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This file is provides further information on the Sugar dataset and is provided together
with the dataset files. Within this document you will find information on the used sensor
systems, the chemical compounds investigated as well as the formating of the dataset
files.

1 Introduction

We present a multi modal hyperspectral dataset (available online at [5]) that cannot only
be used to evaluate and compare classification performance, but also enables research
on new topics.

In the development of algorithms for hyperspectral data classification several bench-
mark dataset became common, e.g. the Tecator dataset [7] and the Wine dataset [6], to
name two examples. These datasets are mainly used as benchmark problems for differ-
ent algorithms and classification systems as in [1, 4], although they just compile a set of
labeled spectra. In opposite to these well established datasets the Sugar dataset offers
multiple sets of spectra for each of the available classes. Using a variety of different
sensors and hyperspectral cameras the spectral information within the dataset is given
over different wavelength ranges. An overview over the sensors and their corresponding
wavelength ranges is given in Table 1.
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Table 1: Key properties of the different sensors used to record the sugar dataset.

Sensor name Manufacturer wavelength range sampling points
[nm]

EOS 70D Canon RGB 3
Fieldspec ASD 350 - 2500 2151
VNIR-1600 NEO 400 - 1000 160
VNIR-1800 NEO 400 - 1000 186
Nuance EX Nuance 520 - 880 37
SWIR-320m-e NEO 1000 - 2500 256
SWIR-384 NEO 1000 - 2500 288

2 Chemical compounds

As a training set we selected nine sugar and sugar related compounds with common
optical appearance, which are not to be distinguishable by conventional optical imaging.
We included were three monomeric sugars (D-galactose, D-glucose, and D-fructose), two
sugar alcohols (D-sorbitol and D-mannitol), as well as four sugar esters (S170, S770,
S1570, and P1570). Monomeric sugars containing six carbon atoms are also referred to
as hexoses, having the chemical formula C6H12O6. Hexoses occur in many stereoisomers
and are classified into aldohexoses, having an aldehyde at position 1 (e.g. D-galactose
and D-glucose), and ketohexoses having a ketone at position 2 (e.g. D-fructose). Sugar
alcohols are typically derived from sugars by a reduction reaction, changing the alde-
hyde group to a hydroxyl group. We selected two hexose-derived sugar alcohols with the
molecular formula C6H14O6. Sugar esters, also called sucrose fatty acid esters, are non-
ionic surfactants consisting of sucrose as hydrophilic group and fatty acid as lipophilic
group. Sugar esters can vary in the nature of the attached fatty acid, such as palmi-
tate (P1570) or stearate (S170, S770, S1570) as well as in the number of attached fatty
acids (called mono-, di-, tri-, tetraester). In our case, compounds with variation of both
parameters have been chosen: S-170 (sucrose stearate, ratio 1% monoester, 99% di-,
tri-, and polyester), S-770 (sucrose stearate, ratio 40% monoester, 60% di-, tri-, and
polyester), S-1570 (sucrose stearate, ratio 70% monoester, 30% di-, tri-, and polyester),
and P-1570 (sucrose palmitate, ratio 70% monoester, 30% di-, tri-, and polyester). Ac-
cording to the high variation in stereochemistry and composition we expected a high
degree of diversity in our data set. All compounds appear as white powder, whereas
D-fructose looked more crystalline. Spectral profiles were acquired using a variety of dif-
ferent sensors and hyperspectral cameras (Table 1). Given the nine different compounds
it is possible to define five classification problems. The mapping of the compounds to
the different classification problems is given in Table 2.
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Table 2: Definition of the different classification problems. The numbers in the table rep-
resent the class index of the substance with regard to the classification problem.
Empty cells indicate, that this substance is not used within the concrete clas-
sification problem (row). Borders are used to illustrate the pooling of multiple
substances to a single class.
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problem 0 9 1 2 3 4 5 6 7 8 9
problem 1 3 1 2 3
problem 2 4 1 2 3 4
problem 3 2 1 2
problem 4 3 1 2 3

3 Research Questions

Besides the use as a benchmark dataset, the unique structure of the Sugar dataset offers
the opportunity to encourage research on further topics. Three of the possible research
questions are briefly discussed in the following

Dimensionality reduction The data within this dataset is compiled from high dimen-
sional feature vectors. Various machine learning algorithms suffer from the presence of
high dimensional inputs, which imply a high number of adaptive parameters, leading to
convergence problems, overfitting effects and suboptimal results [2].

Taking into account the functional characteristics of spectral data, the high number of
input dimensions is not justifiable. For functional data, such as the hyperspectral data in
this dataset, a high correlation of neighbored features is expected. Thus the dataset can
serve as a basis for the development and evaluation of dimension reduction algorithms.
The varying number of input dimensions (37 − 2151, cf. Table 1) within the dataset
facilitates a solid benchmarking of the performance and scaling of novel approaches.

