibility of a fully open-source and open-data
approach to air traffic simulation. Here, the first of the two main
challenges is to achieve a high fidelity, without using proprietary
data, e.g. for aircraft performance. The second challenge is to
increase the adoption by the community by keeping the program
easy to use, easy to modify, multi-platform, downloadable for
free and running stand-alone on relatively simple systems. The
approach chosen by the project is to investigate this feasibility by
trying to start the development. The paper describes the many
hurdles to be overcome when using a fully open-data and open-
source policy in this area.

Keywords: air traffic simulation; modelling; agent-based
simulation; open-data; open-source; repeatability;traceability;

l. INTRODUCTION

Something important is missing in the field of ATM
research. New concepts and new tools are common topics of
ATM research projects. The result is often a proposed change
with today’s concept: a new tool, a new procedure or a change
in task allocation either between man and machine, or between
air and ground-side.

Most studies validate their proposed changes using either
fast-time or human-in-the-loop simulations. To test for
potential benefits, a comparison is made with today’s
operations. The results of these simulations are then expressed
using custom defined metrics. The result is almost invariably
positive: the new proposed concept or tool has benefits.

Many of the proposed concepts exclude each other.
Examples are: improving the human machine interface for a
certain task versus automating the task, or moving a task to the
cockpit crew versus providing the air traffic controller with a
tool for this task. Hence, when an air navigation service
provider, an authority or an industry needs to make
investments for a proposed change, it is important to know
whether this change is the best of all alternatives. What's
missing is the ability to compare the effects of the different
proposed changes.

Joost Ellerbroek

Control & Simulation Section
Faculty of Aerospace Engineering
TU Delft, Delft, Netherlands

C:Feasible!‘r_) -

S —— C Betterl
C:Eeasimej!‘})\ F}—A;""’_—" o
= 'y "_dzg Feasiblel
Coeren 54 | AE
™ | - Better!

o . | y

Cressbler =y .

/,_,_,_,.—/1,/ ™ ¢ Feasiblel)
(\,_gefri_rj now Y —

y T Bettert
“Tor

C:Eeasib\e!

Figure 1 Hllustration of the dilemma of a stakeholder when
faced with incomparable ATM studies.

Comparability of results requires the following aspects to
be common (or at least very similar) between studies:

- Common traffic scenarios
- Common metrics
- Common simulation tools

In this paper, a shareable simulation tool is proposed as a
first step to achieve this, as this could provide a self-propelled,
bottom-up approach to the other two aspects, the sharing of
metrics and the sharing of scenarios. The aim is to provide an
open-source and open-data multi-platform simulation tool. The
proposed simulator, called BlueSky, is created using a high-
level programming language with a simple structure, to
facilitate expandability of the code. Scenarios are defined with
a straightforward, plain-text based language, further lowering
the threshold for first-time users.

Restriction to open-data and open-source tools, however,
poses significant limitations. Performance data for aircraft
simulation, for instance, has always relied on license-restricted
sources. The main challenge will therefore be to achieve high
fidelity without having to resort to licensed data and software.
Similar to Wikipedia in its early days, the approach of the
BlueSky project is to find out if this is feasible by trying it.

Il. COMPARABLE EFFORTS

There are a number of past studies that have attempted to
address the challenge of shareable simulation tools. This
section discusses the three most well-known efforts.

A. BADA aircraft data

An example of a comparable approach is the distribution of
the BADA (Base of Aircraft Data) models and aircraft
performance data by Eurocontrol [10]. BADA is not a
complete simulation tool but merely a set of data files together
with a description of how this data can be used. The user still
needs to implement the models described in the manual.
Version 3 of BADA is available for free, although it has a light
licensing process. As a result, it has been used by many, also
academic, studies. This broad adoption facilitates comparison
of results, and the reference to the BADA models explains to
every reader which models have been used. This makes BADA
a very successful example of the sharing approach. Its
successor, BADA 4, has chosen a different approach: it does
rely heavily on commercial data to improve the quality
compared with BADA 3. As a result the licensing rules are
more strict and inhibiting on a per project basis.

