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Abstract This chapter introduces the concept of fuzzy world as an ontological
basis for modeling complex-adaptive systems. The concept is grounded on a phe-
nomenological analysis of these systems over micro and macro scales. Discussion is
developed from a recapitulation of some concepts of complexity science and com-
plex systems modeling. Finally, the argument points out that fuzzy worlds find in
fuzzy sets and systems theory a natural epistemological and methodological support.

1 Introduction

Complex systems surround our lives, these systems can be found not only across
the natural world but also in technical worlds created by humans. Complex systems
found in nature are so diverse that to develop a taxonomy for these systems has been
a hard task. A very long list of complex systems can be given but surely a lot of
pages should be written. There are some complex systems that are cited in literature
for pedagogic purposes, for example ant colonies, flocking birds, oceans, cities, the
atmosphere, the internet among others. We study about these examples superficially
at some point of our basic education and we never hear about others in our lives.
Although we are amazed by complex systems, most of the time how they behave
remains a mystery for the majority of people.

Complexity science has emerged as a new field of study to tackle the problem
of understanding the underlying mechanisms in complex systems, whereas complex
systems engineering has been devoted to design and manage these systems. New
categories have been identified as these two fields have been interacting, for example
socio-technical systems refer to complex systems where both human and technology
converge and socio-ecological systems describe the complex interaction of humans
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and ecosystems. In fact the convergence of the three dimensions (social, technological
and ecological) has called the attention of a portion of researchers and managers.

Modeling complex systems is an important part of the whole picture and the
computational intelligence community has not been indifferent to this challenge.
This chapter follows this interest presenting a discussion about developing complex
models for complex-adaptive systems (i.e. complex systems where learning and
adaptation is possible) from the ontological necessity of capturing complexity at
both micro and macroscopic scales. A phenomenological perspective is introduced
in which the building block for constructing complex simulation models relies on
the idea of fuzzy worlds, a concept that takes a different path from the well-known
agent-based framework.

The chapter is divided in three sections: a brief summary about complex and
complex-adaptive systems, an argument in favor of building complex models that
capture some attributes of complex-adaptive systems and finally the presentation of
fuzzy worlds and their role in the quest to model these systems.

2 Complex Systems

2.1 The Footprint of Complexity

Nowadays there is not a unique definition for the attribute referred as complexity [26].
In terms of behavior, it is often used as a synonym for irregularity, uncertainty or
unexpectedness. On the other hand, when emphasis is given to structure, complexity
may refer to the abundance of variables and their relations. The absence of a formal
postulate that defines complexity does not restrict the possibility of pointing out some
elements that configure the footprint of a complex system [5, 18, 28]:

• Nonlinearity: complex systems exhibit the characteristics of non-linear dynamical
systems such as sensitivity to initial conditions and non periodic but recurrent
behaviors. Some forms of chaos can appear in the evolution of a complex system
given by the multiplicity of non fixed interacting elements inside it.

• Emergence: unexpected behavior is a nice term that can be used in this context
to make reference to an emergent property. In a complex system these behaviors
depend on it as a whole and can not be explained by reducing them in terms of the
individual parts that configure the system.

• Self-organization: a complex system is able to promote an internal organization in
ordered and coherent states for a long range. Such states can sustain hierarchical
structures that control disorder at local scales.

• Unpredictability: predicting the evolution of the dynamics of a complex system can
be a hard task, not only because of the dynamics itself but also due to the incapacity
of the observer. The measurement act may be a perturbation introduced in the
system resulting in a modification of the trajectory the dynamics was following.
In addition that modification can go back perturbing the observer, thus a sort of
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communication is established between the system and who is observing it [28].
This deep interconnection implies that therewould not be an ontological difference
between both [16].

2.2 Levels of Analysis

The perception of complexity in a system is subject to the scale in which observations
are made. Thus the analysis of complex systems should be performed in terms of
a hierarchy of description levels. There is a serious connection between the level
of description and the different epistemic perspectives that can guide the analysis
process of the observer [27, 40]. A brief summary of such levels and related epistemic
approaches is presented as follows:

• Microscopic: this is the level of fundamental interactions among the entities that
constitute the complex system. Both Newtonian and quantum systems may be
described from this level. That description is often characterized by an univer-
sality nuance in terms of laws that govern the behavior of such entities. These
laws can be understood as minimal algorithms that determine the dynamics of the
elements of the system.
The perspective that guides the analysis in this level of description is grounded on
deterministic postulates. The dynamics of the complex systems can be studied in
terms of universal principles like the Newton’s laws or the Schrödinger’s equation,
which govern the behavior of the multiple entities inside the system. Deterministic
chaos is often found in these cases due to the variability induced by the interaction
among the entities.
Even though this level of analysis seems to be strictly destined to deal with systems
governed by laws over their microscopic entities, it has been recognized the possi-
bility of using it for approaching to systems where no complete knowledge of the
rules is available, for example social systems [9]. However, the ignorance about
rules would motivate to develop an approximation from other levels of analysis.

