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Abstract We propose a framework for measuring the

complexity of aerospace systems and demonstrate its

application. A measure that incorporates size, coupling,

and modularity aspects of complexity is developed that

emphasizes the importance of indirect coupling and feed-

back loops in the system. We demonstrate how hierarchical

modular structure in the system reduces complexity and

present an algorithm to decompose the system into mod-

ules. The measure is tested and found to be scalable for

large-scale systems involving thousands of components

and interactions (typical in modern aerospace systems). We

investigate the sensitivity of the measure and demonstrate

the ability of the framework to identify incorrectness in

system representation. The merits of the framework are

exemplified through a case study comparing three space-

craft. The framework provides the designer with three key

capabilities that can positively influence the aerospace (or

other) design process: the ability to identify complex sub-

systems, the ability to classify misrepresentations, and the

ability to trade-off commercially of the shelf (COTS) and

non-COTS components.

Keywords Complexity � Coupling �Modularity � Satellite

design � Design space exploration

1 Introduction

1.1 Role of complexity in aerospace systems design

Aerospace systems are different from other engineering

systems as they are characterized by large heterogeneity

of components, low number of production units, greater

reliability and safety concerns, and high-performance

requirements. Modern aerospace systems, which are

designed to provide high performance and reliability

while operating in extreme environments, have exposed

the limits of conventional systems engineering tools and

practices. These systems have adopted significant tech-

nological and architectural changes to meet the ever-

increasing demand for performance. F-35, a fifth genera-

tion tactical fighter, is a good example, with increased

capabilities (3–8 times that of fourth generation F-16,

F-18) coming at the cost of increased difficulty in real-

izing and validating the design (Arena et al. 2008). The

superior capabilities of F-35 result from more components

and greater coupling between them. For example, ‘‘the

F-35 has 130 subsystems, around 105 interfaces, and 90 %

of its functions are managed by software. This is a sub-

stantial growth from the F-16 that has 15 subsystems, 103

interfaces, and less than 40 % of its functions managed by

software’’ (Arena et al. 2008). This increase in technical

complexity has challenged the efficacy of the systems

engineering tools to design and develop the systems in a

timely and cost-effective manner. According to the US

Government Accountability Office (GAO), 42 % of

defense acquisition programs are expecting 25 % or more

increase in unit acquisition cost. Further, only 28 % of

major programs are on schedule, and the average delay in

delivering initial capability is around 22 months (Sullivan

et al. 2009).
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Complexity is manifested in aerospace system design

and development in several ways. More components and

greater coupling between them increase the effort

required for analysis, design space exploration, and

verification. Thus, complexity is highly correlated with

the design effort. Braha and Bar-Yam (2007) describe

studies relating to complex engineering systems, which

show that challenges from tighter coupling are accentu-

ated by the presence of feedback loops within the con-

nections. Highly complex systems may require additional

redundancy to maintain the desired level of reliability in

operation. This additional redundancy, in turn, introduces

more complexity and increases the cost of the system.

Thus, increasingly complex systems exhibit the phe-

nomenon of cost-complexity spiral. As described by

Carlson and Doyle (2002), complexity added to achieve

reliable operation to expected disturbances can make a

system highly vulnerable to small, but unexpected dis-

turbance modes. These vulnerabilities may reveal them-

selves during the validation or testing phase resulting in

cost and schedule overruns. Thus, mitigating the ill-

effects of complexity is an important goal in any design

effort.

The design activity must grapple with the balance

between performance and complexity. The goal of the

design process is to find the designs that lie on the Pareto

frontier of the performance–complexity curve, i.e., find the

simplest design that gives the desired performance. This is

in line with the principles of Axiomatic design, which

states that a good design is one that satisfies all the func-

tional requirements with minimum number of components

and relations (Suh 2001). A simpler design leads to

enhanced reliability and quality at lower cost (Maimon and

Braha 1996), and reduces the possibility of unwanted

emergent behaviors.

Managing complexity is not new to engineering systems

design. Asikoglu and Simpson (2012) and Dolan and Lewis

(2008) suggested developing product families to manage

complexity. Another approach for managing complexity is

to develop quantifiable complexity measures and incorpo-

rate complexity as one of the design objectives during

design space exploration. This will help in identifying the

good designs lying on the performance–complexity Pareto

frontier. Effective complexity measures can assist in

‘‘weeding out’’ regions of the design space, which are

either too complex to be feasible, or too simple to provide

the required performance. This will substantially reduce the

size of the design space and thus facilitate faster and better

exploration. An effective measure of complexity should

also help in identification of complex subsystems and help

the designers in understanding the underlying sources of

complexity in a system. This will help in identifying

strategies for managing them.

