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1. Table S1

1. Climate data and statistical data

To identify MJO events we use the Wheeler-Hendon Realtime Multivariate MJO (RMM)

indices, which measure MJO activity (Wheeler & Hendon, 2004), to create composites of

all days (1981-2016) in which the RMM indices have an amplitude of greater than one.

We mask out all areas in which there are fewer than 1000 observations in the climate

dataset or where maize is not cultivated.

To identify MJO teleconnections we use daily interpolated station-based temperature

data, and daily precipitation and soil moisture products that blend satellite and station

data. We use daily soil moisture estimates from the Global Land Evaporation Amster-
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dam Model (GLEAM) v3.2a (1981-2016), which uses satellite-observed surface (0-10 cm)

soil moisture, vegetation optical depth, reanalysis air-temperatures and a multi-source

precipitation product to derive surface soil moisture values (Martens et al., 2017). Daily

precipitation data comes from the Climate Hazards group Infrared Precipitation with

Stations (CHIRPS; 1981-2016) at 0.25 degrees (Funk et al., 2015). We use values of daily

maximum and minimum temperature at 2m from the Berkeley Earth dataset (1981-2016),

which is a one-degree gridded interpolation-based statistical product (Rohde et al., 2013),

and daily solar insolation from the satellite-based NASA-POWER (1983-2013) agrocli-

matology dataset (Stackhouse et al., 2015). To construct weather forcing for the DSSAT

crop model we use data from the common period of 1983-2013.

We use observational crop statistics at the national and subnational scale to es-

timate the effects of the MJO on regional maize yields. Subnational crop statis-

tics were downloaded for India from the Directorate of Economics and Statis-

tics (https://eands.dacnet.nic.in/); for Mexico from the INEGI Information Data-

bank (http://www3.inegi.org.mx/sistemas/biinegi/); for Brazil we use first-season

maize only from the Brazilian Companhia Nacional de Abastecimento (CONAB;

http://www.conab.gov.br/index.php); data for the rest of Central America, West Africa

and East Africa was only available at a national scale and was downloaded from the Food

and Agriculture Organization FAOSTAT database (http://www.fao.org/faostat/en/).

To calculate crop yield anomalies we first remove the long-term trend using a low-

pass Gaussian filter with a kernel standard deviation of three years, which is similar

to a nine-year running mean. Deviations from this ”expected yield” are absolute yield
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anomalies. We calculate percent yield anomalies as the absolute yield anomaly divided by

the expected yield for each subnational district. Regional yield anomalies are calculated

by using observed harvested areas to calculate regional percent yield anomalies. As a

sensitivity experiment, we recalculated the results based on yield anomalies derived from

a five-year running mean but found little difference.

2. DSSAT model simulation

To simulate MJO teleconnections to maize yields we use the DSSAT crop model

(Hoogenboom et al., 2019; J. W. Jones et al., 2003; C. A. Jones, 1986), run at spe-

cific spatial locations. We choose locations that (1) are maize production regions and

(2) in which the MJO-teleconnections at a single point is representative of the average

MJO teleconnection to the entire region as a whole. This ensures continuity between our

point-based simulation of yields and regional analysis of climate teleconnections in the

main paper. For each chosen location, we performed a literature review to identify an

appropriate cultivar and parameterization for the model (Jagtap et al., 1999; Justino et

al., 2013; Babel & Turyatunga, 2015; Royce, 2002). Parameters from regionally-relevant

field trials were used where available (Table S1). Where no such data was available, as

was the case in Mexico, we relied on expert elicitation from (personal communication

with Kai Sonder, Jim Hansen, and Walter Baethgen). We next identify suitable soils in

the WISE soils database, and calibrate the model planting date based on observational

yield statistics. For each location we use three planting dates to simulate variable sowing

decisions, and choose two soil profiles to represent different likely soil conditions (Table

S1).
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We force the DSSAT crop model with observed daily precipitation, incoming solar

radiation, and maximum and minimum temperature to create series of baseline crop yield

simulations in each location. We next create a weather forcing ensemble to measure the

marginal effect of an MJO event on maize yield anomalies. We use the same MJO events

from our composite analysis described in the previous section to create the ensemble. For

each day in which the MJO was active in a given phase in the three months prior to

harvest, we select the maximum temperature, minimum temperature, solar radiation and

precipitation for that day and the following two weeks to account for propagating waves

and persistent teleconnections. To estimate the marginal effect of one MJO event on crop

yields, we overwrite two weeks of observed weather in the DSSAT forcing file around the

reproductive growth stage (as determined by the flowering date in the middle planting

date in the DSSAT calibration runs) with the ”MJO event weather” and re-run DSSAT

with the perturbed weather forcing. For the purposes of generating a large ensemble,

each historical MJO event in a particular phase is inserted at the same date, regardless

of when it occurred in the observed record. We then repeat this process for all possible

combinations of MJO events, years, three planting dates, and two soils to produce an

ensemble of size (# events)x(# years)x(# planting dates)x(# soils) for each phase of the

MJO. This creates an ensemble of over 300,000 yield anomalies for each region (>40,000

per phase per region) that we use in our analysis.
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Table S1. DSSAT simulation model coefficients. Data, references, and coefficients used

in the DSSAT crop model for each modeled point
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