
SOFTWARE DOCUMENTATION

1 SOFTWARE DOCUMENTATION OF THE PLANNING TOOL

2 GENERAL

Project: Het COVID-19 Openbaar Vervoer Capaciteitsmodel: een beleidsondersteunend instru-
ment voor de optimalisatie van de coronacapaciteit van het openbaar vervoer

Grant number: 10430042010018 (50-56300-98-1606)
Copyright: Dr Konstantinos Gkiotsalitis, Assistant Professor, University of Twente.
Address: University of Twente Faculty of Engineering Technology Horst Complex (building

no. 20), room Z222 De Horst 2 7522LW Enschede The Netherlands
Contact: k.gkiotsalitis@utwente.nl
Version: v1

3 PROJECT SCOPE

Public transport has a vital function within the Dutch society. To minimize the spread of the
COVID-19 in public transport, a protocol has been drawn up, including rules for the maximum
occupancy of buses and trains. According to the protocol, from 1 June 2020, the capacity will be
about 40% for the train and 30-40% for bus, tram and metro, depending on the type of vehicle.
This has recently changed because of the second COVID-19 wave.

This project devises public transport planning tools to comply with the pandemic-imposed
capacity limit (which we call “corona-capacity”). The imposed restrictions in public transport
have an extreme influence on passenger behavior, turnover and service performance of carriers.
The extent to which public transport companies succeed in offering safe and efficient public trans-
port during the COVID-19 crisis has a major influence on the possible spread of the COVID-19
virus, the functioning of society (facilitating, among other things, commuting and business trans-
port) and the costs of public transport. The current public transport planning models focus on op-
timizing network efficiency: that is, balancing the possible operational costs for the carrier against
the quality of service for the traveler. These public transport planning models are not applicable
during the COVID-19 crisis, in which we should also ensure sufficient social distancing in public
transport.

In this project we develop a new public transport model that can map the consequences of
the corona capacity and offer service planning advice, based on OV-chipkaart data and scenario
analysis. The application is aimed at the Keolis public transport network in Regio Twente. Regio
Twente has a complex public transport network of bus and train connections (Zutphen-Oldenzaal;
Enschede-Zwolle) that serve both urban and non-urban areas.

1

In this documentation we document the software code for our public transport planning and
demand management model that considers the regulations regarding the pandemic-imposed ca-
pacity. The model is programmed in an abstract form to increase interoperability (e.g., it can be
used by train services or bus services). At the tactical planning level, this model considers the
available public transport resources (vehicles) in the study area, the pandemic-imposed capacity
limit (which varies over time due to the ever-shifting regulations), the passenger demand per dif-
ferent passenger group, and the demand management possilities per user group. Its aim is to: 1.
Plan the optimal service frequencies while considering the pandemic-imposed capacity and the
associated revenue losses 2. Incorporate demand management strategies for specific passenger
groups 3. Calculate the revenue losses for the public transport operator due to the pandemic-
imposed capacity that results in lower vehicle occupancies

4 DOCUMENTATION

4.1 MODEL ASSUMPTIONS

1. The passenger arrival rate is stable within each 1-hour period of the day. That is, passenger
arrivals at stations are uniformly distributed within the 1-hour period.

2. The passenger demand in the COVID-19 era is inelastic to the changes made in service fre-
quencies because the considerable demand drop is mainly an effect of travelers preferring
private modes of transportation.

3. The bus lines in the network do not share the same corridors.
4. Passengers act rationally and maintain the longest distance possible with each other when

they are inside a public transport vehicle.

4.2 MODEL NOTATION

The notation of the model is provided below.

2

Nomenclature

Sets

L = 〈1, ..., l, ...|L|〉 set of public transport lines
R = 〈1, ..., r, ...|R|〉 set of user groups that use the bus services (e.g., students, work-

ers)
Sl = 〈1, 2, ..., |Sl |〉 ordered set of bus stops served by line l ∈ L (note that a bi-

directional line is considered as a single line that continues its
service in the opposite direction)

Indices

l bus line
r user group (i.e., students, adults, elderly)
s bus stop

Parameters

Bl,r,sy expected hourly passenger arrival rate of user group r ∈ R at
stop s for passengers whose destination is y and are willing to
use line l

Tl round-trip travel time of line l ∈ L considering both directions in
case of a bi-directional line

kl pandemic-imposed capacity limit indicating the maximum al-
lowed passenger load inside each bus operating in line l