1.2 Goals of this paper

In this paper, we propose a framework for measuring the

complexity of aerospace systems. While the focus of our

study is aerospace systems design, the approach is easily

applicable to other engineering domains. We begin with

the literature survey of the state of the art and identify the

different aspects of system complexity. A comprehensive

treatment of all these aspects is beyond the scope of this

paper; hence, we focus our attention toward a measure that

captures size, coupling, and modularity aspects of com-

plexity. Our approach gives special emphasis on capturing

the effect of indirect coupling and feedback loops present

in the system. Through synthetic examples, we demon-

strate how modularity helps in reducing complexity of the

system. We propose an approach that combines these

aspects into a single measure for system complexity. Next,

we present an algorithm that identifies the optimal

decomposition of a system into modules. We also discuss

the scalability of our algorithms to large-scale systems,

involving thousands of components and interactions, typi-

cally found in modern aerospace systems. Through sensi-

tivity studies, we investigate the sensitivity of the measure

to incorrectness in the system representation. The merits of

the framework are demonstrated through a case study

involving space systems. Toward the end, we describe how

the approach can positively influence the design process

and help in identifying high-performance, low-complexity

designs.

2 Complexity in design: a focused review

The concept of complexity has been studied in variety of

disciplines such as computer science, design, information

theory, and physics. While each discipline has adopted a

unique approach for representing and studying these

complex systems, some fundamental characteristics can

still be extracted. Sheard and Mostashari (2010) provide a

review of some of the underlying factors for complexity of

a design and describe how these factors influence perfor-

mance and cost. Simon (1996) describes complex systems

as systems containing large number of components that

interact with each other in a non-simple manner. Another

fundamental characteristic of these systems is the idea of

emergence, i.e., the whole is more than the summation of

the parts. Simon proposes the concept of ‘‘nearly decom-

posable systems’’ meaning that the links within the sub-

systems are generally stronger than those between the

subsystems. This decomposability of complex systems

suggests an approach toward managing the complexity of

system synthesis. This section provides a focused overview

of different approaches for measuring complexity and
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concludes with a comparison of these views, forming the

basis for a comprehensive measure for system complexity.

2.1 Measures based on information theory

While some information theory measures quantify com-

plexity in terms of information content of a design, others

try to measure it as the lack of information about the design

(Maimon and Braha 1996). Later, the authors (Braha and

Maimon 1998) also develop an information-theoretic

framework for measuring the structural and functional

complexity. El-Haik and Yang (1999) propose measures

that highlight some of the components of complexity of the

design process such as variability, vulnerability, and cor-

relation, and Gell-Mann and Lloyd provide information

measures for measuring the effective complexity of the

system(Gell-Mann and Lloyd 1996). Similarly, Hornby

measures complexity as the amount of modularity, reuse,

and hierarchy within the system (Hornby 2007). Willcox

et al. (2011) define complexity as the potential of a system

to exhibit unexpected behavior in the quantities of interest

and use information entropy measure to capture the effect

of uncertainty on complexity. One of the advantages of

their formulation is that it can capture the change in system

complexity during different phases of design. While the

information-based methods are good for measuring the

size, heterogeneity, and uncertainty aspects of system

complexity, they do not capture the effect of topology of

interactions and dynamical behavior of the system. Murray

et al. (2011) propose the concept of dynamic complexity

that combines information entropy and topology of inter-

actions in a single measure. This marks an important step

in moving toward a comprehensive system complexity

measure.

2.2 Measures based on design theory

2.2.1 Network theoretic measures

Networks provide an intuitive way of representing a system

and thus have been a popular starting point for complexity

analysis as well as design in general. Braha, Bar-Yam, and

Maimon analyzed various network statistical properties

such as small world behavior, clustering coefficient, dis-

assortative mixing, and hierarchical organization to study

complex engineered systems (Braha and Maimon 1998;

Braha and Bar-Yam 2004, 2007). They also describe how

feedback loops in the network are the result of direction-

ality and correlation among nodes of the network. They

also show a high dependency between complexity measure

and total assembly time. While several of these properties

correlate with complexity, the authors do not propose a

measure that unifies these aspects in a single framework.

Several other network complexity measures, based on

the design structure matrix (DSM), are also proposed in the

literature. DSM is one of the popular representation and

analysis tools for system modeling. DSM is a square matrix

that displays the relationship between components of a

system. Elements along the diagonal represent the rela-

tionship of the component with itself while the off-diagonal

elements signify the relationship of the component with

others. Chen and Li (2005) suggest a complexity measure

based on the DSM. Mathieson and Summers (2010)

describe a DSM-based measure for interconnectivity.

Hölttä and de Weck (2007) present a modularity measure

based on singular value decomposition to measure the

coupling within the system. Murray et al. (2011) describe a

measure based on the DSM to capture the size, heteroge-

neity, and connectivity aspects of system complexity. Their

approach captures the coupling within the system through

the concept of graph energy. Barabási and Ravasz have

used the network approach to describe the characteristics of

networks having hierarchy and modularity (Ravasz and

Barabási 2003). While the DSM is a compact way of

system representation, it is unable to capture bipartite and

multipartite relationships common in many engineering

systems. To address these shortcomings, several other

representations such as boundary representations, bond

graphs, and bipartite graphs are considered (Mathieson and

Summers 2010). Ameri et al. (2008) present a coupling

measure based on bipartite entity-relation graph. Morse

(2003) describes the concept of assembly graphs to repre-

sent the complexity of assemblies. An important short-

coming of these methods is that they fail to capture the

effect of feedback loops, which play an important role in

driving system complexity.