B. CASSIOPEIA project

The CASSIOPEIA project [1] aims to provide an on-line
simulation platform for research into traffic complexity. A user
has to translate a use case into the Auto-lead Data Format,
open XML-based mark-up language. This approach requires
some knowledge of the simulation engine, which is
unfortunately not fully open-source, as the idea is not to
download the simulation but to run it remotely.

It also has a quite unique approach tailored to a specific
problem. It uses a JADEX [2] simulation engine; a tool which
extracts so-called ‘facts’ from JAVA classes. Through
definition classes that describe the ATM behavior, it can be
used to simulate the ATM system. Messages are exchanged
between the agents using the standard of the Foundation of
Intelligent Physics Agents [3].

B W e S
Figure 2 Cassiopeia

The difference between BlueSky and CASSIOPEIA is the
open-source and ease-of-use approach. With the BlueSky

project, the goal is to be able to download the complete
simulator and run it on any computer, even without an internet
connection. The CASSIOPEIA project asks you to provide an
input file, which will run on the server with the simulation.
CASSIOPEIA has a larger focus on, and hence requires more,
computer science knowledge.

As this is a server-based closed-source project, extending
the program with, e.g., custom conflict detection & resolution
algorithms is not possible. Because of the use of the complex
formats used for the input files, also for merely using the tool it
already requires knowledge of the JAVEX simulation set-up,
without having the actual source.

C. ELSA project

Closer to the philosophy of the BlueSky project, but more
limited in scope, is the ELSA project: an agent-based open
ATM simulation [4]. The ‘agent-based’ aspect is not unique to
ELSA, as it is a characteristic of any ATM simulation, also of
BlueSky.

Figure 3 ELSA Air Traffic Simulator

The unique aspect of ELSA is that the focus is on
investigating traffic complexity metrics using scenarios which
consist of flight plan inputs. Due to this scope there are also
some limitations to the scenarios. ELSA does allow
downloading the Python source code. This makes it easier to
understand and to use than CASSIOPEIA. However, it still
requires some knowledge of the simulation set-up as it
currently still lacks a simple and intuitive user interface for
input and output. ELSA is also still platform dependent as it
uses compiled C-code next to the Python part. This makes it
slightly harder to use the tool, but it is a definitely a promising
approach with many similarities to BlueSky.

I1l. BLUESKY SPECIFIC APPROACH

The aim of BlueSky is to develop a fully portable, freely
downloadable ATM simulator, with an easy to use graphical
user interface. As the target users are ATM researchers, it
should not require a lot of knowledge of computer science:
files should be simple, editable text files.

None of the existing simulations have used the fully open-
source, open-data approach to achieve a user-friendly, high-
fidelity, versatile air traffic simulation program, which is
comparable with commercial tools like AirTop [5], SIMMOD
[6], NARSIM [7], etc. BlueSky aims to achieve a level of user-
friendliness and fidelity that is comparable to these commercial
off-the-shelf tools for ATM simulation.

To set up a simulation in BlueSky, users only need a basic
knowledge of some commands to create and control traffic.
These commands can be entered during run-time in the
console, or they can be provided in a previously created
scenario text file. The result can be viewed during run-time on
a radar-like display. The use of a simple scenario language
TrafScript (see section VIII) lowers the threshold for new
users. The file format used is plain text. No further knowledge
of simulation engines or file formats is required.

The main target community is academia, but the tool could be
useful for any ATM researcher. In order to achieve adoption by
the community, two factors are important. First, for
unrestricted accessibility, the simulation tool should be license
free: there should be no limitations of the use of the data,
source code and results. Second, it should be easy to use:
scenario definitions should be kept simple, and the source code
should remain readable, so that users can make adaptations,
without the need for ICT experts.

