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Abstract 
Increased globalization, as well as the ability to have virtual supply chain partners, has had 

numerous effects on supply chains. While some of these effects are positive, making more resilient 
supply chains, there are also the negative effects of scale and complexity, making these supply chains 
more challenging than ever to manage. Having a means to measure the complexity is crucial for 
today’s managers to make more informed decisions. This measure must not only account for the 
number of arcs, but the amount of information and material carried on it, as well as incorporate the 
benefit that virtual arcs add to the network by increasing efficiency and reducing information, product 
and financial transfer costs and time. This research utilizes newer models in network clustering and 
complexity theory to make them applicable to supply chains and creates a new, practical approach to 
measuring supply chain complexity which can be easily implemented by practitioners. 
Keywords: Supply chain, complexity, clustering, virtual networks 
 

1. Introduction 
The effects of globalization on organizations 

are numerous, often resulting in very large and 
complex supply chains. Companies opt for 
globalization in order to be more competitive in 
areas such as cost, life-cycle, lead time and 
quality. Demanding consumers compel 
corporations to provide a wider range of products 
with increased customization which in turn force 
companies to expand their supply base, leading to 
very complex networks. However, complexity of 
a network is directly correlated to supply chain 
performance (Perona and Miragliotta 2004, 
Caridi et al. 2010), therefore measuring this 
complexity is a necessity for supply chain 

managers to make informed decisions. As an 
example, consider a supply chain with all nodes 
in a particular stage linked to all upstream and 
downstream nodes. While probably a resilient 
supply chain, it also makes a very complex 
supply chain, highly prone to disruption, 
particularly when no echelons contain redundant 
suppliers. It is crucial then to be able to calculate 
supply chain complexity and include it as a 
performance measure in the network design 
process. 

 Measuring network complexity has begun 
to take the interest of researchers recently in 
order to better manage the activities within the 
supply chain. In dealing with supply chains, 
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different viewpoints are taken as to what 
comprises the complexity. Number of supplier 
relationships and their inter-relationships (Choi 
et al. 2001, Choi and Krause 2006), supplier 
reliability (Vollman et al. 2005), and level of 
globalization (Nellnore et al. 2001) are oft-cited 
factors to complexity. To measure supply 
chain complexity, we must include both a 
measure of the amount of product, information 
and finances flowing in the supply chain as well 
as a measure of the denseness of the network.  
However, supply chain complexity can be 
reduced when information or material is 
transmitted electronically (Rogerson and Fidler 
1994, Nagurney et al. 2005). E-commerce can 
create value for an organization by lowering 
transaction costs, eliminating “storefront” costs 
and increasing visibility.  Additionally, a 
company that delivers electronic products such as 
movies and books saves on distribution and 
shipping costs. Considering that the volume of 
electronic commerce in the United States alone 
has risen by approximately 15% every year since 
2009 (Commerce 2015), an additional factor 
accounting for virtual arcs and the value they add 
to the resiliency of the network should be 
included in the complexity calculation as well. 

Complexity can be measured in many 
different ways and spans many fields such as 
social science, biology and engineering. In 
network analysis there has been significant 
research into measuring the basic topological 
features. Parameters such as number of 
connected components, degree distributions, 
connectivity and shortest paths are often cited as 
measures of the network topography (Doncheva 
et al. 2012), however, most of these ignore the 

weights that exist on the arcs such as in a supply 
chain. This research combines the field of supply 
chain management and complexity to expand 
existing complexity measures to be applicable for 
supply chains which are virtual, “brick and 
mortar” or a hybrid of both.  

 The contribution of this research is two-fold: 
first, measures of strength and clustering of the 
supply chain are developed, which have the 
ability to accommodate virtual arcs and their 
lessening effect of risk on the supply chain. 
Second, utilizing these measures, a formulation 
for supply chain complexity is developed, which 
can be used as a comparative guide across 
various supply chain configurations and weights 
since the complexity value lies between 0 and 
100%. Section 2 first details the literature on 
complexity, followed by network clustering 
measures and a review of virtual supply chains. 
The methodology is developed in Section 3 and a 
simulation model and conclusions are in Sections 
4 and 5, respectively. 