2.2.2 Empirical measures

Several empirical measures exist where the complexity is

qualitatively estimated as a measure of the coupling

between performance parameters and design variables. The

most notable in this regard is the work of Bearden (2003),

where the measure is based on empirical data from small

satellites developed over a period of time. The approach

used by Bearden is the following: identify the parameters

that drive or otherwise contribute to the complexity of a

spacecraft design, quantify the identified parameters, and

combine the parameters into an aggregate complexity

index. While the author has confined himself to the space

domain, the approach can be applied to other domains as

well. A limitation of the approach is that it only captures

the effect of final design parameters not the design process,

which might include the number, type, and repeatability of

tasks. In addition, this might not work for radically new

designs.
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2.3 Synopsis of gaps

What is missing in the complexity measures available in

the literature is a comprehensive framework that combines

them to produce a measure for system complexity. An

important step in this direction was the DARPA Meta

program where an attempt was made to develop a measure

for complexity that would correlate with cost and schedule.

Work done by Murray et al. (2011) is particularly notable

as it combines an information theory measure with a

topology measure to create a combined measure for system

complexity. However, their topology measure does not

account for directionality of interactions, which is an

important aspect for capturing coupling between the com-

ponents. In addition, by rolling up the different factors into

a single number, the measure provides little insights into

the relative complexity of subsystems. We believe that this

is an essential feature for a complexity measure, since once

complex subsystems are identified strategies can be

developed to manage them. However, they use a simplistic

measure for complexity that fails to capture the topology

factors such as the presence of feedback loops. In addition,

their approach involves converting the directed network

into undirected, which may introduce errors in the analysis.

Our approach builds upon the state of the art to develop

a comprehensive measure for system complexity that

captures size, coupling, and modularity for a directed,

weighted network. Apart from characterizing the com-

plexity of a design by a single number, this measure allows

the designer to identify complex subsystems. It also

explains how modularity reduces the complexity of the

design.

3 Measure for system complexity

3.1 Different aspects of system complexity

Based on the literature survey described in the previous

section and interaction with the aircraft designers at Boeing

(Stuart et al. 2011), we list some of the important aspects

that affect system complexity. Several of these aspects such

as level of abstraction, size, and heterogeneity are also

described by Braha and Maimon (1998) from an informa-

tion-theoretic perspective.

• Level of abstraction: Level of abstraction denotes the

visualization of the system at different levels of detail.

For instance, consider a hypothetical system classified

into three levels of abstraction. At the top, we have the

system level of abstraction where the system is viewed

in terms of its primary components or functions. For an

aircraft, these would be wing, fuselage, engines, etc. As

we go down the level of abstraction, the amount of

detail increases. The choice of level of abstraction

depends on the fidelity of analysis specified by the

designer.

• Type of representation: At each level of abstraction, the

system can have different representations. Ameri et al.

(2008) describe the system using the function-structure

connectivity graph and parametric associativity graph.

A system can also be represented as a structural graph

in terms of components and interactions. There can be

different structural representation of the same system

and each may lead to different complexity. For our

analysis, we primarily focus on the functional and

structural representations of the system.

• Size: Size is representative of number of components

and interactions within the system. Generally, the

greater the number of components and interactions,

the higher is the complexity. While this relationship is

not true for the case of system involving highly

repetitive components, for example computer chips,

aerospace systems exhibit this trend due to high

heterogeneity of components.

• Heterogeneity: The greater the heterogeneity of the

components and interactions more is the complexity of

the system. Summers and Shah (2010) combine size

and heterogeneity into a single measure.

• Coupling: Coupling between components is of two

types. Direct coupling is the result of interdependency

between the components due to direct physical con-

nection between them. Indirect coupling occurs when a

path with one or more components connects two

components. Indirect coupling makes it possible for a

component to affect another in the absence of a direct

physical link. A feedback loop is an important type of

indirect coupling, which results from the presence of

closed loops in the system.

• Modularity: Hölttä and de Weck (2007) define modu-

larity in two ways. Modularity is understood as the

coupling of form. This means that a system is modular

if the strength of coupling or density of interconnection

is stronger in certain regions than average across the

system. Those regions called modules have higher

interconnectivity within them and have loose coupling

with other modules. Functional encapsulation is another

way of understanding modularity. A module is a set of

components that are highly coupled and perform one or

more functions. For our analysis, we have chosen the

former definition of modularity.

• Uncertainty: Complexity can be understood as the

potential of the system to exhibit unexpected behavior.

Hence, uncertainty in the quantities of interest of the

system is one of the ways of measuring complexity.
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• Dynamics: Systems can exhibit dynamic behavior

across different timescales resulting in change in the

strength of interactions between the components. For

instance, an aircraft has different modes of operations

where the importance of interaction between compo-

nents changes.

• Off-design interactions: Off-design interactions are the

interactions that occur due the operation of components

and interactions outside their design range.