Summarizing this with an example: a foreign, stand-alone
PhD student with a simple computer and only aeronautical
knowledge should be able to use it within the first hour after
downloading it for scenarios which are relevant to him/her.

IV. OPEN-DATA

The challenge of using open-data exclusively is to achieve
a sufficiently high quality without using commercial or
proprietary data. Especially aircraft performance data are
commercially sensitive. An initial belief in the success of this
approach was obtained by the promising results of recreational
flight simulator communities, who are in many respects facing
a similar challenge. Both commercial as well as open-source
PC flight simulator communities like flight gear, X-plane, and
DCS have shown that what was initially meant as recreation
often achieved a quality sufficient to be used in professional
training [8] [9].

The main data as required for air traffic simulation can be
divided in two main categories:

o Navigation data
- Geographical Information
- Navigational Aids
- Waypoints
- Airports
- Sector boundaries

o Aircraft Performance data
- Drag polar

- Engine performance
(Thrust, Fuel Consumption)
- Operating Weights
- Autopilot/Autothrottle settings
(Bank angle, Mode logic settings)
- Procedure speeds

A. Navigation data

Most navigation information is available on the internet,
albeit scattered. As required by ICAO, it is published as part of
the Aeronautical Information Service (AIS) by the authorities
for use by the public.

BlueSkyG! =1 X

Same IC/™

Figure 5 Global coverage of navigation data illustrated by
zooming out in the user window (white areas are labels of
included navaids)

Commercial packages derive their value form maintaining,
updating and collecting this information. Using modern web
crawling tools, this process can be replicated. For BlueSky, the

browsing of these websites was automated using a Python
Script. The result is stored in text files, which are provided
with BlueSky. The BlueSky simulation program reads these
files during start-up. Geographical data such as terrain
information, coastlines, and borders are collected and used in a
similar way.

B. Aircraft performance data

BlueSky is compatible with BADA 3. When the BADA 3
files are saved in the coefficients data folder, BlueSky
recognizes and uses these files for aircraft performance.
Eurocontrol provides licenses to most researchers for using
BADA 3 aircraft performance models. BADA 3 has some
limitations, for example in modelling thrust in relation to speed
and in estimating the fuel flow [11]. BADA 4 has a higher
fidelity, at the cost of computation speed, as well as strict
license requirements.

In addition, two parallel approaches are employed in the
BlueSky project to develop fully open-source and open-data
aircraft performance models:

- Conceptual Design Methods: building models using
methods used in the conceptual design phase of new aircraft
types with data publicly available on the internet on aircraft
and engine specifications.

- Machine learning: performance models are built from
large amounts of historical ADS-B data, received world-wide,
using machine learning methods.

In both approaches the knowledge of the physics of flight
will be used to structure the models. The fact that ADS-B does
not provide sufficient information to estimate the complete
state of the model can be compensated by the large amount of
data: the characteristics of the variations caused by winds and
different weights, together with the aircraft types will be used
to estimate the parameters using big data statistical methods.

Both the input and output of this process are trajectories, as
long as they are correct and within the real flight envelope, the
most important goal of modelling realistic trajectories has been
achieved. One of the costs of ATM is the extra time and fuel
due to changes in the route. The fuel consumption is one of the
hardest figures to derive using only open data. The order of
magnitude can be estimated, but the specifics of individual
engine and aircraft types can cause a variation in fidelity. As
BlueSky also calculates the amount of energy used, the effect
of ATM concepts and tools can alternatively be analyzed
which takes away the dependency on the fidelity of individual
engine models or aircraft types.

V. OPEN-SOURCE

A benefit of the open-source approach is that it allows the
community to contribute to the development, and adapt the
program to their specific needs by extending it with the
required features. It also has several risks. For example,

maintaining an overview of the quality of the program is often
a challenge.

A. Open-source Programming Language: Python

Python 2 was chosen as main programming language for
BlueSky. Python is a very popular, free, and open-source
language. Python programs can easily be used on multiple
platforms (Windows, Mac, Linux), which rarely requires any
modification to the source code.