W cost of deploying an extra bus
Mr fare price per km traveled for user group r ∈ R
Fr fixed minimum fare when entering the bus for user group r ∈ R
dl,sy traveling distance between bus stops s and y of line l ∈ L
N number of available buses that can be distributed among all lines
hmin

l minimum headway of line l, where hmin
l > 0 to ensure that we

do not deploy excessively many buses to line l resulting in bus
bunching

hmax
l maximum possible headway of line l to ensure that the assigned

buses to line l offer a minimum level of service to passengers

Variables

xl number of buses assigned to line l ∈ L
hl time headway among successive buses of line l ∈ L
γl,s in-vehicle passenger load of each bus serving line l when it de-

parts from stop s
bl,r,sy hourly passenger demand of user group r between stops s and y

of line l that can be served by the buses of line l while conforming
to the pandemic-imposed capacity limits

bl,sy aggregated hourly passenger demand of all user groups between
stops s and y of line l that can be served by the buses of line l
while conforming to the pandemic-imposed capacity limits

b̃l,r,sy hourly passenger demand of user group r between stops s and y
of line l that cannot be accommodated by the bus service of line l
due to the pandemic-imposed capacity limit kl

3

4.3 MODEL FORMULATION

The formulated mathematical model is casted as follows:

min W ∑
l∈L

xl + ∑
l∈L

∑
r∈R

∑
s∈Sl

s 6=|Sl |

∑
y∈Sl
y>s

(Fr + Mrdl,sy)b̃l,r,sy (1)

s.t. ∑
l∈L

xl ≤ N (2)

hlxl ≥ Tl , ∀l ∈ L (3)

hmin
l ≤ hl ≤ hmax

l , ∀l ∈ L (4)
γl,s ≤ kl , ∀l ∈ L, ∀s ∈ Sl (5)

γl,1 = ∑
y∈Sl

bl,1yhl , ∀l ∈ L (6)

γl,s = γl,s−1 − ∑
y∈Sl
y<s

bl,yshl + ∑
y∈Sl
y>s

bl,syhl , ∀l ∈ L, ∀s ∈ Sl \ {1} (7)

bl,r,sy = Bl,r,sy − b̃l,r,sy, ∀l ∈ L, ∀r ∈ R, ∀s ∈ Sl , ∀y ∈ Sl | y ≥ s (8)

bl,sy = ∑
r∈R

bl,r,sy, ∀l ∈ L, ∀s ∈ Sl , ∀y ∈ Sl | y ≥ s (9)

xl ∈ Z≥0, ∀l ∈ L (10)
hl ∈ R≥0, ∀l ∈ L (11)

4.4 SOFTWARE CODE

The code of the software is provided below. Note that the code is written in an abstract form
to allow other public transport operators to use it. The data values are read from external files
(either .xlsx or .txt). We offer these files for a specific scenario, but public transport operators can
exchange the data files when applying this model to their own data.

The software code is developed in Python 3. Python is an interpreted, high-level and general-
purpose programming language. Python is open source. The optimization part is performed
with the optimization solver Gurobi using its Python library gurobipy. Gurobi supports linear and
quadratic optimization in continuous and integer variables.

4.4.1 Import Python libraries

First, we import the library of the gurobi solver (gurobipy) and libraries for reading data from
external files (pandas, numpy).

[1123]: #import libraries

import os, sys

print(sys.executable) # works this time

print(sys.version)

print(sys.version_info)

import gurobipy as gp #import gurobipy library in Python as gp

from gurobipy import GRB

import pandas as pd #import pandas library as pd. It offers data structures and

↪→operations for manipulating numerical tables and time series

4

import numpy as np #import numpy library. It adds support for large,

↪→multi-dimensional arrays and matrices

import os #provides functions for interacting with the operating system

import ast #library that processes trees of the Python abstract syntax grammar

C:\Users\gkiotsalitisk\AppData\Local\Continuum\anaconda3\python.exe

3.6.8 |Anaconda, Inc.| (default, Feb 21 2019, 18:30:04) [MSC v.1916 64 bit

(AMD64)]

sys.version_info(major=3, minor=6, micro=8, releaselevel='final', serial=0)

We check the version of the gurobi solver and the gurobipy library. In this implementation,
Gurobi 9.03 is used.