3.2 Proposed framework for measuring system

complexity

While investigation of the different aspects of complexity

is a topic of active research, we narrow the scope of this

paper by proposing a framework that captures size, cou-

pling, and modularity aspects of complexity. This frame-

work consists of three steps:

1. Generate the structural and functional representation of

the system: In this step, we first generate the functional

representation of the system. Each function (or a group

of functions) of the functional graph is mapped to a

component (or group of components) in the structural

graph. The structural representation is generated such

that each component of the structural graph is a COTS

component. To illustrate this further, consider an

aircraft whose engine is a COTS component, whereas

the wing is designed in-house, and hence, made from

COTS components such as spars and ribs. In this case,

the structural graph will contain engine as one

component and will contain a large number of

components (spars and ribs) corresponding to the

wing. The motivation behind representing the struc-

tural graph as COTS components is that the design

effort required to develop COTS is assumed to be zero,

and thus, they do not contribute to the design

complexity of the system. An important consequence

of this formulation is that components of a system need

not be at the same level of abstraction, which is one of

the salient features of our framework. It allows the

designer to decide whether to buy the COTS compo-

nents or initiate in-house development as given in

Sect. 6. In addition, in case of cyber-physical systems,

software components are included as virtual compo-

nents/functions in these representations.

2. Determine the weights of the links of the structural

network: In this step, each function is mapped to

components and interactions in the structural network.

The weight of components and interactions in the

structural network is defined by sum of the weight of

the functions associated with them. In cases where

groups of components perform a function, the weight

associated with the function is uniformly divided

between the links connecting them. For the application

problem demonstrated in this paper, due to lack of

availability of functional data, we do not demonstrate

this mapping. However, this does not prevent us from

demonstrating the effectiveness of our framework. The

result of this mapping is a weighted network, which is

analyzed in step 3.

3. Calculate the complexity of the weighted network: We

measure the complexity of the system in a two-step

process described in Sect. 3.3.

3.3 System complexity measure and illustrative

calculations

System complexity is calculated using a two-step process.

First, we describe a measure that captures coupling within

the system. This measure captures direct and indirect

coupling present in the system and gives special emphasis

on the presence of feedback loops. We also demonstrate

that the same measure also captures size complexity. In the

second step, we introduce a correction factor to this mea-

sure that results from the presence of a modular structure

within the system. Through synthetic examples, we dem-

onstrate how the measure captures size, coupling, and

modularity aspects of complexity.

3.3.1 Coupling complexity

Summers and Shah (2010) propose an algorithm for mea-

suring coupling by testing the decomposability of an entity-

relation graph. One of the shortcomings of their approach is

that it neglects the effect of link weights and directionality.

In addition, it ignores the presence of feedback loops,

which play an important role in determining the system

complexity. Our proposed approach addresses all these

shortcomings. Another key feature of the proposed mea-

sure for coupling is its ability to measure indirect coupling

between nodes.

The measure for coupling is as follows: Given weighted

structural network, we redefine the link weights to account

for indirect coupling (note that direct coupling is captured

from the link weights of the weighted structural network).

We list all the possible paths between all the node pairs in

the network. The importance of a link in the structural

network depends on the frequency with which the link

occurs in this list. The new weights are obtained by mul-

tiplying the weights of the network by the frequency of

each link. This ensures higher weight is given to the links

that are used a large number of times and thus captures the

effect of both types of coupling. Coupling complexity is

calculated using Eq. (1).
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Ccc ¼
Xc

s¼1

ns

Xns

i¼1

Wis

 !
þ
Xm

k¼1

Wk ð1Þ

where c denotes the number of feedback loops, ns denotes

the number of links in the sth feedback loop. Wis denotes the

weight of the ith link of the sth feedback loop. m is the

number of links that are not the part of any feedback loop.

Wk denotes the weight of the kth link that is not the part of

any feedback loop. Coupling complexity (Ccc) can be

interpreted as the summation of the link weights. However,

if the links are the part of a feedback loop, we multiply the

weights of all the links belonging to the feedback loop (Wi)

with the size of the loop (j) (if a link is part of more than one

feedback loop, then its weight is considered in all the loops).

This ensures a higher importance to the links corresponding

to the feedback loop and will also ensure a higher impor-

tance for the links belonging to a longer feedback loop. To

illustrate this further, Fig. 1 shows the structural graph of an

artificial network. On the left, we have the weighted net-

work with numbers denoting the link weights. To calculate

the coupling complexity of the network, we first enumerate

all the paths between all the node pairs. Figure 1 lists the

possible paths between all the node pairs of the network.

Since we are dealing with a directed network, order of the

nodes in a path is important. Hence, the paths B-C-D, C-D-

B, and D-B-C are considered distinct. After enumeration,

we calculate the frequency of links as shown in Fig. 1. New

weights are obtained by multiplying frequency with original

link weights. Using Eq. (1), the coupling complexity of the

network is found to be 222. This number is indicative of

number and weights of direct, indirect coupling, and feed-

back loops in a network. Apart from representing the

complexity of the system by a single number, this measure

also allows us to investigate the complexity of individual

subsystems as well as the integration complexity. This is

further described in Sect. 3.3.3.