Python is currently nr. 4 on the list of the most popular
high-level languages, directly after JAVA, C and C++ (ref
2015 TIOBE/IEEE top list). Python has the largest academic
user community, which shares their modules for free.

Python is both an interactive as well as a scripting
language. Using an interpreter in runtime, it does not require
any compilation, which makes it completely platform
independent. As a scripting language, it lacks the optimization
that normally takes place during the compilation of code. For
basic operations, which still do require a lot of computing
power, such as graphics rendering or large scale calculations,
libraries are used which are distributed as Python modules and
can be called directly from Python.

Third party libraries like Numpy and Scipy use compiled,
optimized, open code and have distributions of precompiled
versions for all of the major platforms. Scientific python
bundles that include these libraries, such as Python(x,y) [12]
for Windows/Linux and Anaconda for Mac, are therefore taken
as reference point for BlueSky. Both are acknowledged as
standard bundles by the academic community.

Next to Python 2 there is newer version: Python 3.
However, Python 3 is the first version, which has broken the
downward compatibility. Therefore a vast majority of the
Python community is still using Python 2 (>80% as of 2015
[14] BlueSky follows the choice of the Python(x,y) bundle in
this respect, following the academic community. Should the
majority eventually move to Python 3, only a relatively minor
effort will be required to move the BlueSky simulation to
Python 3.

B. License and distribution

The BlueSky Simulation is distributed under the GNU
General Public License Version 3 [15].

The most important features of this license are:
- Required
o Disclose Source, License and copyright
notice, State Changes
- Permitted
o Commercial Use, Distribution,
Modification, Patent Use, Private Use
- Forbidden
o Hold Liable

The GitHub online repository is used to distribute BlueSky.
Searching for the keywords “BlueSky” and “ProfHoekstra”
will lead to the required links. One of the benefits of GitHub is
the branching option, which allows users to easily develop
their own version of the program ‘branch’) alongside the main
BlueSky version, which in a later stage can be merged with the
main version (‘trunk’).

C. Ease of use and Compatability

To make the program user-friendly, data files will be using
the plain text format as much as possible and should be self-
explanatory. One of the unique features of the python syntax is
that it uses a minimum of special characters, resulting in source
code that reads almost like English.

To increase the adoption by the community, the scenario
files will be compatible with the traffic manager program used
by e.g. NLR and NASA as part of ASTOR simulation [16].
This program uses plain text scenario files with time stamped
commands, that can also be entered during runtime by the user,
in the console of the simulation program. This simple syntax
allows even non-experienced users to generate scenarios. As
sharing scenarios is one of the goals of the BlueSky project, a
compatible scenario system is also used in BlueSky. For other
sources of traffic data, like Eurocontrol’s Demand Data
Repository (DDR2, or DDR Service), conversion tools to the
BlueSky scenario format with the TrafScript language are
available.

VI. MODULAR STRUCTURE OF BLUESKY

Figure 6 shows which modules can be distinguished at the
highest level of BlueSky. The modular set-up of the BlueSky
allows easy extension of the functionality without the need to
fully understand the remainder of the source. The two modules
that control the execution of the program are the Simulation
Control and the Command Stack module. The actual traffic
simulation is contained in the Traffic module. The TrafScript
language as used by the user is also used to communicate
events or settings between the different modules, further
simplifying the adaptation of the program.

The next paragraphs briefly describe some modules to help
the understanding of the functionality inside BlueSky.

A. Simulation Control (sim)

The simulation control module controls the scheduling of
the main simulation loop and the simulation mode. It initializes
the other modules in one or more threads. There are two
versions of this module: a single threaded and a multi-threaded
version. Depending on the choice of the user interface (See
sections VI D and VI F) , the appropriate version is called from
the main program. the user can choose the first time
interactively, or by editing or deleting the configuration file (

called setting.cfg) whether to use the classic or advanced user
interface.