• Macroscopic: a new set of variables can be constructed from the multiplicity of
entities found in the microscopic level. This set models the collective properties
of such entities. Its dynamics is induced by clusters of microscopic processes.
Therefore the number of macroscopic variables is much fewer than the entities
that shape the system.
Equations that describe the behavior of macroscopic observations are presented as
a balance between sources and sinks. This behavior often emerges as a nonlinear
dynamics which is not reversible in time. On the other hand, dynamics of macro-
scopic variables can be understood as the smooth expression of all microscopic
descriptions.
Expected variability in macroscopic levels is smaller than in microscopic ones.
Thus the macroscopic description is understood as an average of microscopic
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irregularities that retains wide scale features. In epistemic terms, the macroscopic
representation is an empirical or ad hoc model that should be experimentally
verified.

• Mesoscopic: an intermediate point between the previous levels can be sketched.
Involved variables in this level are an extension of the macroscopic set. Possible
descriptions of dynamics must consider the uncertainty associate to the variability
of microscopic processes. Evolution in time should be understood in terms of a set
of trajectories with finite fluctuations that can be modeled as a footprint around an
average dynamics.
The nature of variables is assumed as random so that the system dynamics is
studied in terms of how probability distributions evolve in time, for instance by
using the Fokker-Planck equation [27]. The analysis of a complex systems in the
mesoscopic level tries to model the uncertainty, which is classically performed by
means of probability theory, however other ways are being investigated such as
the possibility theory approach [20].

2.3 Complex-Adaptive Systems

From the spectrum of complex systems, those with learning and adaptation abilities
are of special interest, particularly when these properties arise in the macroscopic
level. These systems have been called as Complex-adaptive systems [18] since their
internal configuration promotes the emergence of phenomena such as anticipation,
collective behavior and evolution.

Human social systems configure an interesting class of complex-adaptive system
whose main particularity is to set purposes not only in its interacting elements but
also in the whole picture that identifies it [1]. The modeling of human social systems
has followed different paths which cover mechanistic, organismic and more recently
evolutionary approaches [10]. The main focus of these models are not the entities of
the system (i.e. agents) but the rules that they generate and carry [9].

Approaching a social system implies taking advantage of an epistemic evolution
to be able to capture the evolution of the dynamics of the system [35]. The multiple
transformations that can occur from the adaptation of a social systemmake the search
for its understanding only in terms of its parts too narrow. Thus to assign the category
of “system” to a phenomenon demands an a-priori understanding of the context not
only from the parts but also from the relations between them, which is the point
where the purposes that identify the system can be observed.

Social systems demand an epistemology that recognizes the same definition of
system may be dynamic, so that the epistemic background of social systems can be
itself complex by integrating several forms of knowledge, for example one of them
the approach from engineering [22]. Entities that shape the system can interpret it and
disturb its original purposes, thus agents are at the same time parts and designers of
the system. One relevant aspect of social agency is its immersion in technology [15],
which makes human systems to be treated at same time as social and as technical
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systems. This particularity produces in socio-technical systems, such as cities, the
emergence of very unique properties that other similar complex systems found in
nature do not exhibit [7].

Models for complex adaptive systems, in particular socio-technical systems, can
be constructed from different epistemic perspectives. These go from the qualitative
approaches of social sciences to the quantitative models of physics, crossing by
the organismic models of biology [1], the agent-based models of computer science
[13] or the rule-based models of the evolutionary economics [29] among others.
An interesting aspect of these models has to do with the purpose behind them.
Although prediction seems to be the unique purpose ofmodeling, today amultiplicity
of purposes have been recognized which are connected to the intentions, perspectives
or interests of the modeler [12].

3 Complex Models for Complex Adaptive Systems

3.1 Types of Complex Systems and Their Modeles

Complexity of a system is a wide concept that can be studied from different per-
spectives without the availability of a formal definition. The perspective that will be
followed is described extensively in [3], which is focused on typifying a complex
system according to its structure and the necessary knowledge to model and manage
it. According to this framework complex systems can be typified as follows:

• Type-I complex systems are those whose dynamics is governed by simple rules
but the system exhibits interesting behaviors such as irregular oscillations, chaotic
attractors, self-organization and emergent properties. Models for this type of sys-
tem are usually represented by regression equations, nonlinear differential equa-
tions, information flows etc. Some examples of this type are tectonic plates, sand
piles and some cellular automata among others, whose dynamics can be explained
from the Self-Organized Criticality (SOC) theory [4].