2. Background 
The field of complexity spans many distinct 

areas such as computer science, sociology, 
biology, mathematics and physics and 
researchers have developed many metrics for 
measuring the complexity and clustering of a 
network. This research combines both fields, thus 
the background will describe measures 
developed for complexity of general networks, 
supply chain networks and specifically entropic 
complexity measures. A review of network 
clustering and virtual supply chains are given in 
Sections 2.2 and 2.3 respectively. 
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2.1 Complexity 

2.1.1 General Network Complexity Measures  
 Pascoe (1966) defined the coefficient of 

network complexity (CNC) as the ratio of arcs to 
nodes and Kaimann (1974) refined this as the 
ratio of the number of activities squared, divided 
by the prior work items squared, divided by the 
number of work items for an activity on arc 
network (AOA). Similarly, Bonchev and Buck 
(2005) discuss and compare several traditional 
methods used to analyze complexity of networks.  
They compare global, average and normalized 
edge complexity, second order subgraph count 
and overall connectivity. The cyclomatic number, 
developed by McCabe (1976)  was generalized 
by Hall and Preiser (1984) to account for 
allocation of resources which is suitable to 
compare one network to another.  The authors 
further modified this into a combined measure to 
include module and network complexity. 
Measures proposed by Henry and Kafur look at 
the coupling between modules (Henry and 
Kafura 1981) while Troy and Zweben look at 
program structure as a measure of complexity 
(Troy and Zweben 1981).   

 More recently, Meepetchedee and Shah 
define complexity as the ratio of the number of 
network edges to the number of minimum 
spanning tree edges of the smallest network 
(Meepetchdee and Shah 2007). The model for the 
h-index used by authors is used as a basis for 
Bailey and Grossman’s network complexity 
index (Bailey and Grossman 2013). DeReyck and 
Herroelen (1996) discuss reduction of the 
network as a measure of complexity.  The 
authors define the complexity index as the 
minimum number of node reductions sufficient 

to reduce a two terminal acyclic network to a 
single edge. Complexity of business process 
models, as they are akin to software models are 
developed by Laue and Gruhn (2006). Keating’s 
measure of complexity (Keating 2000) is used by 
Stuikys and Damasevicius (2009) to propose 
three new measures for measuring domain model 
complexity when modeled with feature diagrams.  

 Most of the above measures can yield 
different interpretations of the network 
complexity as it is related to its topology. Some 
exceptions are Hall and Preiser (1984) who 
accounted for complexity of each node and edge 
and the simplistic standard measures of average 
vertex distance and average degree of vertex to 
vertex separation. However a supply chain is a 
directed, weighted graph with varying weights on 
each arc due to distances, costs, leadtime and the 
like. To account for this, Barrat et al. (2004) 
developed a measure of complexity which 
accounts for the capacity and intensity of the arcs. 
In the measure, vertex strength is calculated as 
the weighted sum of the arcs entering and exiting 
the vertex. This is furthered by finding the 
clustering coefficient of weighted nodes and arcs, 
providing a measure of congestion at the nodes. 

2.1.2 Supply Chain Complexity 
Supply chains fall in the class of scale free 

networks (Sun and Wu 2005) and typically, their 
properties are not normally distributed and their 
degree distribution is characterized by power 
distributions (Bailey and Grossman 2013, 
Meepetchdee and Shah 2007), making the task 
challenging. The literature on supply chain 
complexity is sparse, however, more recently, 
researchers have been analyzing a supply chain 
network as a complex system (Choi et al. 2001, 
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Mabert and Venkatarmanan 2009, Pathak et al. 
2007). The issue with most of these taxonomies 
is that they focus on one firm as the central point, 
yielding a greedy analysis of the system (Harland 
et al. 2001).  Others look at one factor as the key 
to understanding complexity of the network. For 
example, Grandori and Soda (1995) look at 
human resources to leverage their relative power 
in the SC. Looking at a supply chain triad, 
Madhavan et al. (2004) researched the 
dimensionality of the network concluding that 
complexity increases with an increasing number 
of triads. Choi and Krause (2006) look at 
complexity of the supply side as a function of 
three factors: the number of suppliers, their 
differentiation and their level of interrelationship. 
Using this theory, Skilton and Robinson (2009) 
correlate the level of complexity to the 
traceability of adverse events in the SC.  