The proposed coupling measure automatically incorpo-

rates size complexity, which increases with number of

components and interactions. By accounting for direct

coupling in the coupling measure, we ensure that the

coupling complexity increases with number of links. In

addition, an engineered system cannot have disconnected

subgraphs, and thus, every node pair must be associated

with at least one link. This puts an upper limit on the

maximum number of nodes in the system (Eq. 2). If N be

the number of links within the system and n be the number

of nodes, then

n�N þ 1 ð2Þ

Hence, by capturing the effect of number of links, direct

coupling also captures the information about the maximum

number of nodes, which is an indirect measure of the size

of the system. The proposed measure for coupling thus

incorporates size aspect of system complexity.

3.3.2 Role of modularity in managing complexity

Modularity is an important design characteristic, which the

designers want to imbue in their system. The complexity of a

system depends not only upon its interconnections, but also

on how and to what degree the system is organized hierar-

chically into modules (Hölttä and de Weck 2007). A mod-

ular design allows flexibility to decompose the system and

design each subsystem independently with minimal influ-

ence from the other subsystems. Numerous measures for

determining modularity exist in the literature (Allen and

Carlson-Skalak 1998; Gershenson et al. 1999; Mikkola

2000; Martin and Ishii 2002; Mattson and Magleby 2001;

Newcomb et al. 1998; Sosa et al. 2000). Guo and Ger-

shenson (2004) developed a new measure by first studying

existing measures and then validating their improved mea-

sure through experiments. Apart from measuring modular-

ity, identifying modules is an important activity in systems

design. Hölttä et al. (2003) describe a method for modu-

larizing an architecture using flow-distance dendrograms.

Erixon (1996) describes a method based on modular func-

tion deployment. Andersson and Sellgren (2003) propose a

method for modularization based on interface modeling.

Another popular approach for modularization is the use

of clustering algorithms. Majority of them are based on

graph partitioning, which cuts a graph into subgraphs to

minimize the interconnections between them. One such

method is the minimum cut method, which produces

extremely imbalanced cuts (Stoer and Wagner 1997). Other

methods impose an additional constraint to produce better-

balanced cuts. Minimum bisection methods impose the

constraint that the two subgraphs are of equal size. How-

ever, this is an unnatural constraint yielding in poor clus-

tering results, and the method is NP-complete (Charney

and Plato 1968). Ratio cut methods provide naturally bal-

anced and yet high-fitness cuts by minimizing the ratio of

the number of edges connecting the two subgraphs divided

(Eq. 1)

Frequency

8

4 5

2
A B

D

C
8*5

4*3 5*4

2*3
A B

D

C

Weighted Network Reweighted Network
(Accounts for Indirect Coupling)

B-C-D-B
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Redefine link 
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A-B
A-B-C
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D-B
D-B-C

B-C
B-C-D

C-D
C-D-B

All the paths between all the node pairs

Calculate Coupling 
Complexity

Fig. 1 Illustration of coupling complexity metric
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by the product of the number of nodes in each subgraph

(Wei and Cheng 1989; Leighton and Rao 1988). Braha

(2002) describe a clustering approach for partitioning tasks

among product development teams. Spectral graph parti-

tioning is another approach for graph partition that uses the

eigenvalues and eigenvectors of DSM (Fiedler 1973, 1975;

Von Luxburg 2007). While spectral graph partitioning

works better than other methods for graph partitioning, it

assumes a symmetric DSM, which is not true for most

engineering systems.

We propose a model to incorporate modularity that

effectively reduces the complexity of the system and also

propose an algorithm to decompose the design into modules.

3.3.3 Incorporation of modularity into complexity metric

Section 3.3.1 provides a way of calculating the coupling

complexity of the system. This calculation does not

account for the fact that systems are usually designed by

decomposing them into subsystems. Hence, we introduce

the concept of subsystem and integration complexity to

capture this behavior (Eq. 3). To calculate subsystem and

integration complexity, we assume that the system is

decomposed into n subsystems. Starting with redefined link

weights of the network (to account for direct and indirect

interactions between the components), we first calculate the

coupling complexity (Ccc). We then calculate the com-

plexity of a subsystem (CSSi) by isolating it from the other

parts of the re-weighted network. Integration complexity is

calculated by Eq. (3).

CI ¼ Ccc �
Xn

i¼1

CSSi ð3Þ

The problem with Eq. (3) is that system complexity,

which should be the sum of complexity of subsystems and

integration, is constant irrespective of how the system is

decomposed. In reality, decomposition simplifies system

design and reduces the integration effort, and hence, inte-

gration complexity is less than what is obtained by Eq. (3).

We capture this effect using the coefficient of integration

(aI) as a correction factor and define modified integration

complexity (CIm) using Eq. (4). Now, the system com-

plexity (Csc) is given by Eq. (5). Note that for the special

case, when n = 1, we do not have any decomposition, and

thus, the system complexity is equal to the coupling

complexity.