Scenario File

reading
Command
it Command Traffic

Simulation

Engine Traffic

simulation

Navigation

AutoThr
Database

Traffic

—— Datafeed ADS-B Dynamics
P interface
Main Antanha feed Conflict
program Network Detection
interface Conflict
Resolution
Metrics Graphics
Set-up
Radar Screen
Screen
Module Edit/Console

Window
User

interface
Keyboard &

Keyboard Commands
& Mouse
Mouse cmd

completion

Figure 6 Overview of main BlueSky modules

B. Command Stack (stack)

The command stack is used to parse the simulation
commands defined in the TrafScript language. It can be seen
as the central processing unit of the BlueSky program. The
stack receives the command lines entered by the user in the
console window of the graphical user interface (GUI) or
generated by the mouse clicks in the GUI block. But also
other modules can send commands to the command stack via
calls to the stack method. Even external programs running on
different computers can send any command to the command
stack using a network connection. The commands received are
processed first-in—first-out during the stack update cycle. As
the syntax allows full freedom to control every aspect of the
simulation, this provides a high versatility.

Commands are simple text strings. The versatility of text
strings means that the communication between different
platforms and programs is not hampered by interface
definitions and data structure definitions, as these often require
an intensive version control. Downward compatibility is also
easily ensured. The commands use the ATM scenario control
language called TrafScript. This language, also used by NLR,
DLR, NASA and several others, is described in detail in
section VIII.

C. Traffic module(traf)

This object contains data related to the actual simulated
traffic: the state of all aircraft, the performance database as
well as the navigation data base. There are also systems
simulations for the flight management systems (route module),

Processing Performance

FMS Routes

Autopilot and

Emmanuel Sunil
Highlight

Emmanuel Sunil
Highlight

Emmanuel Sunil
Highlight

Emmanuel Sunil
Highlight

Emmanuel Sunil
Highlight

Emmanuel Sunil
Highlight

Emmanuel Sunil
Highlight

Emmanuel Sunil
Highlight

Emmanuel Sunil
Highlight

the autopilot, as well as an ASAS module included in this part
of the simulation. Methods to create and control traffic are
provided. Many of the calculations and logic dealing with
individual aircraft have been vectorized for speed.

D. User interface (Ul)

The user interface consists of the drawing of the screens.
There are several screens such as the map with the traffic, the
console window, in which commands are edited, the menus
etc. This module also processes keyboard inputs. Mouse inputs
for aircraft selection, lat/lon, heading or menu selection are
also handled here. BlueSky comes with two user interfaces (see
Figures 7 and 8): the classic GUI and the advanced GUI.

% BlueSky Open ATM Simulat Screen) = -

Figure 7 Classic User Interface (high compatibility)

The classic version is based on a wrapper of the
SimpleDirectMedia Layer (SDL) called pygame. A second
version of the Ul uses OpenGL in a Qt windows environment.
This frees the CPU of many graphical tasks.

E. Tools module

The tools module contains functions for aerodynamics and
navigation calculations, as well as functions for data logging or
the conversion of ADS-B feeds from ADS-B receivers to
commands to be processed via the stack to visualize traffic
using the inputs from an ADS-B antenna.

F. Versions: Classic (Pygame) and Advanced (Qt-GL)

The current version of the BlueSky Open Air Traffic
simulation requires Python(x,y) [12] and the Pygame graphics
library [13] to be installed beforehand. Selecting ‘“Download
as Zip® at the repository is the easiest to install the BlueSky
program. This download package contains both versions of the
user interface and simulation control. The version is chosen by
selecting the main script to run:

- The (default) pygame version (started with Bluesky-
pygame.py) will run on any machine but is single-threaded and
not as fast as the more advanced version

- The Qt-OpenGL version hands off more task to the
graphics card and is multi-threaded, hence faster, but will only
run on relatively new machines.

As this only affects the simulation engine and some user
interface modules, the majority of the source is shared by both
versions. It is generally recommended to run the Qt-OpenGL
when the hardware, as the performance allows much larger
scale simulations to run fast-time or real-time.