2.1.3 Entropic Measures  
Few researchers have been looking at supply 

chain complexity through the eyes of network 
complexity. Entropy measures have been used to 
study manufacturing complexity, many utilizing 
Shannon’s entropy measure of the level of 
information in an unclear signal (Shannon 1948). 
For example, Deshmukh et al. (1992, 1998) and 
Frizelle and Woodcock used Shannon’s entropy 
method to measure structural (static) and 
operational (dynamic) complexity (Frizelle and 
Woodcock 1995). Isik (2010) amended their 
work by added a complexity level for each state 
probability. Manufacturing complexity has been 
studied by a few researchers. Calinescu et al. 
(1998) combined Frizelle and Woodcock’s work 
with Meyer and Foley Curley (1995) to calculate 
production system complexity, while Shih and 

Efstathiou (2002) utilized an algorithmic 
approach to investigate complexity of various 
manufacturing networks.  

Other authors have focused their entropic 
methods to analyze and measure the level of 
uncertainty within the flows of the network (Karp 
and Ronen 1992, Sivadasan and Efstathiou 2002), 
although their networks are limited to a 
newsvendor type situation. Perhaps the paper 
most closely aligned with this research and one of 
the only papers to consider SC network 
complexity utilizing entropic measures was 
Allesina et al. (2010). The authors apply eight 
different measures of entropy in a supply network 
and compare the results. This initial work 
proposes that, while each of these measures are 
necessary due to the different point of view each 
takes, further work is necessary to compile this 
into a practically applied measure.  

2.2 Network Clustering Measures 
 The standard measures of clustering are 

either local (restricted to a particular node) or 
global (over the entire network). One common 
local technique is to use the ratio of actual arcs 
that exist from a node to the number of possible 
arcs that could exist (Wasserman and Faust 1994). 
One of the issues with this method is that 
directionality of the arcs is ignored. Furthermore, 
Soffer and Vazquez proved that a node with a 
large degree vertex that is connected to a node 
with a much smaller degree vertex will always 
yield small local clustering (Soffer and Vazques 
2005).  To overcome this, the authors developed 
a three vertex correlation which effectively 
removed the degree correlation from the local 
measure. Others have overcome the issue by 
setting a threshold value for weighted graphs, 
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making it a binary graph: arcs which exceeded 
the threshold were given a weight of one and the 
remainder had zero weight. More recently, Barrat 
et al. (2004) and Zhang and Horvath (2005) 
extended the local measures by including a factor 
for weighted graphs.  

 Global measures are based on the notion of 
transitivity which is a measure of balanced or 
closed triads, namely the proportion of triads that 
are closed in directed graphs.  There are two 
common global measures: one is the ratio of the 
average number of arcs that exist to the average 
number of arcs that could possible exist. While 
the other uses the local measure and finds the 
average of nodes with degree larger than one 
(Opsahi and Panzarasa 2009). In order to make it 
usable for weighted graphs, some authors have 
again used the threshold value technique. 
(Wasserman and Faust 1994). Opsahi and 
Panzarasa (2009) utilize the geometric mean of 
the weights and compares the value of closed 
triplets to the total possible value of triplets.  
Onnela et al. (2005), Zhang and Horvath (2005), 
and Holme et al. (2007) also developed various 
clustering measures for weighted networks. 
Soffer and Vazquez (2005) compare each of these 
methods and discuss the shortcomings of each.  

2.3 Virtual Supply Chains 
It has been shown that the use of electronic 

information can greatly reduce the complexity of 
supply chains (Rogerson and Fidler 1994, 
Nagurney et al. 2005). While the literature on the 
effect of virtual or electronic supply chains is vast, 
to the author’s knowledge, there is no literature 
currently quantifying the effect on complexity 
with the inclusion of one or more virtual links. 
Not only does a virtual link reduce the 

complexity, those organizations that rely on 
electronic transport of information, money and/or 
product also demonstrate more efficient and 
effective flows (Chandrashekar and Schary 1999). 
Thus, when considering SC complexity, the 
weight of those virtual arcs should not be given 
as much consideration due to their lack of 
volatility. Here, an additional factor accounting 
for virtual arcs and the value they add to the 
resiliency of the network will be included in the 
complexity calculation as well. 