CIm ¼ aICI ð4Þ

Csc ¼
Xn

i¼1

CSSi þ CIm ð5Þ

The coefficient of integration captures the ease with

which a system can be integrated. Intuitively, a designer

prefers a lower value of complexity of integration and

higher value of complexity of subsystem, and thus, the

coefficient of integration is defined as the ratio of inte-

gration complexity and the sum of complexities of sub-

systems (Eq. 6). This definition is formulated such that aI

will be scale invariant and depends only the network

topology and not its size. Note that our formulation

assumes that the coefficient of integration is always less

than one. This is reasonable as for a good design with

modest integration effort CI should be less than sum of

complexities of subsystems. Another consequence of this

formulation is that Csc is less than Ccc.

aI ¼
CIPn

i¼1 CSSi

ð6Þ

Figure 2 shows a synthetic example that illustrates how

modularity is incorporated into complexity metric. The link

weights in the figure denote the combined effect of direct

and indirect coupling. We also assume decomposition into

two subsystems. We calculate Ccc and Csc by Eqs. (1) and

(5), respectively.

3.4 Algorithm for modular decomposition

We propose a graph partition approach that uses the

modified complexity measure to find a modular decom-

position of the system. Our method is based on the modi-

fication of an algorithm proposed by Newman and Girvan

(2004), which identifies community structures within a

network. Community structure closely relates to the notion

of clustering, i.e., nodes within the same community are

more densely connected as compared to that of inter

community nodes. The algorithm divides the network into

communities by removing the links with highest

betweenness centrality. The links are removed until the

network splits into separate communities. Newman defines

modularity measure Q that is calculated each time the

network splits into separate communities. The process of

removing links, identifying communities, and calculating

A

B C

D

E F

3

6

9

9

9

6

CSS1= 54 CSS2= 54
CI = Ccc- CSS1 – CSS2= 9

Ccc= 117 I= 9/108 Csc = 108.75 

Subsystem 1 Subsystem 2

3

Fig. 2 Illustration of system complexity metric
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modularity continues until Q reaches local maxima. Along

with high clustering within a community, we believe that a

good decomposition should have the following character-

istics to minimize system complexity:

1. Feedback loops should be localized within a subsys-

tem: Feedback loops are inherently indivisible, and all

the components within it must be designed in concert.

It is easier to design systems where the integration

involves fewer feedback loops, as it minimizes the

coupling between the subsystems. Hence, we believe

that good system decomposition should ensure that the

links associated with feedback loops should remain

localized to individual subsystems.

2. It should divide the system such that the subsystems

have similar complexity.

3. Integration complexity should be close to the average

subsystem complexity: This will result in equitable

distribution of design effort between different subsys-

tem and integration teams.

In order to achieve a good decomposition, we propose a

modification to Newman modularity measure. Note that the

decomposition obtained through the algorithm is different

from the traditional subsystems, which are based on func-

tional modularization (segregating components based on

function).

3.4.1 Modified newman algorithm to find modules

We propose two modifications to Newman algorithm:

1. Link removal: Links corresponding to highest

betweenness centrality are removed provided follow-

ing three conditions are satisfied:

(a) Do not cut links of the feedback loop.

(b) Do not cut links, which results in complexity of a

subsystem to be less than the integration

complexity.

(c) Cut links only in the biggest module. Steps

(b) and (c) ensure that the system is decomposed

in modules of roughly same complexity.

2. Stopping criteria: The algorithm is terminated when

the integration complexity is greater than the average

complexity of the subsystem.

Once decomposition is obtained, Eqs. (4)–(6) are used to

calculate the system complexity (Csc). An example dem-

onstrating the modified Newman algorithm is shown in

Fig. 3. We assume that the weight of each link is one. On

the left, we have the undecomposed system. The complex-

ity of this system is calculated using Eq. (5) for the special

case of n = 1. We decompose this network using modified

Newman algorithm and obtain a decomposition with four

modules shown in Fig. 3b. The complexity of this decom-

position is calculated using Eq. (5). We can see a reduction

in complexity from 489 to 461.8 indicating the positive

effect of decomposition.

4 Application

While synthetic examples are good for illustration, the real

utility of the framework can be demonstrated by applying

the framework over an engineering design problem. For

this purpose, we choose three existing satellite missions for

analysis. The choice of these missions is primarily driven

by availability of the relevant information about their

structural and functional graphs. Some of the details of the

structural graph for these missions can be found in (Wertz

and Larson 1996). Two different types of interactions have

been considered while creating the structural graph, namely

energy and information. Due to the lack of information

about their relative strengths, these interactions are

assigned equal importance. Figure 4 shows the structural

graph for Orsted satellite. The colors in the structural graph
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indicate functional modules. For instance, all the compo-

nents in yellow color are associated with communication

function.

Table 1 shows the relevant mission details about the

example satellites. It also shows the coupling complexity of

the three missions (calculated using Eq. 1). For the chosen

example set, the measure for complexity shows a promis-

ing correlation with the development cost of the mission

(Fig. 5). Figure 6 shows the complexity of the individual

subsystems as well as the integration complexity (not the

modified integration complexity).

Results show that integration complexity is generally

higher than the complexity of all the subsystems. This is

expected for any complex aerospace system where com-

plexity of integration is major driver of cost and schedule.

In addition, complexity of Clementine is significantly

higher than other spacecraft. This is because Clementine is

a mission to the Moon and the asteroid 1620 Geographos,

and hence, the power requirements are a major design

driver, which resulted in a complex power subsystem. This

demonstrates an important fact that performance and

complexity are correlated and components are intentionally

coupled to extract high performance from the system. To

illustrate how modularity affects the complexity of the

satellites, we apply the modularity correction on the

satellite examples. The results are summarized in Table 2.