• Type-II complex systems are characterized by their diversity of rules, interacting
processes and scale-dependent behavior. Models of these systems should capture
both the multiplicity of rules as well as the scale transitions. Nowadays several
examples are found: mental maps, fuzzy differential equations and hybrid intelli-
gent tools. Spatial phenomena like territory transformation and land use in cities
can be explained from this type of complex system.

• Type-III complex systems come in the scene when managing several perspectives
towards particular common objectives of human agents. These agents interpret in
different ways the dynamics of the system. Interpretations may produce consensus
that is influenced by the emergent properties of the system in the long term. Several
models that deal with this kind of complex behavior have been developed from
decision theory.
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• Type-IV complex systems exhibit macroscopic structures designed by societies to
promote self-management. These systems are composed by diverse actors such as
national governments, industries, local governments, universities among others.
Part of the agents in the system often generate strategies focused in promoting the
ultimate goal of controlling the system in several scales

When looking at the previous typification, complex adaptive systems may be
included in type 3 or 4, however this observation does not discard that these systems
can be studied from the other types of complexity. When approaching a complex
adaptive system, models would be structured from the first two types of complexity
so that they can be nurtured in the process from latter ones. Note that there is not
particular emphasis regarding modeling tools in types III and IV. To develop these
tools is currently an open problem.

3.2 Modeling Complex-Adaptive Systems

Constant adaptation in a socio-technical system compromises the controllabilty of
its behavior given its unpredictable nature. Thus system dynamics theory can offer
helpful insights about the modeling of these systems [34]. Models in this perspective
are designed to understand the dynamics of the system rather to cope with its accu-
rate prediction. Diverse epistemic perspectives should be taken into account when
conceiving these models, transcending the purely scientific perspective [14].

Modeling complex adaptive systems demands today an understanding exercise
that goes beyond the reductionist approach of traditional science. The whole is more
than the sum of its parts is a well known premise in this quest and not necessarily
the simplest explanations, tested under same conditions, are correct, challenging the
Occam’s razor [24]. The ultimate goal of modeling a system of this kind is to cap-
ture some of its properties in an artificial representation. That movement from reality
to the representation depends on the intention of the modeler regarding the
model [12, 30].

Modern science has encountered in simulation a valuable tool for dealing with
complexity [12]. Simulation models of complex adaptive systems must approach
complexity by being also complex. The idea that a reductionist simulation model
exhibits the richness of a complex dynamics is indefensible today [33]. Therefore
adaptations in a complex system should be transferred to the model, which is only
possible as long as it is able of self-organization.

The process of modeling a complex adaptive systems requires a reduction of
complexity without omitting essential components. In the end the model is still
complex since the real system is so [38]. A minimal simulation model is necessary
that preserves key elements of the system. Including additional components would
not necessarily give useful knowledge, but surely increases the computational cost of
the simulation. Therefore simplest complex models can be used to guide the initial
discussions about the system, whereas more detailed models are preserved for a
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posterior deeper analysis. To capture the entire footprint of complexity of a system
in a simulation model with reasonable costs in time, effort and resources is today an
open problem [6, 33, 37].

Transferring complexity from the system to the model is critical and invites to
think about several questions: Is just one modeler able to transfer a good portion
of the complexity from the system to the complex model? Should the transference
of complexity be performed by a complex adaptive system composed by modelers
and intelligent modeling tools? Which characteristics should this system have? Is it
sufficient one complex adaptive system to model another one? Supposing the com-
plexity of a system can be quantified, would not be necessary a more complex sys-
tem to perform the modeling task? Some of these questions are partially considered
in [3, 39].

Designing a complex system is a process guided by learning and evolution. It
embodies a metaphor in which modeling agents interact collaboratively in the inte-
gration of micro-worlds (i.e. elements of the system) like children constructing a
toy from constructions blocks [8]. Thus a complex system can be interpreted as a
macro-world shaped by the ensemble of micro-worlds, which are more than being
interconnected, they are entangled.

The process of configuring a simulation complex model can be delineated from
the previous metaphor. Simulation micro-worlds are configured in order to structure
simulation macro-worlds that shape the model of the complex-adaptive system. This
is similar to the model building approach of systems dynamics [34], however micro-
worlds a key differential element.