BlueSkyGL =] [

| File View Analysis Connections

sole Window: Enter HELP

C to Open a scenario Fil

scenariol/|
runk/scen:

Figure 8 New QT-OpenGL User interface (faster/modern)

VII. DATA STRUCTURE AND VECTORISATION

When we look at the traffic state data as used in an air traffic
simulation program as a table:

Table 1: Two directions to bundle traffic data, most programs
choose the horizontal (blue) one, while only the vertical
(yellow) allows vectorizing

Aircraft Lat Lon Heading | Altitude | Speed
KL204 52.34 -4.84 151 2000 180
MP205 43.12 6.51 125 10000 250
HV307 50.42 9.88 45 24000 350
BA240 52.00 -1.64 220 31000 415
LF229 51.76 0.75 12 7000 250

The data can be organized and viewed in two ways: by first
grouping for a row (aircraft) or by first grouping for a column
(type of value). The first example, organizing by row or
individual aircraft, is most trivial. However, this will not allow

Emmanuel Sunil
Highlight

Emmanuel Sunil
Highlight

Emmanuel Sunil
Highlight

Emmanuel Sunil
Highlight

vectorizing the code, while the second does. Therefore column-
grouped approach is chosen in BlueSky. The consequences of
this choice are explained below. In code, this looks different.
Imagine we want to look at the latitude of aircraft i.

e Row grouped: looks like traffi].lat
o Column grouped: traf.lat[i]

As can be seen, this minimal difference in syntax still
allows an aircraft (row) based view. In the column based
option, an aircraft based look is still possible, and this allows
access to all latitudes at once and therefore allows vectorizing
the code. This a feature provided by the library Numpy and
requires the data to be stored in a Numpy array per column.

Vectorizing replaces loops by expressions which act on
complete lists at once. Loops are taken care of at a lower,
faster, level. Instead of logical conditions, Boolean logic is
used in the expression to take care of for example different
autopilot modes per aircraft. In the example below, the
autopilot heading is set to different values for all aircraft
depending on their mode in one line. In Inav mode there needs
to be a flight plan with a number of waypoints larger than zero.

aphdg = ((mode==hdgsel)+ (nwp<=0)) *selhdg +
(mode==1nav) * (nwp>0) *dirtowp

A simple example of vectorizing mode logic of an autopilot
heading selection for all aircraft

As can be seen in the example, an important consequence,
is that in this case, independent of the current autopilot mode,
all variables used in the expression must have a value. So even
when an aircraft does not have a flight plan, there should be a
default value so that the expression can be evaluated. This is
one of the differences with this style of programming. Another
one is that it can shorten and thus simplify understanding the
code enormously.

The vectorizing approach provides a higher execution
speed while it does still allow selecting aircraft depending on
conditions like being in a certain area or distance to each
other. In complex logical situations, it is simply a different
style of programming. The drawback of vectorizing the traffic
state data is the creation and deletion requires more lines of
code. This is outweighed by the fact that all other operations
become simpler using the vectorizing approach. None of this
is relevant for the novice user. But it is an important feature to
recognize when extending the traffic modelling code with new
modules as a contributor to the core program.

VIIl. TRAFSCRIPT LANGUAGE

TrafScript is the language which is the Air Traffic
Management Simulation scenario language used in BlueSky.
It is based on the syntax as used and developed for TMX [17]

[18] This language, called TrafScript, is described briefly in

the following paragraphs.

