Complexity management requires a profound understanding of the matter of complexity.
Therefore the general composition of complex systems will be introduced first, using
examples to highlight important aspects and the large range of complexity. These examples
are followed by a discussion of the difference between the meaning of the terms complex
and complicated in the context of systems management. It will be explained why it is not
just a minor linguistic difference, but a need for specific management approaches.

Despite the excessive use of the term complexity many of its definitions are either quite
vague or very specific—and therefore only applicable to certain fields. For example, one
mathematical definition of complexity (Kolmogorov complexity) is based on the minimal
length of code required for generating a specific desired output [1]. Obviously, this is not
helpful when dealing with the high-level development of an airplane or the management of
a large infrastructure system. But even in engineering disciplines like systems engineering,
a variety of definitions instead of a central common one can be identified [2]. Section 3.2
introduces relevant complexity definitions and indicated commonalities and differences.
Special focus is placed on structural complexity, as it possesses major relevance for many
applications.

Dorner mentioned that people tend to make specific errors when interacting with
complex systems. For successfully managing such systems one must be aware of these
mistakes, and one requires adequate methodical approaches even if the system in question
seems to be non-transparent [3]. The typical problems occurring when interacting with a
system are one specific consequence of complexity, which is explained in Sect. 3.3.

In the last section of Chap. 3, established engineering approaches towards complexity
management are described. As each of them is covered by innumerable books, this section
should only be a brief introduction, providing the basic understanding for later chapters.
For example, Chap. 4 investigates the historic development of complexity management
approaches. And Chap. 5 classifies the approaches, describes their differences and overlaps

© Springer-Verlag GmbH Germany 2017 9
M. Maurer, Complexity Management in Engineering Design — a Primer,
DOI 10.1007/978-3-662-53448-9_3


http://dx.doi.org/10.1007/978-3-662-53448-9_3
http://dx.doi.org/10.1007/978-3-662-53448-9_4
http://dx.doi.org/10.1007/978-3-662-53448-9_5

10 3 Introducing Complexity in Engineering

and links important contributors. While in Sect. 3.2 the definition of structural complexity
is provided, Sect. 3.4.4 introduces dependency modeling, which gets applied in a manifold
of approaches, methods and tools aiming at the management of this kind of complexity.

3.1 Composition of Complex Systems

When talking about engineering examples of complexity, often the development of the
Airbus A380 gets mentioned. Especially in Europe this project has been in public aware-
ness for a long period of time.

Without any doubt, significant technological challenges had to be met for planning and
realizing the largest passenger airplane in the history of aviation. This challenge
represented a new development, as it does not happen very often. Most development
projects can be classified as change or adaptation developments, as they are largely
based upon existing products. Here, representatively examples of new technical develop-
ment challenges could be the integration of multiple new technical systems or the air
conditioning for a large number of people. And as the integration of technical (sub)systems
implies many interdependencies, small changes to one partial system can result in
far-reaching, sometimes unpredictable and undesired consequences.

When mentioning complexity of the A380 development, first thoughts go to the
technical product and its product complexity. And a technical product with such a huge
scope definitely comprises much of this type of complexity. However, product complexity
did not pose the only challenge in the A380 development: realizing the product required an
adequate organization, e.g. with distributed development teams at several locations. The
project size and the fact that it has been a new development resulted in a large organization
size—and this organization formed a structure with numerous interdependencies, tremen-
dous information flows and high dynamics.

The organization executes processes, e.g. the integration of a large number of customer
requirements into the product. Since customer acquisition was of major importance for the
new product, even in late stages of the development adaptations were still being conducted.
And such integration of requirement-driven adaptations caused changes to the technical
system and partly resulted in unforeseen impact (change propagation) because of the
numerous interdependencies in the system. This impact resulted in laborious and costly
rework, which also resulted in severe project delays.

Besides product-, organization- and process related complexity, another highly relevant
source of complexity for the project was the embedding of the system into the environment
it was designed to operate in. For example, passenger boarding processes have never before
been designed for the large passenger capacity of an A380. Thus, procedures but also
technical support systems (e.g. passenger bridges) had to be rethought and redesigned. And
all these auxiliary processes and products have to be embedded into the airport system as a
whole. A large number of interdependencies exist between the subsystems, which form the



3.1 Composition of Complex Systems 11

Complex product

 Aerodynamics, position
control

» Safety instructions

* Passenger comfort

Complex organization
* Distributed development

team —_—
« Several production plants Wiring in an Airbus A380*

Complex embedding

* Passenger boarding

* Baggage and cargo v ey
handling _ AIR

* Emergency cases | oo A=

Complex process

* Integration of customer
requirements at late | __,
process stages Passenger bridges connected to an Airbus A380**

Fig. 3.1 Airbus A380 as a complex system, *Vitaly V. Kuzmin (http://vitalykuzmin.net/?q=node/
248), CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0), via Wikimedia Commons; **
Hakilon, CC BY 3.0 (http://creativecommons.org/licenses/by/3.0), via Wikimedia Commons

greater airport system and have been impacted by changes required for embedding the
A380 into it.

Figure 3.1 summarizes the mentioned aspects of complexity for the Airbus A380
project. Obviously, it would be easy to identify additional aspects of complexity; but also
this exemplary description allows identifying one major characteristic of complexity: the
large amount of interdependencies between system elements can produce unpredictable
impact to the system (change propagation) when new system elements are implemented or
existing elements or dependencies are adapted. For a person interacting with a system,
complexity appears as a lack of logical match between inputs to and outputs from the
system. Predictions about the system output based on input measures become hardly
predictable, and control and management of such complex systems become challenging.

Another example of a complex system is illustrated in Fig. 3.2. Most people would agree
that city infrastructure represents a complex system. However, the aspects that make the
system complex are not always clear at first glance. In fact, infrastructure is a good example


http://vitalykuzmin.net/?q=node/248
http://vitalykuzmin.net/?q=node/248
http://vitalykuzmin.net/?q=node/248
http://creativecommons.org/licenses/by-sa/3.0
http://creativecommons.org/licenses/by/3.0

12 3 Introducing Complexity in Engineering

Function of individual

traffic

* Transportation of goods
* Passenger transportation
* Rescue operations

Extraordinary effects

* Spontaneous traffic jams

* Accidents and
breakdowns

* Commuter/holiday
traffic

* Mass events

Scope for design

* Design and layout of
roads

* Signage — i

* Traffic light circuit Traffic jam on a motorway**

Fig. 3.2 Transportation as a complex system, *Bayerische Vermessungsverwaltung—http:/www.
geodaten.bayern.de (http://vermessung.bayern.de/open data), CC BY-SA 3.0 (http://creativecommons.
org/licenses/by-sa/3.0), via Wikimedia Commons, **Alexander Blum (www.alexanderblum.de), via
Wikimedia Commons

for a complex system of systems, which comprises for example energy, transportation,
telecommunication and information, water and waste infrastructure systems. Those
sub-systems are interconnected, and for example a failure in the energy system can lead
to tremendous disruptions in the transportation and telecommunication systems.

When thinking about the complex aspects of a transportation system, often major
motorway junctions with their confusing road layout come to mind. Figure 3.2 contains
such a typical photograph. Even if the many interconnected roads cannot be comprehended
in a first impression, this alone does not make the system complex. Roads and their
junctions can be modeled as a structure of nodes and edges. And without further impact
this structure is not characterized by any dynamics. Structural changes would include road
construction (also inducing a low degree of dynamics) but also redirections, which can
quickly change the usage of the structure. And this usage is decisive for the complexity of
the transportation system. While the road structure remains mainly stable, fluctuations of
traffic on individual roads induce high dynamics. Passenger traffic shows fluctuations daily,
weekly as well as seasonally. And extraordinary, predictable effects like major cultural and


http://www.geodaten.bayern.de
http://www.geodaten.bayern.de
http://vermessung.bayern.de/open
http://creativecommons.org/licenses/by-sa/3.0
http://creativecommons.org/licenses/by-sa/3.0
http://www.alexanderblum.de

3.1 Composition of Complex Systems 13

1}
System | Element

[environment)
Relation Dutput

Environment

Input

Element
(environment)

g Element

System border

Fig. 3.3 System elements and interdependencies

sports events superimpose on those regular fluctuations. Unpredictable impact to the
system occurs due to accidents, breakdowns or severe weather, which also burden the
transportation system.

After introducing two real-world examples of complex systems, Fig. 3.3 depicts the
basic composition of a system. It possesses a system border, separating the system itself
from its environment. Inside the borders the system consists of elements, which are
connected by interdependencies (relations). Section 3.4.4 will show that those elements
and relations can be classified into groups by their meanings. Interdependencies also exist
between elements of the system, and elements and systems in the environment outside of
the system borders. The internal and external relations are decisive for the system’s reaction
to changes from the system’s environment, either from external elements or other
connected systems. In the other direction, a system produces changes that reach over the
system border to impact external elements or systems.