Sensor invariant classification models In the design of classification models the for-
matting of the input data plays a major role. In most cases a change of the input data
format is simply not possible. Furthermore trained classification models often implicitly
incorporate sensor specific properties during optimization. So the change of measure-
ment equipment can lead to a loss in classification performance. Since the training of
classification models is usually time consuming the generation of a new classifier after a
hardware change is costly.
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For the composition of this dataset the spectral information of certain substances
were recorded using multiple different sensors. Given the overlapping wavelength ranges
(again cf. Table 1) the dataset contains data, that represents the same spectral infor-
mation recorded with different sensors. This data can be used for the development and
validation of algorithms, which are capable of handling different input formats such as
variable sized feature vectors and slight shifts in the positions of the spectral sampling
points, as well as sensor specific patterns and fragments within the data.

High dimensional data exploration For the generation of industrial classification sys-
tems based on spectral information the selection of a suitable sensor system is one of the
key issues. In most of the cases the wavelengths which are relevant for the classification
task are not known in advance, so the selection of a sensor system usually follows an
educated guess or is guided by financial issues.

Having wide and limited wavelength range sensor data within the presented dataset,
the question of proper sensors selection may be tackled in a more systematic way. Using
the provided data it is possible to develop relevance learning schemes, which quantify the
importance of wavelengths. Relevances emerging from the classification of wide spectral
bandwidth data (which may have a low number of samples) can be used for a proper
sensor selection, on which classification models may be tuned afterwards.

Apart from the sensor selection the dataset provides also opportunities for the chal-
lenging visualization of high dimensional data, which is a key issue for data exploration
[3].

These questions may serve as a starting point for further research. Nevertheless this
list is not complete (neither it is meant to be). The presented Sugar dataset is unique in
terms of its structure and extent, and hopefully serves as a basis for future improvements
in the classification of hyperspectral data, as well as the outlined research topics.

4 File formats

All the data belonging to the sugar dataset is provided as plain text files following
the comma-separated values format. The filenames are compiled according to the sen-
sor/camera used when recording the data, starting with a prefix ”sugar ” followed by a
string that identifies the sensor, e.g. ”neoSWIR320” and terminated by the file extension
”.csv”. So a full filename could be e.g. ”sugar neoSWIR320.csv”. The complete sugar
dataset is composed from two files per sensor used, so twelve data files in total. For each
sensor there is a training data file, and a validation data file. In addition to the filename of
the training dataset (as described above), the filename for the validation data is altered
by adding ” val” before the filename extension, e.g. ”sugar neoSWIR320 val.csv”.
The structure of the validation set files follows the same specifications as the training
set files. Validation and training dataset differ in the day of recording. The validation
data was recorded on a different day, with separate specimens of the different sugar
substances, but using the same senors and experiment setup. Therefore the provided
validation dataset especially encounters the question of the reproducibility of achieved
classification results.
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Table 3: Format of the data files provided in the sugar dataset.

column index
1 2 3 4 5

ro
w

in
d

ex

1 99 λ1 λ2 . . . λd
2 label(x1) x1,λ1 x1,λ2 . . . x1,λd
3 label(x2) x2,λ1 x2,λ2 . . . x2,λd

1
...

...
...

...
...

4 label(xn) xn,λ1 xd,λ2 . . . xn,λd

The content of each data file is organized as described in the following. We assume
the number of samples to be n and the number of different values per sample to be d.
Therefore d also represents the number of different wavelengths for the given sensor.
The dataset file represents an ((n+ 1) × (d+ 1)) sized table. The very first entry in the
table represents the value 99. It is fixed and may serve as an option to check, if the file
has been read correctly. The following d entries of the first line represent the different
wavelengths, at which the data values were sampled1. For subsequent lines the value of
the first column represents the label of the sample as given above problem 0. The other
columns represent the feature values of the spectra, according to the wavelengths given
in the first row. The structure of the dataset file is illustrated in table 3.

5 Additional Files

In order to simplify the usage of the dataset there are different MatlabTM scripts pro-
vided together with the dataset, that enables an easy handling of the data in MatlabTM.
The files provided are:

loadDataset.m This function provides a simple routine for loading the dataset files
into the local workspace.

reformulateDataset.m Given a dataset in its plain format this function can be used
to derive different classification problems specified in Table 2.

labels.txt This is not a MatlabTM script file, but a plain text file containing the labels
of the different classes according to problem 0 as specified in Table 2. Each line in the
file contains the class index (e.g. 1) followed by a white space and the complete label of
this class(e.g. Sugar Ester S170). This file only contains correct labels for classification
problem 0 and should be translated to the other problems on demand.

1For the data recorded with the RGB camera Canon EOS 70D the concept of wavelengths does not
apply. To keep the format of all data files consistent, arbitrary (but plausible) wavelengths were
chosen for the three channels, namely 660nm for the red, 540nm for the green and 470nm for the
blue channel.
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