[1124]: print(gp.gurobi.version())

(9, 0, 3)

We initialize our mathematical model in Gurobi
[1125]: #Initialize the Gurobi model

model = gp.Model()

model.Params.OutputFlag = 0

model.Params.LogToConsole = 0

model.setParam("OutputFlag", 0)

4.4.2 Set the Parameter values by reading data from files

Read the number of network lines:
[1126]: #read the number of the network lines from a .txt file as an integer number

↪→(dtype='int')

L = np.loadtxt('Data/lines.txt',dtype='int')

L = np.arange(1,L+1)

L = tuple(L)

Read the vehicle capacities c_l, ∀l ∈ L for each public transport line:
[1127]: #read the vehicle capacities for different lines from a .txt file as an integer

↪→number (dtype='int')

c = np.loadtxt('Data/capacities.txt',dtype='int')

c = tuple(c)

c = {i:c[i-1] for i in L}

Read the cost, W, of deploying an extra public transport vehicle (e.g,. train or bus, depending
on the scenario)

[1128]: #read the cost of deploying an extra public transport vehicle from a .txt file

W = np.loadtxt('Data/W.txt',dtype='float')

Read the maximum allowed in-vehicle passenger load, kl , to conform with the pandemic-
imposed capacity regulations. This can differ from line to line and can change over time to comply
with the new regulations.

5

[1129]: #read the in-vehicle passenger load for the vehicles of each line to conform

↪→with the pandemic-imposed capacity limit

k = np.loadtxt('Data/lines_passengerload.txt',dtype='int')

k = tuple(k)

k = {i:k[i-1] for i in L}

Read the number of passenger group types, R
[1130]: #read the number of different passenger group types from a .txt file

R = np.loadtxt('Data/R.txt',dtype='int')

Read the lost revenue, Fr, for a passenger who is refused service
[1131]: # Read the lost revenue for a passenger who is refused service

file = open("Data/Fr.txt", "r")

contents = file.read(); Fr = ast.literal_eval(contents); file.close()

Read the lost revenue per km, Mr, for a passenger who is refused service
[1132]: # Read the lost revenue per km for a passenger who is refused service

file = open("Data/Mr.txt", "r")

contents = file.read(); Mr = ast.literal_eval(contents); file.close()

Read the number of available public transport vehicles, N
[1133]: # Read the number of available public transport vehicles at the network level

N = np.loadtxt('Data/N.txt',dtype='int')

Read the number of stops served by each line.
[1134]: #read the number of stops served by each line from a .txt file as an integer

↪→number (dtype='int')

S_number = np.loadtxt('Data/line_stops.txt',dtype='int')

Read the round-trip travel time in minutes, Tl , for every line l ∈ L.
[1135]: #read round-trip travel times in minutes, including the layover times, for each

↪→line from a .txt file

T = np.loadtxt('Data/line_traveltimes.txt')

T = {i:T[i-1] for i in L}

Read the minimum and maximul allowed headway per line, hmin
l , hmax

l , in minutes.
[1136]: #read the minimum allowed headway per line (in minutes) from a .txt file

file = open("Data/h_l_min.txt", "r")

contents = file.read(); h_l_min = ast.literal_eval(contents); file.close()

[1137]: #read the maximum allowed headway per line (in minutes) from a .txt file

file = open("Data/h_l_max.txt", "r")

contents = file.read(); h_l_max = ast.literal_eval(contents); file.close()

Read the ordered stops of all lines, Sl .
[1138]: #read the stops of each line from a .txt file in a dictionary form {('line ID',

↪→'ordered stop number'): 'ordered stop number'}

file = open("Data/stations_numberIDs.txt", "r")

contents = file.read(); Sl = ast.literal_eval(contents); file.close()

6

#for s in Sl:

#print(s[0])

Read the passenger demand per OD-pair of each line, Bl,r,sy.

[1139]: #read origin-destination demand between OD-pairs from a .txt file

file = open("Data/Blrsy.txt", "r")

contents = file.read(); Blrsy = ast.literal_eval(contents); file.close()

#print(Blrsy)

Read the distance per OD-pair of each line, dl,sy.