We apply the modified Newman algorithm to these systems

and identify the optimal decomposition (Tables 3, 4, 5).

Our algorithm suggests that most of the components of

propulsion and control subsystem of Clementine should be

in a single module. This is justified, as the mission of

Clementine is to perform scientific observation of the moon

and a near earth asteroid, thus control input is continuously

required for orbital maneuvers. The algorithm also suggests

that the power regulator should be a part of each (Controls,

Payload, Communication, and Propulsion) subsystem

instead of part of the power subsystem.

5 Scalability and sensitivity studies

5.1 Scalability for large-scale systems

The examples described in the previous sections are rela-

tively small. Most modern aerospace systems contain

thousands of components and millions of interactions.

Table 1 Complexity of spacecraft

Orsted HETE Clementine

Mission Magnetic

field

Gamma ray

burst

Moon & 1620

geographos

Cost (FY08$K*1000) 15 23 60

Weight (Kg) 60 125 232

No. of components 47 59 68

No. of interactions 58 71 92

Complexity (Ccc) 4,893 7,749 14,962
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Table 2 Complexity before and after modularization

Orsted HETE Clementine

Before modularization (Csc) 6,312 7,749 64,904

After modularization (Csc) 5,668 6,879 63,385
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Thus, we demonstrate the scalability of the proposed

measure for these large-scale systems. The proposed

measure for coupling requires calculation of all the paths

between all node pairs, and hence, the computation time

increases significantly with the increase in number of nodes

and links. To reduce the computation time, we ignore all

the dependencies that are farther than 50 ‘‘hops‘‘ from a

node. This assumption is reasonable since a disturbance

cannot propagate indefinitely in a network and the likeli-

hood of a node being affected beyond 50 ‘‘hops’’ is

minimal.

To demonstrate the scalability of the measure with this

approximation, several synthetic examples were con-

structed. Due to the lack of availability of data about large

aerospace systems, we create random graphs of different

sizes and examine the time required for calculating the

complexity (Table 6) with the expectation that the metric

will have similar performance on real networks with same

number of nodes and links. Random networks are con-

structed with number of nodes (n) and link probability

(p) such that np = 1. All the examples were run on 8 core

(0.8 GHz each) 16Gb RAM, 2x Quad-Core AMD Opteron

2380 system in Matlab.

5.2 Sensitivity studies

While developing structural and functional graphs of large

systems, misrepresentations are unavoidable. These mis-

representations can be either due to an omission of a node

or a link or due to an erroneous weight given to a particular

link. It is evident from our formulation (Eq. 1) that the

complexity measure will be sensitive to misrepresentations

of links and nodes belonging to the feedback loop, and

hence, extra care should be taken while representing them.

The formulation is also sensitive to mistakes in system

decomposition. This is shown in the example below:

Figure 7 shows a hypothetical scenario where a part of a

module (components 1 through 4) of the system is mis-

represented. This type of situation often occurs in the case

of software components where there are multiple ways of

representation. Since the misrepresentation removes the

feedback loop, we observe a significant change in coupling

complexity. In order to detect this misrepresentation, we

need to analyze the complexity of the individual modules.

Table 7 illustrates the effect of misrepresentation on Orsted

spacecraft. The designer is being provided with the data as

shown in Table 7 where it is evident that the complexity of

CDH subsystem is significantly lower than others. There

are two explanations for this, either there is a

Table 3 Modularization of Orsted

Modules(# of components) Complexity

Power regulator 1 ? Propulsion (23) 621

Power regulator 2 ? Comm. (7) 670

Power regulator 3–8 ? CDH ? Payload(29) 4,279

Table 4 Modularization of HETE

Modules(# of components) Complexity

Power ? CDH ? Payload?comm. (28) 5,432

Power regulator ? prop(9) 808

Power regulator ? ADCS (22) 510

Table 5 Modularization of clementine

Modules(# of components) Module

Power ? CDH ? payload (35) 60,413

Power regulator ? communication (6) 1,225

Propulsion ? ADCS (28) 1,710

Table 6 Scalability of the coupling complexity measure

# of nodes # of links Time (s) (Ccc) (Loops)

10 6 0.8 47 (0)

100 110 7.7 1,259,104 (9)

1,000 967 8.3 44,272 (3)

10,000 10,009 608.0 1,147,052 (4)

Correct Representation

Incorrect Representation

Module 1 (

1

2

4

3

5 6 7

Module 1 (

1

2

4

3

5 6 7

Fig. 7 Misrepresentation due to incorrect system decomposition
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misrepresentation or its complexity is genuinely less than

other subsystems. By further analysis, the designer identi-

fies that a feedback loop belonging to the CDH subsystem

is misrepresented as a single component.

One of the limitations of the approach is that the size of

the system and the feedback involved in misrepresentation

should be large. While this approach is not foolproof, it

focuses the attention on the misrepresentation and

encourages further discussion to identify the problem.