 This research combines a complexity 
measure incorporating the size or strength of the 
network and a measure of clustering along with a 
means of accounting for virtual arcs in order to 
determine overall complexity. Here, the measure 
of complexity (termed “strength” in this paper) 
utilized in Section 3.1 is similar to total system 
throughput seen in Allesina et al. (2010), 
however, includes weighted nodes as well as arcs 
like that proposed by Barrat (2004), which is 
used in conjunction with a modified measure of 
clustering. Typical measures of clustering utilize 
the ratio of the number of closed triads in the 
network to the total possible number of triads in 
the network, however, as with most supply chain 
studies, we assume that there is no “within 
echelon” link, meaning that the flow either goes 
up or downstream and not vertically and thus, 
there are no triads. Therefore, the standard 
measures of clustering must be modified to 
accommodate this, shown in Section 3.2. Finally, 
since e-commerce plays an ever-increasing role 
in every country’s GDP, some means of 
accounting for these must be included. The 
combination of these two measures gives a 
unique and more robust measure of supply chain 
complexity, accounting for not only the weight of 
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the system but the density as well, while 
incorporating virtual arcs. It is easily 
implemented in practice. 

3. Methodology 
 A supply chain has three principal flows: 

material, information and financial. Each of the 
three principal flows in the supply chain 
(material, information and financial) has various 
parameters which define them. For example, 
product flow can be defined by the lead time, 
distance and logistics cost. Additionally, in 
today’s global, electronic marketplace, these 
flows can be either virtual or physical and all of 
the flows within one supply chain need not be 
unique with respect to that characteristic. For 
example, ordering an item of clothing online 
will dictate a physical material flow (for the item 
to be shipped to you) and a virtual information 
and financial flow.   
The following are defined: 
K  = set of supply chain flow types, 

{ }1, , ,K k=    
L  = set of parameters for each flow type, 

{ }1, , ,L l=   
N  = set of nodes in the supply chain, 

{ }1, , ,N n=   

ijklW = weight of parameter l  for arc i  to j  
in flow type k ,  
, , , ,i j N k K l L∈ ∈ ∈  

ijklW = 1 if arc i  to j  exists for parameter l  
in flow type k , else, 0, 

SCΦ = strength of supply chain. 
Two measures will be developed and later, 

combined. The first, supply chain strength, will 
account for the weight and virtuality of the arcs, 
while the second will take the density of the 
network into account.  

3.1 Supply chain strength 
 Each individual flow and the 

corresponding data (weights) will be measured 
utilizing the complexity measure developed by 
Barrat et al. (2004) , as it is one of the few 
network measures that incorporates weighted 
arcs and nodes.  
Let, 

ilkS = strength of node i  for parameter l  in 
flow type k , 

ikS  = strength of parameter l  in flow type k . 
Using the measure for strength defined in 

Barrat et al. (2004) and the above-defined 
variables, the strength of node i for each 
parameter l within each flow k  and is given 
by: 

 
1

.
n

ilk ijlk ijlk
j

S a w
=

= ∑   (1) 

It is important to note here, that since one of 
the aspects of this research is virtual arcs, the 
value of  ijlkw  will be zero when the particular 
arc is a virtual arc ( 0 ijlkw≤ ≤ ∞ ). Unity-based 
normalization is used here for convenience 
(distinguished here as ilkS ) and calculated as 
shown in Equation 2. 
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Supply chain strength is found by the mean 
of each parameter in each of the three network 
flows shown in Equation 2. Due to the data 
normalization, this value for overall supply 
chain strength, shown in Equation 3, can be used 
as a relative measure since it lies between zero 
and one.   
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The term strength used here is actually 
paradoxical in the traditional sense. As discussed 
previously, some arcs can be virtual, which will 
reduce the true weight of the arc on the supply 
chain since, for example, a virtual transfer of 
funds or product will offer much less potential 
for complications in the supply chain such as 
delayed or late payments, lost or incorrect 
shipments. Thus two networks with identical 
weights but with different degrees of virtuality 
will give different values for strength; the one 
with a higher percentage of virtual arcs will 
provide a lower strength value.  The greater the 
value for the strength in each of the flows the 
heavier the flow is, meaning that the strength is 
a function of the quantity of arcs and their 
weights, and the number of virtual arcs. If 
supply chain strength is defined as above, then 
ideally, a less weighted, less congested network 
would simplify the supply chain and yield a 
lower strength. However, a less congested 
network also means less backup suppliers which 
would make the supply chain riskier and prone 
to disruptions. Therefore, while a higher value of 
strength is traditionally thought of as something 
positive, here, it will yield a value of higher 
supply chain complexity, which may not be 
desired. Hence, it is valid for the purposes of 
measuring complexity. The strength measure 
will be combined with the clustering measure, 
discussed next.  