This description of a system meets the definition of structural complexity, as introduced
next in Sect. 3.2. And dynamic complexity requires system structures as a functional basis.
Dynamics are not modeled in the generic system depiction of Fig. 3.3—but the
interdependencies, which connect the elements, represent the paths along which dynamic
effects and processes proceed. Knowing about the structure already provides information
about possible dynamic behavior, e.g. because of feedback loops (which can result self-
energizing effects) or bottlenecks (which can be critical because impact propagation gets
channeled) [4]. System dynamics (see Sects. 3.4.3 and 4.3.5) builds upon system
structures, as do many approaches and methods in systems engineering (see Sects. 3.4.2
and 4.3.4)—for example when designing system architectures or managing interfaces.

A system can also contain one or more other systems. In such a case one talks about a
system of systems. In fact, both systems described above represent a system of systems. For
example, the electrical system and the turbines form systems located within the entire
system of the Airbus A380. Similarly, the roads and the guidance system (traffic lights,
signs etc.) form their own systems within the general transportation system. For a compre-
hensive introduction to systems of systems, see e.g. [5].


http://dx.doi.org/10.1007/978-3-662-53448-9_4#Sec19
http://dx.doi.org/10.1007/978-3-662-53448-9_4#Sec18

14 3 Introducing Complexity in Engineering

The network built from elements and relations in Fig. 3.3 only indicates one static state
of a system. As mentioned above, system dynamics models dynamic behavior based on
such structures using additional modeling elements like stocks, flows and time delays. In
addition, dynamic system complexity can emerge from changes to the existence of system
elements and relations. In product portfolios for example, new components and
possibilities of combining those components into new product variants can occur over
time. And other components may disappear from the portfolio, e.g. because suppliers
stopped production. In organizational structures the dynamic changes to system elements
and relations can occur even more frequently and quickly than in technical systems. The
collaboration and communication between employees in a company is constantly evolving,
so that official organization structures often differ significantly from de facto structures.
This has to be kept in mind when analyzing complex system structures.

Obviously the more relations and elements a system comprises of, the more
non-transparent it becomes. Non-transparency in this context means that it is not clear
how the system inputs are correlated with its outputs. The outputs cannot be predicted
simply based on the inputs.

When applied to engineering tasks, the definition of the term complexity is often not very
precise, compared to the way mathematical definitions are (see Sect. 3.2). In daily business,
complex processes, products and organizations represent challenges in engineering. And
even mixtures of these complexity domains meet, for example, in complex projects.

While most challenges in those engineering domains do not meet mathematical com-
plexity definitions, people who have to interact with the systems experience that they do not
understand the outcome based on their input to the system—and they call this as complexity.
An example could be a situation where engineers are confronted with a product develop-
ment process that led to extensive project time overruns when applied. As a countermeasure
to those overruns, more resources could have been assigned to the process execution,
expecting a reduction in process run time as consequence. If, however, the process time
then would not decrease as expected (or would even increase) the engineers would experi-
ence a mismatch between system input and output, and would constitute a lack of system
understanding. This exemplary development process appears to be complex to the person
who is responsible for managing it. In other words, in the engineering context a system is
often called complex if one cannot predict the system’s output based on the given input.

The basis of complex engineering systems is the quantity of system elements and
interdependencies—and on this basis, impact propagation and dynamic behavior takes
place. The system elements can be classified into groups of similar objects often called
system domains. Such domains can for example be process steps, product elements and
organizational units. Interdependencies exist between elements within one domain as well
as between elements of different domains. While identification and classification of system
elements can help to improve system understanding, it is important not to reduce complex
challenges to isolated system perspectives (see also Sect. 4.1.2 for the historical back-
ground on reductionism and Sect. 3.3 for typical failures when interacting with complex
systems). Complexity results from the interaction in networks of elements.



3.1 Composition of Complex Systems 15

In most modeling approaches, system elements receive close examination while the
origin of system dependencies often gets neglected. However, many different dependency
types appear in a complex system and it is important to differentiate between them for
proper interpretation [4].

Distinction Between Complicated and Complex Systems

Especially in descriptions of industrial use cases, the terms complicated and complex often
appear in the same context and are even used as synonyms. However, both terms represent
different kinds of challenges and require specific methods for solving them. Incorrect
characterization of a challenge and the subsequent mis-application of methods can be
counterproductive. For this reason a more detailed consideration of complicatedness and
complexity is helpful.

A typical example for a complicated challenge is searching for a needle in a haystack.
This definitely represents a difficult, laborious task, but reaching the solution is only a
question of effort. The more time and the more people work on the task, the higher the
probability of a faster solution. The task can be parallelized so that several people search
smaller haystacks. In general formulation that means that a complicated problem can be
divided into smaller and less complicated problems, which can be processed independently.
Maurer (according to Ehrlenspiel) mentions that the individual capability is linked to the
complicatedness of a task stating that “the term complicated system describes the subjec-
tive difficulty in interaction with technical systems that often depends on one’s personal
abilities”. Ehrlenspiel indicates that “identical situations can be complicated for one person,
but not for another” [4] according to [6].

In contrast to the “needle in haystack problem”, the forecasting of world climate
represents a complex challenge. Such challenges are characterized by high dynamics and
are difficult to subdivide into smaller, more manageable tasks. The reason therefore is that
the elements of the complex system are highly interrelated. Development of water
temperatures in the ocean is related to cloud formation, air movement, rainfall etc. Inade-
quate simplification by extracting specific aspects can easily lead to wrong system models,
as important system impacts and outputs get neglected. In contrary, as high as the haystack
hiding the needle may be, the system elements do not possess any relevant
interdependencies—and therefore the system can be subdivided.

Thus, the large amount of elements interconnected by relations is a significant charac-
teristic of a complex system, where the emphasis lies more on the relations than elements. It
is not purely the number of product components, process steps or organizational roles that
cause complex system behavior, but instead it is their degree of mutual connectivity. A
dense interconnectivity of elements makes a system non-transparent to a person interacting
with it and results in momentum of that system. And though as high as a hypothetical
haystack may be, the system is transparent as the task, inputs and outputs are easy to
understand, and system reactions to user interactions are predictable.

Complicated and complex challenges call for application of different approaches and
methods. One approach towards complicated problems has already been mentioned:



16 3 Introducing Complexity in Engineering

increasing applied resources. As a complicated challenge can be subdivided into smaller,
independent work packages, more resources can accelerate finding a solution.

Interestingly, the same approach can cause additional problems when applied to a
complex challenge. In general, it is a good idea to use more resources; in the use case of
the world climate, different people are assigned to model and analyze water temperatures,
wind, cloud formation etc. But because all these aspects of the complex challenge are
interrelated, the pieces of work are interrelated too, resulting in the new creation of
organizational complexity. The engineering discipline of systems engineering tackles
such challenges, where a complex technical problem has to be considered as a more
holistic challenge with additional process and organizational complexity as the conse-
quence of work distribution.

For the example of the world climate one could argue that simplified forecasting models
exist. Furthermore, regional subsystems are created for forecasting on country or city basis.
That would mean that reductionism can be successfully applied. In fact, reducing the
modeling of a complex system goes along with the risk of neglecting relevant aspects—
which then can result in wrong analysis and prognosis results. The variation between
different climate predictions in practice and the deviation between assumptions of former
models and experienced climate in reality gives good evidence of this effect.

The examples mentioned above show the importance of correct classification of
problems as being complicated or complex, because incorrect classification can lead to
wrong measures being taken. In fact, it is a common mistake to counteract the appearance
of'a complex problem with increased resources—without preparing to manage the increase
in process and organizational complexity. Figure 3.4 summarizes the general distinctions

A pile of hay roles, now find the needle...* Climate map of the world
Complicatedness Complexity
* Problem subjectively difficult + System irreducible
* Solution reachable by ,hard work" * Unforeseen developments
* Characteristic of system perception * System characteristic

Fig. 3.4 Complex versus complicated systems, *Scott Bauer, U.S. Department of Agriculture, via
Wikimedia Commons



3.2 Complexity Definitions 17

between complicatedness and complexity. And the following sections provide definitions
and layout types as well as approaches towards the management of complexity.

3.2  Complexity Definitions

Even though the term “complex” has become common word for describing many
situations, its correct meaning is not easy to describe due to many aspects and different
perspectives. However, if complexity shall be managed it is important to understand its
origins, relevance and impacts.

The term complex originates from the Latin word stems com which means together, and
plectere which means weave. Thus the combination complex can be translated as interwo-
ven. Ashby states that “[. . .] there are complex systems that just do not allow the varying of
only one factor at a time—they are so dynamic and interconnected that the alteration of one
factor immediately acts as cause to evoke alterations in others, perhaps in a great many
others” [7]. This description of complexity already contains the most relevant aspect:
because of interconnections between elements in a dynamically behaving system, simple
one-to-one effect chains rarely exist. And so changes to one element can result in
avalanche-like impacts.

Scientific fields dealing with complexity have different perspectives, which results in a
variety of definitions of complexity. Even within the engineering field not all aspects of
complexity are commonly shared and standardized definitions that serve all fields of
application do not exist [8].