Table 2 Explanation of the TrafScript commands and
Simulation Control commands

Command Meaning

TrafScript

CRE acid,type,lat,lon,hdg,alt,spd Create an aircraft

HDG acid,hdg Given an aircraft a heading command (use
heading in degrees)

LEFT acid,hdg Given an aircraft a 'turn left' command (use

target heading in degrees)

RIGHT acid,hdg

Given an aircraft a 'turn right' command (use
target heading in degrees)

ALT acid,alt Altitude command for autopilot, accepts feet
('30000'") or figith levels ('FL300")
SPD acid, spd Speed command, accepts Mach numbers

(speeds <1 optionally prefix by an M) and CAS
in kts

DEST acid, airport/lat,lon

Add a destination as the end waypoint of the
route

ORIG acid, airport/lat,lon

Add an origin as the begin of the route

ADDWPT acid,wpid,[alt],[spd],[afterwp],[rta]

Add waypoint to route in Flight Management
System (FMS), optionally

DELWPT acid, wpid

Delete a waypoint from the FMS route

LNAV acid/*,0N/OFF

Switch lateral navigation mode of FMS on or
off

VNAV acid/*,0N/OFF

Switch vertical navigation mode of FMS on or
off

DIST lat,lon,lat,lon

Calculate the distance bewteen two positions
(e.g. with mouse)

MOVE acid,lat,lon,[alt]

Reposition aircraft

DEL acid

Delete an aircraft

MCRE n,type/*,alt/*

Create n aircraft in area visible on display,
optionally for specific type or altitude

MDEL lat,lon,lat,lon

Delete all aircraft within given area, specified
by two corners

Simulation Control commands

IC scenfile

Reset simulation and optionally load a new
scenario file

SAVEIC scenfil

Save current situation as the start of a new
simulation in scenario file

HOLD Pause simulation
OoP Goto to OPeration mode: resumes simulation
FF [dt] Fastforward mode optional time duration in

simulated time

When an aircraft id is used as argument, it is allowed to swith it with the command,

So: ALT KL204,FLO70 is synonymous with KL204 ALT FLO70

edit window

Many arguments such as positions, aircraft, headings, waypoints etc can be clicked into the

When an argument is left blank, you can use commas to add later arguments

A sample of a console interaction with BlueSky is given
below and continued on the next page.

> CRE ?

CRE acid,type,lat,lon,hdg,alt,spd
> CRE KI1.204,B744,52,4,

> KL204 HDG 270
> ALT KL204 FLO70

90 FL120 250

Emmanuel Sunil
Highlight

Emmanuel Sunil
Highlight

Emmanuel Sunil
Highlight

Emmanuel Sunil
Highlight

Emmanuel Sunil
Highlight

> KL204 ADDWPT SPY

> PAN EHAM

As can be seen each command line has the following structure
of command + optional arguments:

Command [separator] argumentl [separator] argument2

The separator can be a space or a comma. Multiple space
always count as one separator, while multiple commas can be
used to skip optional arguments. So twice a comma means an
empty string is parsed as the argument in this location on the
command line. The TrafScript language is not case sensitive:
upper and lower case can be mixed freely without any effect.

The command syntax is explained by some examples in
Table 2. The command module also reads the scenario file.
This is a simple text file with time stamped commands which
are executed when the simulation time matches the time stamp
in that line of the file. An example of a part of a scenario file is
given below.

00:00:00.00>PAN EHAM

00:00:00.00>CRE KL204,B738,N52'18'58,E4'46"47,180,FL120, 300
00:00:00.00>KL204 ORIG EHAM

00:00:00.00>KL204 DEST LEMD

00:00:00.00>ADDWPT KL204,LEKKO,10000,250

00:00:00.00>ADDWPT KL204,WOODY,,0.55

00:00:00.00>ADDWPT KL204,CIV,,0.84

00:00:10.00>CRE MP205,B744,52.0123,4.000 , 270,10000, 250

Martinair plane

00:00:20.00>MP205 HDG 300
00:00:20.00>MP205 SPD 280;MP205 ALT FL70
00:00:30.00>HDG MP205,270

Example of a scenario file (plain text file)

IX. CONCLUSION

Based on the results so far, the chosen approach is
promising. BlueSky is now a full-blown, user friendly air
traffic simulator which can run at very high update rates for a
high number of aircraft. On a standard PC running a simulation
with 600-800 aircraft flying simultaneously is not a problem.
Using the multi-threaded Qt-OpenGL version a larger number
of aircraft can be simulated simultaneously.