In models of complex-adaptive systems, micro-worlds can be configured as net-
works of agents or rules, however these networks can also be the result of self-
organizing agents. Assign a purpose to self-organized networks is somehow fuzzy,
but thesemay represent small associations or territories.Macro-worldswould emerge
as the interconnection of smaller worlds reflecting a wider organization supported
on interacting associations. As a result, it would be expected that emergent macro-
worlds operate in several scales.

The simulation building blocks are based on the presence of cognitive agents [36],
which represent human beings. Given their autonomy, plasticity and openness to be,
establishing an guiding theory about human behavior is not just around the corner
[19]. The way in which humans relate to technology they build is conditioned by
their autonomy [2]. In the end, each agent can freely interpret the objects that are
part of its world. Therefore, visualizing the consequences of this relationship would
exceed any analytical effort.

Although capturing the whole complexity of a human being in a cognitive agent
would be unsuccessful, this does not imply that to approach this goal can not be
developed from some perspective. Complex system engineering as well as multi-
agent systems methodologies can find inspiration regarding this task in different
representations of the world, for example in [32] a combination of attachment theory
and ant colony algorithms is proposed to study the properties of some human social
systems. However, the purely scientific character given to the problem of represen-
tation is up to date a difficulty in human systems simulation [11, 36].
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4 Fuzzy Worlds

One of the fundamental aspects of agent design focused in human behavior is the
problem of interaction. Communication is a key element in the interaction between
humans and their organizations [19]. It requires a common ground where humans
share interpretations of their world in terms of rules. In the design of a complex
model using the building block metaphor, agents in micro-worlds may satisfy the
condition of common ground. In a group of agents that share the same environment,
each agent can interpret the context in a particular way thus its world acquires a
different dimension regarding the other agents. Therefore the agent and the world
are one.

The human agent may be represented as an evolving process [31] that relates rules
and the surrounding field, instead of a an independent element that interacts with its
environment [11]. Thus there is no clear boundary between the agent and its world.
Figure1 presents a comparison between the classical vision of an agent (Cartesian)
and an agent which is immerse in the world, called here as the Heideggerian perspec-
tive on an agent. In the classical perspective the boundary that separates the agent and
its world is well defined, on the other hand the boundary is fuzzy in the Heideggerian
perspective [23].

Immerse agents in a micro-world play a variety of roles in different moments,
however these roles may be modified by new rules or relations between existent
rules. Role changes would develop in a temporal scale, therefore the structure of
the world that was consistent with existent roles gives way progressively to a new
one. Adaptations in agents promote adaptations in the world. The agent is able of
transforming its world, however the world strikes back by also transforming the
agent. Thus talking about one necessarily refers to the other (i.e. fuzzy world).

If a modeling approach for complex adaptive systems following this perspective is
attractive, emphasis would be given tomicro-worlds rather than agents. This imposes
a challenge to incorporate the self-interpretation of the human agent as a part of the
model. According to [15] self-interpretation is given by the direct interaction with
the world without any kind of mediation. Hence the traditional approach of artificial
intelligence, where the agent has an internal representation of the knowledge of its
desires and intentions expressed as a logic the agent uses to deliberately infer, must

Fig. 1 a Classical agent
(Cartesian), there is a clear
boundary between the agent
and the world. b Immerse
agent in the world
(Heidggerian), the boundary
between the agent and the
world is fuzzy
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be reformulated [36]. The simulation micro-world should be able of executing a
self-modification according to perturbations induced by itself or other micro-worlds
which is entangled with.

Should the conception of building blocks based on fuzzy worlds be developed as
a purely scientific task or as a convergence field of different kinds of knowledge?
To talk about a complex-adaptive system by itself is already imposing a particular
way of looking at reality, since relations between agents are understood as flows
of mater, energy or information. Giving this connotation implies to uncover the
human dimension as something susceptible of being modeled and computationally
represented. A purely scientific perspective to define a fuzzy micro-world would
require guiding theories of a “computational human nature” which would be in the
opposite direction of the opening to the be.

Although the scientific approach to fuzzy worlds would find a contradiction, the
quest for modeling complex adaptive systems from this perspective should be faced
in the aim to grasp something about these systems. The uncertainty regarding the
comprehension of these systems can not be controlled, however to cope with is a
possibility. The paradigm of fuzzy sets or its several ramifications (i.e. interval fuzzy
sets, type-2 fuzzy sets, intuitionistic fuzzy sets, etc.) [20, 25] can be used to model
the inherent uncertainty of a micro-world. Modeling a fuzzy world in this sense is a
design exercise that should find inspiration in both experience and language.