The perhaps most precise definitions can be found in mathematics and computer
science, because they permit the deduction of exact complexity measures. With these
measures two systems can be directly compared in terms of their complexity and thresholds
that trigger specific actions can be set. The required computing time or the minimal size of
software code (Kolmogorov complexity) can be used as complexity measure, if the
problem can be mathematically formulated [9]. Unfortunately, this kind of complexity
definition and measure is not applicable to systems, which cannot be fully modeled by
mathematical means. For typical complex engineering systems this is the case.

Mainzer categorizes different types of complexity from a mathematical and computer
science perspective [1]. He aggregates the determination of complexity by code size or
computation time as computable complexity. Besides this, notions of information com-
plexity and dynamic complexity exist (see Fig. 3.5).

Information complexity (entropy) comprises the phenomena of noise, describing the
fact that parameters oscillate with no clear timely behavior. Depending on the frequency,
those oscillating effects are named white, pink, red and gray noise. Noise effects are often
illustrated by the sound that results from electrical oscillations in an amplifier. However, the
same effect occurs in many other situations and systems, e.g. with stock prizes or car traffic



18 3 Introducing Complexity in Engineering

Computing

Computable time
complexity Software code

size

White noise

Complexity Pink noise

Information
complexity

Red noise

Grey noise

Coincidence

Chaos
attractor

Dynamic Quasi periodic
complexity attractor

Periodic
attractor

Fixpoint
attractor

Fig. 3.5 Classification of complexity from a mathematical/computer science perspective [1]

on highways [10]. Mainzer explains: “1/f'b spectra [describing the cure of a periodic signal]
represent the pattern for distinguishing the different forms of signal noise in the world. [. . .]
Signals of time series also provide hints towards self-organizing complex structures [. . .]
[and] secular trends [...]. Time series analyses with 1/f b spectra are independent from
specific systems and [...] can be applied to all kinds of dynamic systems” [1]. A well-
grounded introduction to noise effects and their relevance for complexity is given by [10].

Degrees of dynamic complexity can be identified depending on the attractor, which is
applicable for a complex system. An attractor is a state a dynamic system gets “attracted to”
in the long run. A fixed-point attractor represents a state of equilibrium that remains
unchanged. Non-linear complex systems can also reach periodically changing equilibrium
states (periodic and quasi-periodic attractors) as well as turbulent or even random states
(chaos attractors, coincidence) [1].

After introducing his classification of complexity types, Mainzer highlights that this
should not be seen as an approach of reductionism (see also Sect. 3.2). “The structures of
complex systems cannot be reduced to their single elements, but can only be explained by
their collective interaction” [1]. This picks up Aristotle’s famous statement that “whole is
greater than the part” (Aristotle, cf. Euclid, Elements, Book I, Common notion 5).



3.2 Complexity Definitions 19

Herbert A. Simon, a Nobel Prize laureate in 1978, defines a complex system as “one
made up of a large number of parts that interact in a nonsimple way. In such systems, the
whole is more than the sum of the parts, not in an ultimate, metaphysical sense, but in the
important pragmatic sense that, given the properties of the parts and the laws of their
interaction, it is not a trivial matter to infer the properties of the whole” [11]. Simon
describes the significance of a hierarchical system structure for complex systems, saying
that a hierarchic system is “a system that is composed of interrelated subsystems, each of
the latter being, in turn, hierarchic in structure until we reach some lowest level of
elementary subsystem”.

Simon’s parable of the two watchmakers became a famous and often cited exemplifica-
tion for the benefits of hierarchical structures for the evolution of complex systems. In this
parable, both watchmakers build complex mechanical watches composing of 1000 parts
each. One watchmaker (Hora) architects his watches based on 111 subassemblies on three
levels, with each subassembly consisting of ten parts. On the lowest level the 1000 basic
parts are arranged in 100 assemblies. Those 100 assemblies are further aggregated into ten
higher-level assemblies, which then form the entire watch. The other watchmaker
(Tempus) builds the whole product as one single assembly of 1000 parts. Now it is assumed
that every time a watchmaker has to interrupt his work (e.g. for taking a phone call) the
currently unfinished assembly falls apart and has to be reassembled. With a simple
quantitative analysis, Simon shows that Tempus loses much more work when being
interrupted and that for him the probability for successfully finishing the assembly of a
watch is ridiculously low compared to Hora [11].

Simon transfers the findings from his parable into the evolution of complex systems
stating that “the time required for the evolution of a complex form from simple elements
depends critically on the numbers and distribution of potential intermediate stable forms”.
So, “complex systems will evolve from simple systems much more rapidly if there are
stable intermediate forms than if there are not. The resulting complex form in the former
case will be hierarchic” [11].

Concerning the dynamics of complex systems, Simon explains that “hierarchies have a
property, near-decomposability, that greatly simplifies their behavior”. Near-
decomposability means that “interactions among the subsystems are weak, but not negligi-
ble” and “intra-component linkages are generally stronger than inter-component linkages.
This fact has the effect of separating the high-frequency dynamics of a hierarchy—
involving the internal structure of the components—from the low-frequency dynamics—
involving interaction among components™ [11].

Additionally, in terms of comprehending complex systems, Simon states that “empiri-
cally, a large proportion of the complex systems we observe in nature exhibit hierarchic
structure.” Furthermore, “if there are important systems in the world that are complex
without being hierarchic, they may to a considerable extent escape our observation and our
understanding” [11].

A basic classification of engineering complexity is shown in Fig. 3.6. Market complex-
ity can be seen as a major source of complex challenges, because market conditions and
adaptations can hardly be influenced by enterprises. Market complexity can result for



20 3 Introducing Complexity in Engineering

Vel oK

Everything
is linked

Fig. 3.6 Complexity fields in engineering, NASA/Frank Michaux, via Wikimedia Commons

example from a large variety of customer requirements that have to be fulfilled. In addition,
laws, regulations or regional and linguistic peculiarities can create boundary conditions that
add to the market complexity. From a company’s point of view market complexity is also
called external complexity, because of its origin outside of the company’s direct influence.

The external complexity (as seen from the company’s perspective) is faced by an
internal complexity that results from the company’s product portfolio. This includes
combination possibilities among the variety of components, which lead to product
specifications that shall fulfill the external complexity. Implementation of modular
concepts, building block design, platforms and interface design represent examples for
challenges in the field of product complexity.

The complexity of products and product portfolios of companies is often directly linked
to the existence of process complexity. For example, the increase of product functions and
components can create the need for more development process steps. And those steps are
interrelated and need to be coordinated. Consequently, the company’s process flowchart
can become more complex due to increasing product complexity. Further constraints like
decreasing development time, international product portfolios or distributed development
approaches can increase process complexity even more.

Organizational complexity is also interlinked with the complexity types mentioned
above. Managing complex products and product portfolios and executing complex pro-
cesses requires adequate organizations. “Conway’s law” [12] described this fact almost
50 years ago: He stated that when organizations design systems, those designs are similar to
the organization’s communication structures. This statement links product structures with
organizational structures.



3.2 Complexity Definitions 21

With the knowledge about Conway’s law it is interesting to investigate the appearance
of structures in organizations and products. Whereas functional and matrix-oriented
structures have become popular over the last decades, hierarchical structures are still
common in many organizations. On the other side, many products became highly
networked structures that do not follow a hierarchical approach. Therefore organizational
design is an ongoing challenge in modern product development.

It is important to consider the interrelation between the four aforementioned complexity
classifications for determining the kind of a specific complex challenge. The origin of
complexity and its appearance or perception are not necessarily determined in the same
field. For example, an enterprise can possess a significant amount of complexity based on
its comprehensive product portfolio. However, the originating cause of this complexity can
sometimes be found in the markets the enterprise delivers to. It is important to identify the
origin of the complexity in order to assess its value. That means a complex product
portfolio does not possess any value in itself, but it can be the reason for high amounts
of effort for the enterprise. In the context of an existent market complexity however,
product complexity can be valuable as the product portfolio allows the delivery of the
right products to this broad and diversified market.

In all four fields described above complexity results when a large number of system
elements are mutually interlinked. That means it is not the pure number of product
components, process steps or organizational roles, but instead their mutual dependencies
that decide their complex behavior. Such systems become non-transparent for people
interacting with them. A good example for a non-complex system with a huge amount of
elements could be the database storing an enterprise’s customers: even if many addresses
might be included, this system only contains a few and obvious interdependencies (e.g. ZIP
codes and cities). And if one address gets updated, deleted or added this does not have any
impact to other system elements. In contrast to that, the database storing the requirements
for a technical product of the same enterprise can be complex, as requirements possess
many mutual interdependencies. Consequently, changes to one requirement can result in
tremendous impact to many others.

In the field of product design and development, a complexity definition according to
cybernetics is helpful [13]. In cybernetics simple, complicated and complex problems are
distinguished. In contrast to simple problems, complicated problems are characterized by
many highly interconnected parameters. Complex problems, in addition, possess high
dynamics within the system. Ashby highlights that analysis methods designed for dealing
with simple systems do not work for complex systems [7]. This can also be said for
applying methods to complicated and complex systems, as it has been illustrated in the
previous Sect. 3.1. Obviously, rules for classifying systems as simple, complicated or
complex are not as explicit as pure mathematical complexity definitions. But for systems
which cannot be algorithmically modeled, this represents a useful initial guideline.