3.2 Supply Chain Clustering 
 The typical definition of clustering 

coefficient is given as the ratio of the number of 
closed triads in the network to the total possible 
number of triads in the network.  Opsahl and 

Panzarasa (Clustering in weighted networks 
2009) extended this to a weighted clustering 
coefficient by finding the ratio of the geometric 
mean of the closed triads to the geometric mean 
of all possible triads.  We have accounted for 
the weights and virtuality in the strength 
measure, thus accounting for them here will only 
exaggerate them. Also, as discussed previously, 
a supply chain will typically not have any 
triplets. The supply chain clustering coefficient 
will be defined simply as the ratio of the number 
of total upstream and downstream suppliers a 
node is connected with to the total number of 
possible up and downstream suppliers, 
regardless of whether they are physical or virtual 
arcs. Shown in Equation 4, the complexity for 
node i  is the ratio of the number of edges 
connected to the vertices in the neighborhood of 
node i  divided by the total number of vertices 
in the neighborhood of node i . 

{ }: ,
,

ij j i ij
i

i

e v N e E

k
ρ

∈ ∈
=    (4) 

where, 

ije = 1 if the edge from i  to j  exists, else 0, 

iN = neighborhood of node i , 
E = set of edges, 

jV  = vertex j , 

ik = number of vertices in the neighborhood of i, 

SCρ = supply chain clustering. 

Supply chain clustering is the average clustering 
of the nodes in the supply chain as shown in 
Equation 5. 
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3.3 Supply Chain Complexity 
Here we will combine the measures for 

supply chain strength and clustering to be used 
as a final measure for supply chain complexity. 
The chosen model is a power model since 
networks are characterized by power 
distributions (Meepetchdee and Shah 2007) and 
supply chain clustering is fractional ( 0 1ρ≤ ≤ ).  

 (1/ )Supply Chain Complexity = .sc
sc

ρΦ   (6) 

Using this model, a complete network – one 
in which each supply chain member is 
connected to all of its up and downstream 
partners – will have a complexity value equal to 
supply chain strength and since both strength 
and the clustering inverse lie between zero and 
one, an increase in clustering will yield an 
increased complexity, as desired.  As discussed 
in Section 3.1, a larger value for supply chain 
strength indicates both larger arc weights and 
more physical (non-virtual) nodes. Since both of 
these are indicators of a more complex supply 
chain, the chosen representation is appropriate. 

4. Simulation 
In order to demonstrate the complexity 

measure, a simulation model was performed. 
The purpose is to simulate various possible 
supply chain scenarios, with varying percentages 
of weighted arcs and random weights associated 
with each arc and compare the supply chain 
complexity due to the clustering effect (% of 
arcs in the system).  

4.1 Simulation Model 
The supply chain shown in Figure 1 was 

used for simulation. So that there always existed 
at least one path from echelons 0 to 3, the arcs 

shown as solid were considered fixed and the 
remaining arcs shown dashed were randomly 
generated with each simulation, however it was 
assumed that if a node (in echelons 1 and 2) had 
at least one entering arc, it also had at least one 
exiting arc.  

 
 
 
 
 
 
 
 
 
 
 

Figure 1 Supply chain simulation model 
 
The set of parameters, ,l  for each of the k   

flows (material, information and financial) is 
defined as virtuality, distance, lead time and cost. 
In the material flow, distance represents the 
actual distance to ship a physical product, lead 
time is time required to ship the product and the 
cost is that borne by the supplier. In the 
information flow, distance will be the actual 
distance the information data needs to travel, 
lead time is time required to gather the 
information being sent, and cost is the associated 
cost with gathering and sending data. In the 
financial flow, distance is the actual distance the 
payment must travel, lead time is the average 
time the supplier is paid in and cost is the 
payment sum. One of the objectives of this 
research is to determine the effect of a fully or 
partially virtual supply chain. A virtual arc is 
considered for a particular flow if information 
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was delivered electronically, payment was made 
electronically or product is delivered 
electronically.  
The following sets are defined: 
K = {material, information, financial}, 
L = {distance, lead time, cost}, 

{ }1, ,10 .N =   
The random network is generated as described 
above, considering the one path show in a solid 

line in Figure 1, and the other arcs generated by 
a binary random variable (1=existence of arc, 
0=non-existent arc), with the assumption that if 
a vertex in echelon 2 had an entering arc from 
echelon 1, it also had at least one exiting arc. 
After the random network was generated, each 
arc was assigned a binary random variable to 
designate its virtuality. The weights assigned to 
each arc are shown in Table 1.  