[1140]: #read the distances between the o-d pairs of each line from a .txt file.

file = open("Data/distance_IDs.txt", "r")

contents = file.read(); d = ast.literal_eval(contents); file.close()

4.4.3 Introduce the Model Variables

Set the variable of vehicles per line, xl . Each line should have at least one vehicle to be operational.
[1141]: #Initialize variable x_l denoting the number of vehicles assigned to each line l

x = model.addVars(L,vtype=gp.GRB.INTEGER, lb=1, name='x')

Set the variable of line headways, hl . The time headways of the lines cannot be negative and
are expressed in minutes.

[1142]: #initialize variable h_l denoting the time headway of line l in minutes.

h = model.addVars(L,vtype=gp.GRB.CONTINUOUS, lb=0, name='h')

Set veriable γl,s denoting the passenger load of each vehicle of a line l when traveling from
stop s to s + 1. The passenger load cannot be negative and, ideally, it should be lower than or
equal to the maximum allowed passenger load to conform with the social distancing regulations.

[1143]: #initialize variable gamma_{l,s} denoting the passenger load of each vehicle

↪→serving line l

gamma = model.addVars(L,Sl,vtype=gp.GRB.CONTINUOUS, lb=0, name='gamma')

Set variable bl,r,s,y denoting the hourly passenger demand between stations s and y of line
l ∈ L that can be served by line l for passenger type r while conforming to the pandemic-imposed
capacity limit.

[1144]: #Initialize variable b_{l,r,s,y} of the hourly passenger demand between stations

↪→s and y of line l for passenger type r that can be served by line l while

↪→conforming to the pandemic-imposed capacity limit

b = model.addVars(L,R,Sl,Sl,vtype=gp.GRB.CONTINUOUS, lb=0, name='blrsy')

Set variable bl,s,y denoting the hourly passenger demand between stations s and y of line l ∈ L
that can be served by line l while conforming to the pandemic-imposed capacity limit.

[1145]: #Initialize variable b_{l,s,y} of the hourly passenger demand between stations s

↪→and y of line l that can be served by line l while conforming to the

↪→pandemic-imposed capacity limit

bsy = model.addVars(L,Sl,Sl,vtype=gp.GRB.CONTINUOUS, lb=0, name='bsy')

7

Initialize variable b̃l,r,s,y of the hourly passenger demand between stations s and y of line l that
cannot be accommodated by the public transport network due to the social distancing require-
ments.

[1146]: #Initialize variable btilde_{l,r,s,y} of the hourly passenger demand between

↪→stations s and y of line l for passenger type r that cannot be accommodated by

↪→the public transport network due to the social distancing requirements

btilde = model.addVars(L,R,Sl,Sl,vtype=gp.GRB.CONTINUOUS, lb=0,

↪→name='btildelrsy')

[1147]: btilde_s = model.addVars(L,Sl,vtype=gp.GRB.CONTINUOUS, lb=0, name='btildels')

Initialize a variable that it will compute the overall number of unserved passengers.
[1148]: btilde_overall = model.addVar(vtype=gp.GRB.CONTINUOUS, lb=0,

↪→name='btildel_overall')

4.4.4 Add Constraints

Add constraint ∑
l∈L

xl ≤ N that does not allow to use more vehicles than the maximum number of

available vehicles, N.
[1149]: model.addConstr(sum(x[l] for l in L) <= N)

[1149]: <gurobi.Constr *Awaiting Model Update*>

Add constraints to ensure that the operating headway is within the limits of the minimum and
the maximum possible headway.

[1150]: model.addConstrs(h[l]<=h_l_max[l] for l in L)

model.addConstrs(h[l]>=h_l_min[l] for l in L)

[1150]: {1: <gurobi.Constr *Awaiting Model Update*>,

2: <gurobi.Constr *Awaiting Model Update*>}

Add constraints hlxl ≥ Tl , ∀l ∈ L.
[1151]: model.addConstrs(h[l]*x[l] >= T[l] for l in L)

[1151]: {1: <gurobi.QConstr Not Yet Added>, 2: <gurobi.QConstr Not Yet Added>}

Add constraints γl,s ≤ kl , ∀l ∈ L, ∀s ∈ Sl

[1152]: model.addConstrs(gamma[l,s[0],s[1]] <= k[l] for l in L for s in Sl if s[0]==l)

Add constraints γl,1 = ∑y∈Sl
bl,1,yhl , ∀l ∈ L

[1153]: model.addConstrs(gamma[l,l,1] == 0.01667*h[l]*sum(sum(b[l,r,l,1,y[0],y[1]] for y