Muses also categorizes complexity into three groups and from a practical perspective.
Complexity I is inherited and exists in almost every system. Consequentially, it is difficult
or even impossible to avoid it. Complexity II is caused by wrong handling and the usage of



22 3 Introducing Complexity in Engineering

Type

Heterogeneity

Amount/
irregularity of
Elements subdividing
/ I Type
Complexity [« Atens

dependencies

Heterogeneity

Dynamics Amount

7/ AN

Type

Amount of
possible
states

Fig. 3.7 Parameters of complexity from a product development perspective

incorrect approaches and therefore can be avoided, when better suited methods and
procedures can be found and successfully applied. In contrast to that, Complexity III
cannot be addressed with presently existing solutions. This type of complexity requires
the creation of new and innovative methods to become manageable [14].

Lindemann defines complexity from a product development point of view [15]. He
mentions the relevant parameters of complex systems to be the number of elements, their
interconnections and resulting interfaces. In addition, he mentions that associated processes
(e.g. design, production or distribution processes) contribute significantly to the resulting
degree of complexity. Finally, Lindemann highlights that it is often important to link and
integrate stakeholders into the system, which means to consider sociotechnical and not only
technical system complexity. This reflects the initial thoughts of cybernetics’ development,
when Wiener saw the necessity to integrate operators of airplanes and air raid defense into
the system modeling. In summary, Lindemann declares complexity to be dependent on the
elements (type and heterogeneity, amount and irregularity of subdivision), the
interdependencies (type, heterogeneity and amount) and the dynamics (type and space of
possible states) [15]. This classification is shown in Fig. 3.7.

Lindemann mentions systems engineering as an approach towards complexity manage-
ment [15]. A basic definition of complexity in this field has been presented by Sheard and
Mostashari and is depicted in Fig. 3.8. Aspects like the size of a system, connectivity and
architecture are similar to Lindemann’s definition of complexity; additionally, in the
systems engineering definition the aspect of environmental complexity is modeled



3.2 Complexity Definitions 23

Systems, Structural =Tk
products, have complexity yotypes
things being
engineered have
created via
have
Development have namic
B > Dy 5 Subtypes
processes complexity
have
contains supports
has .| Socio-political

Environment

complexity

Fig. 3.8 Classification of complexity from a systems engineering perspective (adapted from [16])

explicitly. Three basic complexity types are defined—structural, dynamic and social-
political complexity. While technical systems can have structural and dynamic complexity,
socio-political complexity results from development processes and the environment.

In many engineering applications it can be useful to not only classify complexity by its
type but by its origin. From an enterprise’s point of view the separation of internal and
external complexity can help in solving relevant challenges. Schuh and Schwenk
introduced this perspective, depicted in Fig. 3.9 [18]. Here, internal complexity is under-
stood similarly to Lindemann’s perspective. This internal complexity emerges from the
number of elements, interconnections and resulting interfaces. In addition, internal com-
plexity can comprise process and organizational complexity resulting from an enterprise’s
effort of developing, maintaining and offering products or product portfolios. Thus,
internal complexity results from a company’s market offer.

External complexity emerges from the market requirements, e.g. the number and
combination of functions requested by customers. This market-induced complexity can
hardly be influenced by an enterprise and therefore represents an external source of
complexity. Variant management is the challenge of matching the complexity of external
market requirements with the complexity of the internal product offer. While the external
complexity should be as large as possible (which means to fulfill a large variety of customer
requirements), this needs to be realized with as little internal complexity as possible (which
means to keep the internal efforts low) [18].

External complexity in the scenario of variant management contains a specific charac-
teristic worth mentioning: this is one type of complexity that shall be increased, while in
many other cases the objective is to decrease complexity. This external complexity can be



24 3 Introducing Complexity in Engineering

- External complexity -

Product variants

Internal complexity

Fig. 3.9 The challenge of variant management at the interface of internal and external complexity
(adapted from [17])

characterized as useful, compared to other useless types of complexity. The classification of
useful and useless complexity is explained in detail in the context of a complexity
management framework in Sect. 6.2.

33 Impact of Complexity

One basic part of a complex system is the large number of elements (variables) which are
interconnected. While large is a vague term it is not possible to provide an exact number of
elements that make a system complex. For example, scientists working with “systems of
systems” like a city’s infrastructure system would put the threshold of element numbers
very high. But also systems with smaller numbers of elements can be in line with
definitions of complexity.

Sheard summarizes complexity as follows: “Complexity is the inability to predict the
behavior of a system due to large numbers of constituent parts within the system and dense
relationships among them” [19]. That means that it is not a distinct threshold of system
elements and interconnections that makes a system complex, but is instead the impact to
people that results in a lack of understanding.

An impressive example is given by Browning in the context of Design Structure
Matrices. These matrices represent matrix-based notations of elements and their
interdependencies in a compact format. Browning mentions that even a number as low
as ten elements can be difficult to oversee and manage [20]. The reason is that
interdependencies between even a few elements can create high numbers of paths and


http://dx.doi.org/10.1007/978-3-662-53448-9_6#Sec2

3.3 Impact of Complexity 25

loops in the system. These can cause unexpected impact (side effects), because dependency
chains become long, mutually overlap or build feedback loops. Long dependency chains
are hard to identify, and overlapping dependency chains and feedback loops can aggregate
to intensify impact or extinguish an effect. Especially feedback loops can cause unstable
system behavior and the resulting effects can hardly be evaluated without high computa-
tional effort. System dynamics is an approach specifically dealing with feedback loops,
which will be introduced in Sect. 3.4.3 in the context of engineering application and in
Sect. 4.3.5 from a historic perspective.

Dynamics is another important characteristic of complex systems, which is mentioned
in all different definitions of the term. However, the precise specification given from
mathematics (see Sect. 3.2 and Fig. 3.5) is not helpful for application to engineering
challenges, which cannot be fully algorithmically modeled. Nevertheless, the impact of
dynamics to complex systems can be described. Norbert Wiener, the pioneer of cybernet-
ics, was the first to model human operators and technical devices in an integrated model,
which was helpful for solving the associated challenge; but such systems turned out to
be complex control problems to solve. The development of cybernetics is described in Sect.
43.2.

As long as no interaction happens either between the environment and the system or
between elements within the system, even a high interconnectivity between multitudes of
system elements does not result in effects of complexity. Interaction with the system means
that information is transferred via an interconnection and this action can initiate further
interactions along connected elements and dependencies. If, however, no interaction
happens, the interdependencies are inactive and therefore irrelevant. In other words, effects
of complexity are associated with the application of a system.

An example can highlight the significance of this statement: Most people would agree
that today’s smartphones represent complex systems. People think so, as they might think
about the many (interconnected) electronic components or the many software applications.
But if one were to use a smartphone to participate in a mobile phone throwing competition
(that really exists: http://www.mobilephonethrowing.fi/), no complexity is associated with
the phone. In fact, it would make no difference if one uses the phone or a brick (of same size
and weight) for the competition. The absence of complexity in this (rather unusual) use
case results from the fact that the application does not trigger any informational impact to
the technical system. And consequentially the system elements and interdependencies are
irrelevant for this case. If, however, a developer has to apply a technical update to a
smartphone, the effects of complexity can easily occur. The technical measure causes
impact to the system, which can spread via interdependencies to many other parts of the
system. In the worst case unpredicted effects can occur.

It needs to be mentioned that complex systems do not need external input for a dynamic
behavior to initiate. Dynamics can emerge in the system itself and either the specification of
elements/variables can change or their interdependencies. A typical example for an internal
source is a failure of single element, which can result in tremendous consequences. These
consequences mean that the system produces visible output that passes the system


http://dx.doi.org/10.1007/978-3-662-53448-9_4#Sec19
http://dx.doi.org/10.1007/978-3-662-53448-9_4#Sec8
http://www.mobilephonethrowing.fi

26 3 Introducing Complexity in Engineering

boundary. Thus, the system is open. Closed systems do not interact with the environment;
by definition they are isolated from it and every impact remains within the system.
Bertalanffy classified systems according to their interaction with the environment
[21]. His General Systems Theory is more closely explained in Sect. 4.2.

The large number of elements and interdependencies make a complex system
non-transparent and incomprehensible to people, who can develop a fear of interacting
with such a system [3, 22]. Obviously, this can significantly impact decision processes and
lead to failures when dealing with such systems [3]. Dorner mentions four causes for
failures when interacting with complex systems: Slowness of thinking, protection of one’s
own competence, minimal recording of information and fixation of attention to the actual
problem only. The resulting failures can, for example, be observed and experienced in
business games like the “Beer game” (see Sect. 4.3.5)—which illustrates immediate action,
ineligible system or process reduction/abstraction or neglecting side effects resulting from
insufficient problem understanding. Other failures have a psychological basis, e.g. endless
planning without acting, solving known problems or ad hoc reactions.