 
Table 1 Weights used for simulation 

 
The total number of possible arcs in the 

system is 21, therefore the clustering effect, 

SCρ  is the number of arcs generated for that 
simulation divided by 21 and the percent of 
virtual arcs is found in a similar manner. For 
comparison purposes, a purely physical supply 
chain (one with no virtual arcs) was also 
simulated with the same parameters and 
distributions. Both of the models were simulated 
10,000 times each and results are discussed 
below.  

The total number of possible arcs in the 
system is 21, therefore the clustering effect, SCρ , 
is the number of arcs generated for that 
simulation divided by 21 and the percent of 
virtual arcs is found in a similar manner. For 
comparison purposes, a purely physical supply 
chain (one with no virtual arcs) was also 
simulated with the same parameters and 
distributions. Both of the models were simulated  

10,000 times each and results are discussed 
below.  

4.2 Simulation Results 
 The data is normalized as outlined in 
Section 3.1 and 3.2 to generate supply chain 
strengths and complexities for the purely 
physical and partially virtual networks. Figure II 
shows the change in strength as more virtual 
arcs are added to the network. As mentioned 
earlier, a higher value of strength, is not 
necessarily desirable, since it increases 
complexity. As expected from Equations 2 and 6, 
the general trend is that the more virtual arcs 
that are added to the network, supply chain 
strength will decrease. However, it can also be 
seen that for virtual networks, strength is lower, 
regardless of how clustered the network can be. 
It is worth noting that while a purely physical 
network will always yield 100% of expected 

Weight Variable Description Simulation Value 

ijklW   Weight of parameter l for arc i to j in flow type k , 

, , , ,i j N i j k K l L∀ ∈ ≠ ∈ ∈   

Virtual arcs 

Non-virtual arcs 

 

 

0jklW =   
~ [1,10]ijklW U   
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strength, even a small percentage of virtual arcs 
(shown as little as 25% virtual in Figure 2) can 
reduce this strength by about 15%.  
 

 
Figure 2 Effect of virtual arcs on SC strength 

 

 
Figure 3 Complexity vs clustering for various 

configurations of virtuality  
 

Complexity is the focus of this research. 
Figure 3 shows the calculated complexity value 
for both the physical and partially virtual 
networks, respectively. It becomes clear that 

supply chain complexity increases rapidly with 
the number of arcs (% of clustering) in the 
network and that the use of virtual arcs can 
decrease this significantly. For a supply chain 
with a clustering percentage of under 
approximately 40%, the percentage of virtual 
arcs does not play as large of a role in reducing 
the clustering factor as much as when the supply 
chain is more clustered. For large values of 
clustering (over 80%) however, the addition of 
even a small number of virtual arcs can reduce 
the complexity by approximately 30%.  

5. Conclusions 
 Supply chain complexity is an issue that is 
becoming more prevalent and corporations need 
to pay attention to this factor in order to 
maintain a competitive edge. The first step is to 
have a standard methodology to measure the 
network. This research presented a 
comprehensive formulation combining supply 
chain strength and supply chain clustering to 
obtain a value for supply chain complexity. The 
simplicity of the formulation makes it easily 
adaptable in practice and should be utilized 
when designing SC networks. Supply chain 
strength factors in the amount of 
information/cost/distances involved (arc weights) 
and the presence of virtual arcs which will 
reduce overall complexity. The supply chain 
clustering incorporates the denseness or 
connectivity of the network. Like most network 
complexity models, these are combined as a 
power function for a final supply chain 
complexity value.  
 It was shown that strength and complexity 
generally increase as the connectedness or 
clustering increases. They both, however, are 
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reduced significantly with an increasing number 
of virtual links.  It is understood that while a 
virtual supply chain can function more 
efficiently and accurately, it is also prone to 
higher risk, thus much literature focuses on risk 
mitigation and resiliency techniques (Harland, et 
al. 2003, Chandrashekar and Schary 1999, 
Kleindorfer and Saad 2005). When designing a 
SC network, it would be beneficial for supply 
chain managers to utilize a complexity 
methodology such as this to find a point at 
which complexity will be reduced enough but 
that the desired level of resiliency is maintained. 
Future work will incorporate risk level of a SC 
entity into the relative value of a virtual arc. This 
can be utilized as a methodology to design for 
optimal complexity based upon a desired risk 
level.  
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