↪→in Sl if y[0]==l and y[1]>1) for r in R) for l in L)

[1153]: {1: <gurobi.QConstr Not Yet Added>, 2: <gurobi.QConstr Not Yet Added>}

Add constraints γl,s = γl,s−1 − ∑
y∈Sl | y<s

bl,yshl + ∑
y∈Sl | y>s

bl,syhl (∀l ∈ L, ∀s ∈ Sl \ {1})

[1154]: model.addConstrs(gamma[l,s[0],s[1]] == gamma[l,s[0],s[1]-1] -

sum(bsy[l,y[0],y[1],s[0],s[1]]*(1/60)*h[l] for y in Sl if

↪→y[0]==l and y[1]<s[1]) +

8

sum(bsy[l,s[0],s[1],y[0],y[1]]*(1/60)*h[l] for y in Sl if

↪→y[0]==l and y[1]>s[1]) for l in L for s in Sl if s[0]==l and s[1]!=1)

Add constraint bl,sy = ∑r∈R bl,r,sy, ∀l ∈ L, ∀s ∈ Sl , ∀y ∈ Sl | y ≥ s.

[1155]: model.addConstrs(bsy[l,y[0],y[1],s[0],s[1]]==sum(b[l,r,y[0],y[1],s[0],s[1]] for

↪→r in R) for l in L for y in Sl if y[0]==l for s in Sl if s[0]==l and s[1]>y[1])

[1156]: model.addConstrs(btilde_s[l,y[0],y[1]]==sum(sum(btilde[l,r,y[0],y[1],s[0],s[1]]

↪→for s in Sl if s[0]==l and s[1]>y[1])for r in R) for l in L for y in Sl if

↪→y[0]==l)

[1157]: model.addConstr(btilde_overall==sum(sum(btilde_s[l,y[0],y[1]] for y in Sl if

↪→y[0]==l) for l in L))

[1157]: <gurobi.Constr *Awaiting Model Update*>

Add constraint bl,r,sy = Bl,r,sy − b̃l,r,sy (∀l ∈ L, r ∈ R, s ∈ Sl , y ∈ Sl | y > s)

[1158]: model.addConstrs(b[l,r,s[0],s[1],y[0],y[1]] ==

↪→Blrsy[l,r,s[1],y[1]]-btilde[l,r,s[0],s[1],y[0],y[1]]

for l in L for r in R for s in Sl if s[0]==l for y in Sl if

↪→y[0]==l and y[1]>s[1])

4.4.5 Set the Objective Function

z(x, h) := W ∑
l∈L

xl + ∑
l∈L

∑
r∈R

∑
s∈Sl\{|Sl |}

∑
y∈Sl | y>s

(
Fr + Mrdl,sy

)
b̃l,r,sy

[1159]: #Declare objective function

obj = W*sum(x[l] for l in L) + sum(sum(sum(sum(

↪→(Fr[r]+Mr[r]*d[l,s[1],y[1]])*btilde[l,r,s[0],s[1],y[0],y[1]] for y in Sl if

↪→y[0]==l and y[1]>s[1]) for s in Sl if s[0]==l) for r in R) for l in L)

#Add objective function to model and declare that we solve a minimization problem

model.setObjective(obj,GRB.MINIMIZE)

Solve the model and return results.
[1160]: model.params.NonConvex = 2 #allow to handle quadratic equality constraints -

↪→which are always non-convex

model.optimize()

if model.status == GRB.OPTIMAL: #check if the solver is capable of finding an

↪→optimal solution

model.printAttr('X')

print(model.status,'optimal')

print('Obj: %g' % model.objVal)

else:

print(model.status,'not optimal')

#uncomment the following lines to print full results

#for v in model.getVars():

#if v.x>0:

9

#print('%s %g' % (v.varName, v.x))

2 optimal

Obj: 79.9225

10

	SOFTWARE DOCUMENTATION OF THE PLANNING TOOL
	GENERAL
	PROJECT SCOPE
	DOCUMENTATION
	MODEL ASSUMPTIONS
	MODEL NOTATION
	MODEL FORMULATION
	SOFTWARE CODE
	Import Python libraries
	Set the Parameter values by reading data from files
	Introduce the Model Variables
	Add Constraints
	Set the Objective Function