Considering the possible impacts of complexity like the inability to make decisions or
wrong decision-making, this points out its tremendous relevance. While uncontrolled
complexity poses high risks to organizations, societies and enterprises, successful manage-
ment of complexity also implies significant opportunities. For an enterprise context,
Maurer mentions a lack of decision-making ability, frequent development crises and
product changes as well as long development process duration as consequences resulting
from complexity [23]. In addition, he describes that the effective managing of complexity
can provide beneficial opportunities like increased competitiveness, successful control of
large variant and product spectra and possibilities of increased product customization. And
as managing complex systems is more challenging than dealing with simple systems,
successfully managed complex systems imply a significant hurdle for copycat products
and competitors entering the market.

Vester describes the risks of complexity for human societies. He states that due to an
increasingly complex world (mentioning unemployment, dramatic environmental changes,
stock market crashes and military conflicts), even well-planned interventions can lead to
fatal consequences because of feedback loops and time delays [24].

Complexity is an integral part of many systems and seems to be required for realizing
higher states of development. Complexity can be found in biological systems, and impres-
sive functionalities such as that which is delivered by the human brain seem to be not
achievable with simple system design [22, 25]. Thus, complexity can be naturally required
for a system to work, and an indiscriminate strategy of complexity avoidance can be
harmful. This does not imply that all complexity is necessary and helpful. In fact, it is
important to distinguish useful and useless complexity and treat both kinds accordingly.
This will be further explained in Sect. 6.2.

In 2012 the study “Mastering Complexity” from Camelot Management Consults tackled
the relevance of complexity for the economy [26]. Eighty-three percent of the top managers
surveyed (more than 150 participated in the study) mentioned that the degree of complexity
in their enterprises was too high. Eighty-nine percent said that complexity increased within


http://dx.doi.org/10.1007/978-3-662-53448-9_4#Sec5
http://dx.doi.org/10.1007/978-3-662-53448-9_4#Sec19
http://dx.doi.org/10.1007/978-3-662-53448-9_6#Sec2

3.4 Established Complexity Management in Engineering 27

the last 3 years and 76% said they expect complexity to further increase in the near future.
The study mentions that enterprises could raise their EBIT by 3-5% if complexity
management is successfully implemented. While the Camelot survey included top
managers from a variety of fields, the industrial sector alone has seen an increasing
relevance of complexity and its management for the future. Fifty-nine percent of the
managers expect increasing sales figures for offers of complete system solutions.

3.4  Established Complexity Management in Engineering

Offering a large product portfolio to the market often implies complexity. Therefore, it is
interesting to have a closer look at one of the most famous companies with an almost
inconceivably large spectrum of products—Amazon.com. The company started out as an
online book store, and then became the largest retailer in the USA. If one only considers the
number of products, the ability to economically offer such a large product portfolio would
seem to be highly complex.

While the success of Amazon is highly impressive, the product portfolio (considered as
a system) does not possess many interdependencies. Changes to one product do not
influence other products, the business processes or the organization. And new product
requests from customers (the market) can be served with additional product offers that do
not impact the enterprise’s processes or organization.

The company Spreadshirt became popular by their offer of customized shirts with short
delivery time. This business of minimal order size can be realized, because product
development (creating the customized shirt) is not burdened by significant
interdependencies. The same business model with for example customized combustion
engines would most likely fail, as each customization would impact many other parts of the
product as well as system elements in the process (production, testing) and organizational
field. The challenge of managing system interdependencies explains why product custom-
ization approaches so far focus on simple systems only.

Mass customization, as a blend of the terms mass production and customization, has
obtained much interest over the last 20 years. However, offered products like NikelD
(www.nike.com/NIKEiD) or Reebok Custom (www.reebok.com/us/customize) only allow
selecting from a predefined set of color options or decorations. Those customization tools
represent configuration approaches and do not fulfill the mass customization idea of
“producing goods and services to meet individual customers’ needs with near mass
production efficiency” [27]. Product customization approaches are applied on complicated
but not complex systems.

For tackling complex problems in the engineering context, four main approaches have
become established. These techniques are partly based on the same groundwork and mutual
influence. The historic context will be explained in Chap. 4, indicating the steps from
system awareness to modern complexity management. In the following sections these
approaches shall be briefly introduced in terms of objective, functional scope and applica-
tion context.


http://amazon.com
http://www.nike.com/NIKEiD
http://www.reebok.com/us/customize
http://dx.doi.org/10.1007/978-3-662-53448-9_4

28 3 Introducing Complexity in Engineering

One fundamental approach of complexity management is not introduced in a separate
section, as it comprises part of most other techniques—systematic visualization. System
elements and their interdependencies contribute significantly to a system’s complexity. If
those system structures can be externalized, users can more easily understand and simulate
system behavior. In engineering many visualization techniques get applied, and depending
on the specific field some specifications have become quasi-standards, e.g. event-driven
process chains or SysML models [28]. However, Sect. 3.4.4 introduces dependency
modeling, which is based in large part on visualization techniques.

3.4.1 Operations Research

Operations research is often misunderstood as a collection of mathematical methods. While
it is the application of many of these methods, it cannot be reduced to a purely computa-
tional approach. Quantitative models and methods are used to help find an optimal decision
for complex challenges. Human decisions and non-quantifiable arguments are not consid-
ered in this part of the approach, but best integrated in the subsequent analytical part of the
approach. Thus, operations research is not a straightforward solution-finding process, but
provides support for optimal decision-finding.

Operations research is characterized by the cooperation of disciplines like mathematics,
economics and computer science, and can be subdivided into sub-branches. Linear optimi-
zation, transport optimization, combined optimization and dynamic optimization are a
few prominent ones. Also game theory often gets applied in operations research (see
Sect. 4.3.6) [29, 30]. In general, deterministic and stochastic approaches are distinguished
in operations research.

The main objective of operations research is to describe decision problems by optimi-
zation and simulation models, and to develop an algorithm that can be applied for solving
the problem. Problems are classified by criteria like degree of information, (types of) target
functions, and constraints and solvability. Therefore, decision, optimization and simulation
models get applied [30]. Operations research focuses more on the system states than on the
system structure and often applies experiments.

Based on the definition and objective of operations research, six phases of application
exist. These phases do not represent isolated, straightforward process steps, but are highly
interlocked with each other or can be worked on in parallel if required.

— Formulate the problem

— Develop a mathematical model

— Deduce a solution based on the model
— Validate the model and solution

— Supervise and adapt the solution

— Implement the solution


http://dx.doi.org/10.1007/978-3-662-53448-9_4#Sec20

34 Established Complexity Management in Engineering 29

‘]ﬁag deblrg
Leipzig

Geten
Dusseldor *aceq)
aln

CZECH
REPUBLIC

< FRANCE B A
%@ W o 50 100km
SWITZ. L1EcH Q (] 100 mi
The knapsack problem* The traveling salesman problem

Fig.3.10 Knapsack problem and traveling salesman problem, two complex challenges in operations
research, *Dake, CC BY 2.5 (http://creativecommons.org/licenses/by/2.5), via Wikimedia Commons

A popular example for the application of operations research on a complex challenge is
the knapsack problem [31]. The knapsack problem is based on the theoretical use case that
one has to fill a backpack with objects of maximum value. The available objects have
different sizes and values while the backpack provides a limited amount of storage space.
While the example is hypothetical, this challenge appears in a large variety of real-world
problems. For example loading trucks with payloads or organizing the workload of
computing centers can be modeled by this abstract problem. The knapsack problem
represents a challenge of computational complexity and can be mathematically described
and solved—e.g. by dynamic programming approaches.

Another popular problem that can be solved by operations research methods is the
traveling salesman problem. Here when given a set of predefined places, the target is to find
the shortest path visiting each place exactly once and returning back to the starting point.
Despite the fact that the situation and the constraints can be clearly described mathemati-
cally, it still represents a complex computational problem, as defined from a mathematical
perspective (computable complexity, see Fig. 3.5). The problem can be solved using
heuristic and approximation algorithms [32]. Figure 3.10 (right side) shows the shortest
path to visit the 15 largest cities of Germany in a closed loop. This path represents one out
0f 43,589,145,600 possibilities.

3.4.2 Systems Engineering
Products and modern production facilities are often highly complex, large-scale projects.

They contain an unmanageable combination of technical systems and impact factors:
mechanics, electrics, energy, control systems, hardware and software, humans and


http://creativecommons.org/licenses/by/2.5

30 3 Introducing Complexity in Engineering

machines, logistics and communication, customers and suppliers. More and more product
requirements are accompanied by increasingly faster development processes and strict
constraints concerning budget, quality and time to market. With these conditions in
mind, it becomes obvious that the development of for example a passenger airplane, an
innovative luxury car or any other large system represents a huge task, which can only be
solved by interdisciplinary teams. The required knowledge for such projects is extremely
manifold, multidisciplinary and extensive. While it is impossible to concentrate this
knowledge in only one or a few people, there is the necessity of project planning and
decision-making, which requires well-informed people with a comprehensive project
overview. The need for such system specialists increased with the beginning of the age
of industrialization and the associated technological advances.

The systems engineering approach was developed to meet these upcoming needs for
system specialists. Initial applications were conducted after the Second World War. The
most famous use case became the application of systems engineering for Project Apollo,
the US aerospace program in the early 1970s.