The program has been by students and researchers for
research in several topics: air traffic complexity metrics,
upstream delay absorption, path planning and conflict detection
& resolution algorithms.

Future work will be aimed at: functionality, improving data
quality, optimization of execution speed, providing standard
scenarios and metrics. Also a community around the program
will be built to jointly further develop BlueSky. The website
[19] and the Github repository [20] are pivotal in this.

REFERENCES

[1] Eurocontrol Demand Data Repository, http://www.eurocontrol.int/ddr

[2] A Pokahr, Alexander, Braubach, Lars, Lamersdorf, Winfried; JADEX:
A BDI Reasoning Engine, book chapter, Multi-Agent Programming, P
149-174, Springer Verlag, 2005

[3] Foundation of Intelligent Physics Agents website, http:/fipa.org/

[4] Bongiorno, C. et al, “An Agent Based Model of Air Traffic
Management”, Third SESAR Innovation Days, 26th — 28th November
2013

[5] Airtopsoft S.A. company website (2007): http://www.airtopsoft.com/
Belgium, 2007

[6] SIMMOD product page: http://www.atac.com/ITL/simmod-pro.html by
ATAC Corporation, US, 2010

[71 Ten Have, J. M. "The development of the NLR ATC Research
Simulator (Narsim): Design philosophy and potential for ATM
research.” Simulation Practice and Theory 1.1 (1993): 31-39.

[8] Craighead, Jeff, et al. "A survey of commercial & open-source
unmanned vehicle simulators.” Robotics and Automation, 2007 IEEE
International Conference on. IEEE, 2007

[9]1 Koonce, Jefferson M., and William J. Bramble Jr. "Personal computer-
based flight training devices." The international journal of aviation
psychology 8.3 (1998): 277-292

[10] Nuic, Angela, Damir Poles, and Vincent Mouillet. "BADA: An
advanced aircraft performance model for present and future ATM
systems.” International Journal of Adaptive Control and Signal
Processing 24.10 (2010): 850-866.

[11] User manual for Base of Aircraft Data (BADA) Revision 3.12,
Eurocontrol Technical Report 14/04/24-44, Eurocontrol, August 2014

[12] Python(x,y) website http://python-xy.github.io/

[13] Pygame website: http://pygame.or

[14] Thomas Robitaille, “Python 3 in Science: the great migration has
begun!”, http://astrofrog.github.io/blog/2015/05/09/2015-survey-results/
2015,

[15] Quick Guide to GNU GPL v 3, Published on GNU/Linux Website,
http://www.gnu.org/licenses/quick-guide-gplv3.en.html

[16] Liu, Ding-Jen, and William Chung. "ASTOR- An avionics concept test
bed in a distributed networked synthetic airspace environment." AIAA
Modeling and Simulation Technologies Conference and Exhibit. 2004

[17] Bussink, Frank, Jacco Hoekstra, and Bart Heesbeen. "Traffic manager: a
flexible desktop simulation tool enabling future ATM research.” Digital
Avionics Systems Conference, 2005. DASC 2005. The 24th. Vol. 1.
IEEE, 2005

[18] Wing, David J. "Development of a prototype airborne conflict detection
and resolution simulation capability." (2002)

[19] BlueSky website:
http://homepage.tudelft.nl/7p97s/BlueSky/download.html

[20] BlueSky repository: https://github.com/ProfHoekstra/bluesky

http://www.eurocontrol.int/ddr
http://fipa.org/
http://www.airtopsoft.com/
http://www.atac.com/ITL/simmod-pro.html
http://python-xy.github.io/
http://pygame.org/
http://astrofrog.github.io/blog/2015/05/09/2015-survey-results/
http://www.gnu.org/licenses/quick-guide-gplv3.en.html
http://homepage.tudelft.nl/7p97s/BlueSky/download.html
https://github.com/ProfHoekstra/bluesky