6 Context for application in design space exploration

The research reported in this paper was motivated by the

imperative for improved aerospace systems design. In this

section, we briefly highlight how this framework facilitates

complexity-enabled design space exploration. Figure 8

shows a notional relationship between performance and

complexity in a system. To achieve a particular level of

performance, the complexity of the system must be above a

particular threshold. A good design satisfies the require-

ments with minimum complexity. This figure also high-

lights the problem with traditional design paradigm where

all designs that meet the requirements are equal. With

complexity added as one of the design objectives, the

exploration will gravitate toward designs that strike a bal-

ance between complexity and performance. The size of the

design space can also be reduced by setting a complexity

threshold, which rejects the designs that are either too

simple to provide the required performance or overly

complex to be feasible. The proposed framework and

measure together allow the designer to dig deeper, identify

the sources of coupling within the system, and develop

strategies to manage them.

The approach presented in this paper is also tailored

toward Model-based Design, Engineering and Develop-

ment (MBDED) (Bellman 2011), which aspires toward

creating design tools and processes to enable design and

verification in a virtual environment. One of the approaches

in MBDED is component-based design where the design

problem is transformed into a problem of identifying an

acceptable configuration of components that meet the

requirements by using a library of pre-verified component

models. This facilitates design and validation of systems

much more rapidly because if the components and inter-

actions are properly characterized, their composition may

be also verified computationally without resorting to

expensive prototyping and testing. However, the benefits

may be reduced when the size of the verified component

library is too small (not enough good design options) or too

big (large search space). In the latter case, this framework

will try to mimic the designer’s intuition, help in navigat-

ing the large design space, and help manage the complexity

of system through modularity.

As described in Sect. 3.2, one of the important advan-

tages of our framework when applied to the component-

based design paradigm is that it solves the designer’s

dilemma of buying a COTS component/subsystem or

designing it in-house. The framework allows us to repre-

sent structural graphs with components at different levels

of abstraction. Thus, component library, as described ear-

lier, can contain components at multiple levels of

abstraction. For example, to design an aircraft, it can have a

wing (high level of abstraction) and also contain constitu-

ent components of the wing such as spars and ribs (low

level of abstraction). Now, the combination of components

at different levels of abstraction will lead to different

designs with each having its unique structural graph. These

choices will have different implications for performance

and complexity. A performance–complexity trade-off

study will address the problem by identifying designs on

the Pareto frontier.

It is important not to confuse the concept of modeling

components belonging to different levels of abstraction in

the same structural graph with the concept of misrepre-

sentation described in the previous section. While the

former case describes a conscious decision by the designer

to use a COTS component, the latter describes the case of

misrepresentation where the component was modeled as

COTS and hence, was less complex.

Table 7 Misrepresentation in

orsted
Subsystem Complexity

(Ccc) 5,507

Power 1,493

Control. 284

Comm. 630

Propulsion 570

CDH 17

Integration 2,513

Pe
rf

or
m

an
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Complexity

Performance 
requirement

Good Designs

Fig. 8 Performance versus complexity
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7 Conclusions

In this paper, we identify several aspects of system com-

plexity relevant to the design of engineered systems. We

also present a framework for measuring system com-

plexity and propose a measure that combines size, cou-

pling, and modularity. The measure is an improvement

over other state-of-the-art approaches, as it works effec-

tively with a directed and weighted design structure

matrix. It also incorporates direct, indirect coupling and

provides special emphasis on feedback loops, which play

an important role in increasing system complexity. The

framework successfully demonstrates how the presence of

modularity reduces the complexity of a system and facil-

itates system design. Along with representing the system

complexity by a single numeric value, our measure places

a special emphasis on digging deeper into the sources of

complexity by highlighting the complexity of subsystems

and integration. We also propose an intuitive framework

for system decomposition where optimal decomposition

means that the modules have similar complexity and that

the complexity of subsystems roughly equals the com-

plexity of integration. In contrast, techniques based on

singular value decomposition do not have an intuitive

explanation for their decomposition. An important conse-

quence of this algorithm is the ease of integration. Func-

tional decomposition involves coupling and feedback

loops in the integration and hence results in complex

integration process. Our algorithm, by redefining the

modules, simplifies the integration process by localizing

the feedback loops. Thus, the design effort is concentrated

on integrating and testing critical interactions before

integrating the modules into a system, which leads to a

simplified integration process. This also will result in

changes in the composition of the integration team, which

will be more interdisciplinary, to support integration of

diverse components into a module. Scalability is another

desirable characteristic of our framework, and we dem-

onstrate that the measure works for large-scale systems

comprising of thousands of nodes. We also investigate the

sensitivity of our measure to a variety of misrepresenta-

tions (that have a potential to cause cost and schedule

overruns). While our framework is applicable to many

engineering domains, we put a special emphasis on its

applicability to aerospace systems. Aerospace systems are

different from other systems and are characterized by a

low number of production units, greater reliability and

safety concerns, and high-performance requirements. Our

work has been motivated by keeping some of these chal-

lenges in mind. In the end, we provide a rough outline for

our future endeavors by proposing to use this framework

to facilitate the effective and efficient exploration of the

multidimensional design space. We also hypothesize that

this framework will help in solving the designer’s

dilemma of buying a component/subsystem COTS or

designing it from scratch.
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