The original term systems engineering can be traced back to Bell Laboratories in the
United States in 1940, where it became mentioned in the context of weapons system
development. Related and partly integrated approaches and terms are e.g. systems archi-
tecture, systems engineering management and systems design. Those terms are partly used
as synonyms, and make a unified definition of systems engineering rather challenging. The
common denominator of all these approaches is that for solving a complex problem, the
problem gets disassembled into smaller parts and reintegrated later into a final
solution [33].

In German-speaking countries different translations of systems engineering are in use,
which can be misleading. While the English term systems engineering is more commonly
used (e.g. the German Chapter of INCOSE (International Council of Systems Engineering)
is named “Gesellschaft fiir Systems Engineering”) [34], terms like Systemtechnik (German
for system technology) and Technische Systemanalyse (German for technical system
analysis) are also applied. While Technische Systemanalyse focuses on technical system
design, Systemtechnik typically includes associated procedures like project management.
Then terms like system management or system control are also applied [35]. Saynisch
classifies systems into three categories: material or object systems, process-related systems
and target systems. He sees systems engineering as planning and designing technical
(object) systems and representing the developmental and creative part, which is
complemented by project management as the controlling part [35]. This differentiation
between systems engineering and project management represents a modern view, while
older definitions saw project management being a building block within the systems
engineering approach, e.g. [36].

Systems engineering can be applied to a technical product or a superior man-machine-
system, including the application of a product. According to Bluma, systems engineering is
the integration of different components into a technical system. The components are
considered by their function for the entire system [37]. Bluma mentions that the system



3.4 Established Complexity Management in Engineering 31

is not constrained to the technical components only, but can also integrate non-technical
elements of system organization and system use into the analysis. This allows treating each
engineering problem with a systems engineering approach. This approach integrates
widely fragmented sub-disciplines into one engineering approach and formed the concept
of a systems engineer. Several methods and models of systems engineering originate from
cybernetics, e.g. black-box principles, block diagrams and statistical system analyses
[37]. The holistic approach of systems engineering is well-suited for being applied in
solving complex problems. Systems engineering tools make use of qualitative as well as
quantitative methods.

3.4.3 System Dynamics

Many questions of society, corporations and organization are complex challenges, as the
system behavior is often nonlinear—cause and effects cannot be fully understood and
system impacts can be unpredictable. For such challenges often the approach of system
dynamics is applied. System dynamics is a mathematical approach that models complex
systems using flows between system elements that can form feedback loops and stocks
[38]. Developed in the 1950s by Jay Forrester, it became a powerful computer-supported
modeling approach that is widely used for complex problems. The most famous application
is the modeling of exponential growth for the world, described in the publication The
Limits to Growth [39].

In system dynamics, four basic concepts can be differentiated: The core is one concept
which describes information feedback, meaning that interactions between system
components can be even more important than the components themselves. The system
behavior is mainly resulting from feedback loops between its elements. Feedback loops can
be classified into positive and negative feedback. They possess a specific structure and
impact can occur with delay [40—42]. Automated decision-making is the second concept,
which is based on a military approach of strategic, long-term decisions including their
mathematical modeling [42]. Computer simulations enable a basic understanding of
complex system behavior and represent the third concept of system dynamics. For exam-
ple, different management approaches or market expectations can be assumed and their
potential consequences can be estimated by computer simulations [38, 42]. The fourth
concept then is the use of digital computers, which is required for conducting simulations
and representations of complex systems [40].

An important part of system dynamics is the modeling of a complex, dynamic system.
Forrester proposed a six-stage modeling process, guiding the user from the problem to a
solution. Forrester, as well as his former student Barry Richmond, were both focused on
quantitative modeling approaches, as they thought it was the only way to understand
dynamic system behavior. Geoff Coyle was another student of Forrester and later founded
the system dynamics group at the University of Bradford. Coyle had a contrary opinion
concerning modeling approaches, which led to a long-lasting scientific dispute [43, 44].



32 3 Introducing Complexity in Engineering

The main aspects and differences between quantitative and qualitative approaches in
system dynamics modeling shall be briefly explained. First of all, the type of modeling
depends on the selected representation form, which can be distinguished into four
categories: verbal descriptions, cause-and-effect diagrams, flow diagrams and mathemati-
cal equations [45].

According to Ossimitz, verbal descriptions of system models are easy to understand but
rather unprecise. Consequentially, these descriptions can only usefully be applied to
qualitative system model descriptions [45].

Cause-and-effect diagrams are typically composed of graphs built up from nodes and
edges. Here, system elements are represented by nodes, while the impact from one system
element to another gets modeled by edges connecting two nodes. Edges can be specified by
plus or minus symbols to provide a more detailed description of the cause-and-effect
relationship between the two nodes. A plus symbol indicates a monotonically increasing
relationship, while a minus symbol indicates a monotonically decreasing relationship. If all
edges that form a closed feedback loop are specified by plus or minus symbols, then a
restraining or escalating behavior can be identified. Ossimitz explains that it is not required
to specify system elements in a cause-and-effects diagram with numbers. However, some
system elements can already imply a quantitative specification. Ossimitz mentions the
example of car traffic, where either cars on the streets in general or a specific amount can be
expressed [45].

The third form of representation is the flow diagram. This can be seen as an extension of
the cause-and-effect diagram by different types of system elements and relations. System
elements are separated into state/level/stock variables, flux/rate/flow variables and auxil-
iary variables. Standardized symbols are applied for representing system elements in flow
diagrams [44, 46]. The meaning of this differentiation is that timed processes often require
distinguishing between variables that possess a value at a certain point of time and variables
that possess a value after a specific time. One example could be the balance sheet of an
enterprise, which comprises state variables for a specifically selected day. In contrast to
that, the profit and loss statement comprises flow variables related to the flow rate of 1 year.
For reasons of easier simulation, continuous processes are also modeled with state and flow
variables just like in the discrete case.

The fourth option of representation in system dynamics is the application of mathemati-
cal equations. These equations only comprise quantifiable variables and typically build the
basis of a numerical simulation [45].

In system dynamics, qualitative as well as quantitative models can be applied. In
practical applications, often the problem situation gets acquired and structured first by
applying qualitative modeling. Quantification represents a follow-up step, which allows for
simulation-ready models that can be used for scenario analyses [47]. Also Jay Forrester
holds the opinion that qualitative approaches should be supplemented by acquiring a
subsequent quantitative system dynamics model. He argued that qualitative methods do
not meet the requirements of dynamic simulations [43, 44].



3.4 Established Complexity Management in Engineering 33

3.4.4 Dependency Modeling

Dependency modeling does not represent a separate discipline, approach or technique.
Here the term is used as an aggregation for those methods aiming to support the manage-
ment of structural complexity. When these methods were developed, visualization of
system structures was one of the main objectives. With the increase in computational
power and the big data approaches, visualization became more abstract and computational
methods replaced manual system interaction. Nevertheless, structural modeling and its
associated methods of complexity management are still widely in use.

Already with the rise of cybernetics, graphs were applied for indicating system
dependencies. However, matrix representations were more common because they were
already integrated in applied mathematics. Graph visualizations can be very intuitive, and
many dependency models make use of them. Especially process models often get
visualized with graphs, and some became quasi-standards for whole industry branches,
for example event-driven process chains. Browning and Ramasesh provide a comprehen-
sive overview of applied process models in product development [48]. Graph depictions of
dependency networks typically require much drawing space and can become more confus-
ing the large the networks become. This is mainly because of crossing and long-range
dependencies, which make it difficult to understand and interpret the network.

Matrix models of dependency networks make it easier to apply computational methods,
which is one of the reasons for their intensive use. In addition, matrices provide the basis
for systematic dependency acquisition processes. Alexander was the first to document the
acquisition of dependencies in a matrix with a symmetric arrangement of elements on both
axes, which created a pattern for depicting interdependencies in the matrix cells [49]. For
this specific matrix form, techniques of reordering elements and dependencies have been
developed, which allows one to analyze and optimize dependency networks. These square
matrices and the methods of their manipulation get aggregated under the term Design
Structure Matrix (DSM) and have been developed since the early 1960s [50]. Methods
have been further developed since then and many industry applications are
documented [51].

One of the main applications for DSM is the identification of useful modules in a system
by rearranging matrix columns and rows, see e.g. [23, 52]. As well, process or task
sequences can be streamlined using the same technique. Yassine and Braha mention,
“The DSM approach to managing complex development projects is an information
exchange model which allows the project or engineering manager to represent important
task relationships in order to determine a sensible sequence for the tasks being modeled”
[53]. A comprehensive introduction to DSM methods is provided by Eppinger and
Browning as well as Lindemann et al. [8, 51].

Figure 3.11 shows a typical DSM with elements listed in the row and column headings,
and interdependencies between the elements indicated by dots in the inner matrix cells. The
location of dependencies shows potential for module-building, as most dependencies are



34 3 Introducing Complexity in Engineering

1/2(3|4|5|6|7|8)|9|10/11(12|13[14[15[16

Radiator

Engine fan
Heater core

Heater hoses
Condenser

Compressor
Evaporator case
Evaporator core

0N ;AW N =

Accumulator

Refrigeration controls | 10

Air controls 11

Sensors 12

Command distribution | 13

Actuators 14

Blower controller 15

Blower motor 16 . -

Fig. 3.11 Design Structure Matrix (DSM), adapted from [54]

clustered in a block. However, in terms of finding an optimal module structure the elements
need to be further relocated in the matrix order.