Engineering can think about the modeling of a complex-adaptive systems as a
design process that creatively and rigorously connects building blocks [21, 22].
Reality is susceptible to be captured not by fragmentation (i.e. analysis) but by
aggregation (i.e. synthesis). This process is performed having in mind the necessity
of a minimum representation of the complexity. Hence aggregation should be under-
stood as the confection of an entanglement of fuzzy worlds, where scale should not
be a problem since micro and macro worlds are mutually related.

A graphical representation of entangled fuzzy micro-worlds is depicted in Fig. 2.
The vision of interaction (between agents) is replaced here by the vision of entan-

Fig. 2 Entangled fuzzy
micro-worlds. Same pieces
of reality can be interpreted
in different ways. Each color
(cyan,purple and brown)
represents a particular way
of interpretation
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glement (of worlds). Entangled fuzzy micro-worlds are enriched by the diversity
of interpretations about the human and technical phenomena that converge in the
aggregation. Note the notion of complexity is extended here since the premise that
the whole is more than the sum of its parts is debatable in the sense that the parts
are not simple. Complex macro-worlds can emerge from the entanglement of fuzzy
micro-worlds which is also complex. Hence this perspective of modeling is revealing
that complexity would be scale-free attribute in complex-adaptive systems.

The building block as the entanglement of fuzzy micro-worlds embodies a para-
dox since it is an element which is at same time a complex phenomenon. It can be the
size of a micro-world or several micro-worlds. The building block contains agents
that interpret their ownworlds, but alsoworlds thatmodify the agents. The same argu-
ment can be extrapolated to the construction of a macro-world from micro-worlds:
the macro-world is shaped by micro-worlds but these are modified in the construc-
tion process. Figure3 depicts the entangling process of macro-worlds WA and WB

that are composed of several fuzzy micro-worlds (micro-worlds that share common
attributes are represented by the same color). Notice the final entanglement produces
a new fuzzy micro-world. This is possible since macro phenomena (i.e. structures,
organizations, etc.) can introduce new rules or interpretations in the context of an
existent micro-world.

The mental exercise around this entangling process evokes the phenomenology
of the worldliness of the world [11, 17], paraphrasing: If a common structure for the
sub-worlds of a world is discovered then the structure of the world has been found.
If there is one common structure of the sub-worlds, this same structure should be

Fig. 3 The entangling process of macro-worlds WA and WB . Micro-worlds that share common
characteristics are depicted with a particular color (orange,gray and black). In the end, the entan-
glement of macro-worlds produces a new micro-world (blue)
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discovered in the world that contains these sub-worlds. This consideration allows to
think about the structure of the world as self-similar no matter the scale.

One of the purposes of phenomenological analysis is to discover the structure of
the world. Interpretation is in the heart of this analysis which is grounded on nat-
ural languages. If the paradigm of computing with words [24] is used to interpret
the dynamics of sub-worlds in a complex-adaptive system, the model can be under-
stood as a linguistic phenomenology of the system. In this context fuzzy worlds
can be modeled by means of the perceptions and their relations given by one or
several observers. Thus fuzzy sets and systems would be the natural representation
mechanisms for fuzzy worlds.

A graphical view of two linguistic phenomenologies is depicted n Fig. 4. A macro
world is considered where the word “high” is being interpreted from the analysis of a
linguistic variable in the fuzzy worlds. Phenomenology represented in Fig. 4a makes
use of a type-1 fuzzy set [20] to model the word. The set has been used to produce
a heat map over the macro-world given some numerical observations surveyed from
theworlds. The observer interprets the current state of the system is a kind of isotropic
dissipation from the center to the corners. Another phenomenology is presented in
Fig. 4bwhere the sameword “high” is represented as an interval type-2 fuzzy set [25].
In this case linguistic phenomenology represents the interpretation of two observers
about the system. Both agree that an isotropic dissipation is happening in the current
state of the system, however one of them perceives a faster dissipation dynamics.

The fuzzy world concept can be considered as an ontological basis for modeling
complex-adaptive systems grounded on phenomenological analysis. It finds in fuzzy
set theory and fuzzy logic a natural epistemological and methodological tool to
support the process of modeling. Although the fuzzy systems perspective has been
used in the past to deal with complex systems, the ontological perspective introduced

Fig. 4 Linguistic
phenomenology of a
macro-world: a Captured by
a type-1 fuzzy perception, b
captured by an interval
type-2 fuzzy perception
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by fuzzy worlds points out a different path regarding the classical approach of agent-
basedmodeling. Formalization of fuzzyworlds and its application to complex system
engineering should be a matter of near-future discussions.
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