DSMs represent a highly compact form of dependency modeling. They are definitely
not as intuitive as a graph representation; however more elements can be depicted with
DSMs. And once familiarized with the methods, one can visually identify specific struc-
tural patterns, e.g. clusters, straightforward dependency chains, feedback loops or isolated
system areas.

The DSM is complemented by the Dependency Mapping Matrix (DMM) representing a
matrix with two different types of elements on either axis [55]. This format allows
representing dependencies between two types of elements, while the DSM documented
dependencies of elements within one type. The format of a DMM is very common in many
other applications and also outside of the field of engineering. Examples of applied names
are “cause and effect matrix” or “interface structure matrix” [56, 57]. However, the DMM
approach also comprises analysis and optimization methods for system dependency
networks. For example the clustering of a structure represented in a DMM allows for
simplifying the dependency management between two types of elements in a system [58—
60].

Figure 3.12 on the left side shows the modeling capabilities of a DSM in graph format,
which is limited to one element type and one dependency type only. The DMM enlarges the
possibilities of system modeling to two types of elements, while still only one dependency
type can be depicted (illustrated on the right side of Fig. 3.12).

Looking at Fig. 3.12 it becomes obvious that DSM and DMM can only model small
system parts, e.g. the internal component structure or associations of people to tasks or



34 Established Complexity Management in Engineering 35

works on

Component 1

impacts

I Component 2 Person 4 |

Component 3 Component 3

Component 2

impacts

Fig. 3.12 DSM and DMM representation capabilities in graph format

describes

requires

Fig. 3.13 Several element types and dependency types form the reality in many systems

components. However, system complexity is very much about the holistic perspective
including various element types. One of the central claims of cybernetics was the interdis-
ciplinary approach, which naturally includes many element and dependency types. Fig-
ure 3.13 illustrates a very simple system composed of three elements belonging to three
different element types. And between them three dependencies of different meanings exist.
Such a system could not be represented nor analyzed with the means of DSM or DMM.
These approaches only extract single system views for further investigations, e.g. the
component network.

A more holistic approach on dependency depiction is provided by the Multiple-Domain
Matrix (MDM), which allows modeling several element and dependency types and
deriving specific system views for closer analysis and optimization [4]. An abstract
illustration of an MDM 1is shown in Fig 3.14. This matrix shows the element types
(domains) and not the single elements. Each of the five domains (components, people,
data, processes and milestones) contains a distinct number of elements. The inner fields of
the matrix in Fig. 3.14 represent sub-matrices containing the dependencies between the
elements of the types listed in the column and row headings. The words in the abstract
matrix fields indicate the meaning of the dependencies.

The upper left matrix field (indicated by 1) contains change dependencies between
components. Thus, this matrix represents a DSM, as do the four other matrices along the
diagonal of the MDM. The next matrix to the right (indicated by 2) contains dependencies
between components and people; here a dependency means that a specific component is
“processed by” a specific person. Because of the two different element types on the two
axes, the matrix is a DMM, and so are all the off-diagonal matrices in an MDM.



36 3 Introducing Complexity in Engineering

) ()
& &
00 Qf}
x> o N
f | & N
Repre- Completed
sented by at

Generate

Components 1ge '
‘ .

Data Re‘:{;‘:ed Requirkd by Available at
Processes Exeduted by ' Comgtle‘Ed
Milestones

Fig. 3.14 Multiple Domain Matrix (MDM)—holistic system structure analysis

The matrix field indicated by 3 is a DSM field for the element type “people”. The fact
that no dependency meaning is noted in the field shows that no dependencies have been
acquired and so far the matrix field is empty. However, dependencies between people can
be computed based on other dependencies in the MDM. As examples, these possibilities
are indicated by the black arrows leading into the matrix field. Such matrix computations
result in indirect dependencies, which aggregate dependency information from two
(or even more) element types into one system view.

The first computation uses the DSM of component dependencies and the DMM between
components and people, and is indicated by 4. The resulting (indirect) dependencies
between people indicate that two specific people are connected because they work on
components that are linked by a change impact. If the modeled people represent product
developers working on parts of a technical system, this system perspective shows their
mutual dependencies based on their component responsibility. Interpreting this network
could be used, for example, to optimize the organization of group meetings. Figure 3.15
shows an exemplary network of people that can result from the matrix computation.

Another computation for creating a people DSM is indicated with the second chain of
arrows and the indicator 5. In this case, the DSM is computed from the information “people
who generate data” and “data required by people”. While both networks are DMMs, they



3.4 Established Complexity Management in Engineering 37

|y =1
e
AT

Fig. 3.15 Designers’ dependencies based on their responsibility for components [23]

have different meanings and consequentially different dependency networks. An example
result of the people network is shown in Fig. 3.16. The meaning of this computed network
is that people are interconnected because a person generates data that is required by another
person. This network showing the provision and request of data between e.g. product
developers could be applied in improving the team organization in case of staff fluctuation.
The computed dependency network provides a significantly different perspective, with a
different group of people in the core of the network than in the network before. This
indicates the importance of defining and creating the correct system views for answering
specific questions.

The short example shows the major benefits of an MDM, which are capturing different
types of system elements in a comprehensive model as well as computing and selecting
specific system perspectives. These perspectives represent DSMs or DMMs, which means
that the well-established methods of analysis, optimization and visualization can be
applied. Maurer provides a comprehensive introduction to MDMs [60]. Industrial use
cases are described by Lindemann et al. as well as Eppinger and Browning [8, 51].

Dependency modeling represents an important step in many approaches towards com-
plexity management. Information visualization might be one of the popular fields of
application, as many impressive network depictions have been created. The website
“visualcomplexity” shows hundreds of large-scale networks with many different graph
visualization approaches [61]. For most of these projects, information acquisition has been
conducted by automatic tracking or data mining. Thus, the effort for collecting and
preparing a large amount of system elements and dependencies was manageable. If
information has to be acquired from people by interview—e.g. for documenting the



38 3 Introducing Complexity in Engineering

[Pl
X
()

Fig. 3.16 Designers’ dependencies based on their request and provision of data [23]

development processes, tasks and exchanged data between them—then dependency
modeling also provides the approach of systematic data acquisition. More details on
information acquisition can be seen in Sect. 6.4.

One characteristic of many complex challenges in engineering is the lack of transpar-
ency. This is especially because dependencies are often unclear or even unknown. And
people involved in a project might have different understandings of the dependencies
without knowing about the discrepancies. Dependency modeling makes system
dependencies explicit and therefore stimulates discussions and a common understanding
of situations and systems.

References

1. Mainzer, Klaus. 2008. Komplexitat. Paderborn: Wilhelm Fink.

2. INCOSE. 2009. Systems Engineering Complexity Types.

3. Dorner, Dietrich. 1992. Die Logik des Misslingens. Reinbek: Rowohlt Taschenbuch.

4. Maurer, Maik S. 2007. Strcutural Awareness in Complex Product Design. Munich: Dr. Hut. http:/
nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20070618-622288-1-1.

5. Maier, Mark W. 1998. Architecting Principles for Systems-of-Systems. Systems Engineering 1
(4): 267-284. doi:10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D.


http://dx.doi.org/10.1007/978-3-662-53448-9_6#Sec7
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20070618-622288-1-1
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20070618-622288-1-1
http://dx.doi.org/10.1002/(SICI)1520-6858(1998)1:43.0.CO;2-D
http://dx.doi.org/10.1002/(SICI)1520-6858(1998)1:43.0.CO;2-D
http://dx.doi.org/10.1002/(SICI)1520-6858(1998)1:43.0.CO;2-D

References 39

10.
11.

12.
13.

14.

15.
16.
17.
. Schuh, Giinther, and Urs Schwenk. 2001. Produktkomplexitat Managen. Strategien, Methoden,

18

19.

20

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

. Ehrlenspiel, Klaus. 2007. Integrierte Produktentwicklung—Methoden Fiir Prozessorganisation,

Produkterstellung Und Konstruktion. 3rd ed. Miinchen: Hanser.

. Ashby, Ross. 1961. An Introduction to Cybernetics. Fourth imp. London: Chapman & Hall.
. Lindemann, Udo, Maik Maurer, and Thomas Braun. 2009. Structural Complexity Management—

An Approach for the Field of Product Design. Berlin: Springer http://medcontent.metapress.com/
index/A65RM03P4874243N.pdf.

. Kolmogorow, A.N. 1965. Three Approaches to the Quantitative Definition of Information.

Problems Information Transmission 1(1): 1-7.

Peak, David, and Michael Frame. 2013. Komplexitit—Das Gezéhmte Chaos. Springer.

Simon, Herbert. 1962. The Architecture of Complexity. Proceedings of the American Philosophi-
cal Society 106(6): 467-482 .http://nicoz.net/images/ArchitectureOfComplexity. HSimon1962.pdf
Conway, M. 1968. How Do Committees Invent? Datamation 14: 28-31.

Wiener, Norbert. 1948. Cybernetics or Control and Communication in the Animal and the
Machine. New York: Technology Press.

Muses, C. 2002. Simplifying Complexity: The Greatest Present Challenge to Management and
Government. Kybernetes 31: 962—-988. doi:10.1108/03684920210436282.

Lindemann, Udo. 2005. Methodische Entwicklung Technischer Produkte. Berlin: Springer.
Sheard, Sarah A, and Ali Mostashari. 2010. A Complexity Typology for Systems Engineering.
Schwanitz, D. 1999. Bildung. Alles, Was Man Wisen Muss. Frankfurt: Eichborn.

Tools. Miinchen: Hanser Fachbuch.
Sheard, Sarah. 2012. Assessing the Impact of Complexity Attributes on System Development
Project Outcomes.

. Browning, Tyson R. 2001. Applying the Design Structure Matrix to System Decomposition and

Integration Problems: A Review and New Directions. /[EEE Transactions on Engineering Man-
agement 48(3): 292-306.

Bertalanfty, Ludwig v. 1973. General System Theory: Foundations, Development, Applications.
4th ed. New York: George Braziller.

Pruckner, M. 2002. 90 Jahre Heinz von Forster. Die Praktische Bedeutung Seiner Wichtigsten
Arbeiten. Malik Management Zentrum St. Gallen.

Maurer, Maik S. 2012. Komplexitdtsmanagement Fiir Die Industrielle Praxis—Komplexe
Systeme Und Ihre Eigenschaften. Technical University of Munich.

Vester, Frederic. 2007. The Art of Interconnected Thinking—Ideas and Tools for Tackling
Complexity. Miinchen: Mcb Verlag.

Holland, John H. 2000. Emergence—From Chaos to Order. Oxford: Oxford University Press.
Camelot Management Consults. 2012. Mastering Complexity.

Kaplan, Andreas, and Michael Haenlein. 2006. Toward a Parsimonious Definition of Traditional
and Electronic Mass Customization. Journal of Product Innovation Management 23(2): 168—182.
doi:10.1111/j.1540-5885.2006.00190.x.

Delligatti, Lenny. 2013. SysML Distilled: A Brief Guide to the Systems Modeling Language.
Boston, MA: Addison-Wesley Professional.

Beckmann, M., H. Gehring, K.-P. Kistner, C. Schneeweil3, G. Schwodiauer, H.-J. Zimmermann,
and T. Gal, eds. 1992. Grundlagen des Operations Research 3: Spieltheorie, Dynamische
Optimierung Lagerhaltung, Warteschlangentheorie Simulation, Unscharfe Entscheidungen.
3. Band. Springer.

Hillier, J.H., and G.J. Lieberman. 2004. Introduction to Operations Research. 8th ed. Boston,
MA: McGraw-Hill Higher Education.

Kellerer, Hans, Ulrich Pferschy, and David Pisinger. 2004. Knapsack Problems. Berlin: Springer.


http://medcontent.metapress.com/index/A65RM03P4874243N.pdf
http://medcontent.metapress.com/index/A65RM03P4874243N.pdf
http://nicoz.net/images/ArchitectureOfComplexity.HSimon1962.pdf
http://dx.doi.org/10.1108/03684920210436282
http://dx.doi.org/10.1111/j.1540-5885.2006.00190.x

40

32.

33.

34.

35

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

3 Introducing Complexity in Engineering

Applegate, D., R. Bixby, V. Chvatal, and W. Cook. 2006. The Traveling Salesman Problem.
Princeton, NJ: Princeton University Press.

Weigel, Annalisa. 2000. An Overview of the Systems Engineering Knowledge Domain. MIT.
http://web.mit.edu/esd.83/www/notebook/sysengkd.pdf.

Gesellschaft Fiir Systems Engineering E. V. 2015. www.gfse.de. Accessed 29 Dec.

. Saynisch, Manfred. 2008. Systems Engineering Und Projektmanagement in Deutschland.

Projektmanagement Aktuell 3: 1-9. www.pmaktuell.org/uploads/PMAktuell-200803/PM_3 08-
025lang.pdf.

Daenzer, W.F., and F. Huber. 1999. Systems Engineering: Methodik Und Praxis. 10th ed. Ziirich:
Verl. Industrielle Organisation.

Bluma, L. 2004. Norbert Wiener Und Die Entstehung Der Kybernetik Im Zweiten Weltkrieg.
Miinster: LIT.

Forrester, Jay W. 1963. Industrial Dynamics. Cambridge, MA: MIT Press.

Meadows, D.H. 1972. The Limits to Growth. Reissue. Verlag Signet.

Hahn, F. 2006. Von Unsinn Bis Untergang: Rezeption des Club of Rome und Grenzen des
Wachstums in der Bundesrepublik der frithen 1970er Jahre. Freiburg: Albert-Ludwigs-
Universitt.

Richardson, G.P. 1999. Feedback Thought in Social Science and Systems Theory. Waltham, MA:
Pegasus Communications.

Tohum, M.H. 2008. System Dynamics—Betriebswirtschaftliche Anwendungsgebiete.
Universitit Koblenz-Landau.

Coyle, R.G. 2000. Quantitative and Qualitative Modeling in System Dynamics: Some Research
Questions. System Dynamic Review 16(3): 225-244.

Kapmeier, F. 1999. Vom Systemischen Denken Zur Methode System Dynamics. Universitit
Stuttgart.

Ossimitz, G. 1991. Darstellungsformen in Der Systemdynamik. In Anschauliche Und
Experimentelle Mathematik, ed. H. Kautschitsch, 175-184. Wien: HPT.

Coyle, R.G. 1996. System Dynamics Modelling—A Practical Approach. London: Chapman &
Hall.

Gabler Wirtschaftslexikon. 2015. http://wirtschaftslexikon.gabler.de/Archiv/143837/system-
dynamics-v5.html. Accessed 29 Dec.

Browning, Tyson R., and Ranga V. Ramasesh. 2007. A Survey of Activity Network-Based
Process Models for Managing Product Development Projects. Production and Operations Man-
agement 16(2): 217-240. doi:10.1111/j.1937-5956.2007.tb00177 .x.

Alexander, C. 1964. Notes on the Synthesis of Form. Cambridge: Harvard University Press.
Steward, Donald. 1981. The Design Structure System: A Method for Managing the Design of
Complex Systems. [EEE Transaction on Engineering Management 28(3): 79-83.

Eppinger, Steven D., and Tyson R. Browning. 2012. Design Structure Matrix Methods and
Applications. Cambridge, MA: MIT Press.

Fernandez, C.1.G. 1998. Integration Analysis of Product Architecture to Support Effective Team
Co-Location. Cambridge, MA: Massachusetts Institute of Technology.

Yassine, Ali, and Dan Braha. 2003. Complex Concurrent Engineering and the Design Structure
Matrix Method. Concurrent Engineering 11(3): 165-176. doi:10.1177/106329303034503.
Pimmler, Thomas U., and Steven D. Eppinger. 1994. Integration Analysis of Product
Decompositions, no. September.

Danilovic, Mike, and Tyson Browning. 2004. A Formal Approach for Domain Mapping Matrices
(DMM) to Complement Design Structure Matrices (DSM). In Proceedings of the 6th Design
Structure Matrix (DSM) International Workshop. Cambridge, UK: University of Cambridge,
Engineering Design Centre.


http://web.mit.edu/esd.83/www/notebook/sysengkd.pdf
http://wirtschaftslexikon.gabler.de/Archiv/143837/system-dynamics-v5.html
http://wirtschaftslexikon.gabler.de/Archiv/143837/system-dynamics-v5.html
http://dx.doi.org/10.1111/j.1937-5956.2007.tb00177.x
http://dx.doi.org/10.1177/106329303034503

References 41

56.

57.

58.

59.

60.

61.

Allen, T.T. 2006. Introduction to Engineering Statistics and Six Sigma—Statistical Quality
Control and Design of Experiments and Systems. London: Springer.

Kusiak, A., C.-Y. Tang, and Z. Song. 2006. Identification of Modules with an Interface Structure
Matrix. ISL_04/2006. lowa.

Danilovic, Mike, and H. Borjesson. 2001. Managing the Multiproject Environment. In
Proceedings of the 3rd Dependence Structure Matrix (DSM) International Workshop. Cambridge:
Massachusetts Institute of Technology.

. 2001. Participatory Dependence Structure Matrix Approach. In Proceedings of the 3rd
Dependence Structure Matrix (DSM) International Workshop. Cambridge: Massachusetts Insti-
tute of Technology.

Maurer, Maik S. 2007. Structural Awareness in Complex Product Design. Lehrstuhl Fiir
Produktentwicklung. Miinchen: Dr. Hut.

Lima, Manuel. 2011. Visual Complexity—Mapping Patterns of Information. New York: Princeton
Architectural Press.




	3: Introducing Complexity in Engineering
	3.1 Composition of Complex Systems
	3.2 Complexity Definitions
	3.3 Impact of Complexity
	3.4 Established Complexity Management in Engineering
	3.4.1 Operations Research
	3.4.2 Systems Engineering
	3.4.3 System Dynamics
	3.4.4 Dependency Modeling

	References


