
Chapter 4
Separating Safety and Control Systems
to Reduce Complexity

Alan Wassyng, Mark Lawford, and Tom Maibaum

4.1 Introduction

This book is about complexity in the context of analyzing, designing and implement-
ing software intensive systems. Actually, there are three different kinds of complex-
ity that are of direct relevance. It is thus important to define the terminology we will
use so that we may be as clear as possible as to exactly what kind of complexity is
under discussion at any one time.

Problem complexity—the inherent complexity of the simplest but still com-
plete and accurate version of the application (problem) to be built.
Programming complexity—the complexity of the implementation of the ap-
plication.
Computational complexity—the performance cost of an algorithm.
Complexity—if we use the generic term, ‘complexity’, we mean both problem
and programming complexity.

At the moment there is a vast difference in what we know about the three kinds
of complexity. There is a growing body of knowledge related to computational com-
plexity, including terminology that describes how complex an algorithm is. There
are also accepted measures of this kind of complexity. Unfortunately, we cannot
claim the same for problem complexity and programming complexity. We speak
about these (related) complexities often. We proclaim that they are an important
cause of software errors. However, we do not even know how to measure them ef-
fectively, which seriously impacts our ability to design experiments to study them.
Even more unfortunate is that, in the context of developing safe and dependable

T. Maibaum (�)
McMaster University, Hamilton, ON, Canada
e-mail: tom@maibaum.org

M. Hinchey, L. Coyle (eds.), Conquering Complexity,
DOI 10.1007/978-1-4471-2297-5_4, © Springer-Verlag London Limited 2012

85

mailto:tom@maibaum.org
http://dx.doi.org/10.1007/978-1-4471-2297-5_4


86 A. Wassyng et al.

systems, it is problem complexity and programming complexity that are of primary
importance.

Complexity is important to Software Engineers because we have anecdotal evi-
dence that systems of high problem complexity are extremely difficult to build so
that they are suitably dependable [15]. And we have enormous amounts of evidence
that systems with high programming complexity are extremely hard to maintain, in
the full general sense of maintenance. Computer Scientists and Software Engineers
have spent years developing techniques for dealing with complexity. The most im-
portant of these techniques are abstraction and modularization (as a specific and
somewhat limited form of separation of concerns).

Abstraction is a common and useful practice which is used to focus attention on
a simplified view of the system/component. The idea is that the view should retain
relevant information but ignore ‘irrelevant’ details that make the system/component
more complex. Abstraction is an essential tool in our toolkit. It helps us understand,
model and analyze complex systems. Problem complexity cannot be reduced by
abstraction, though it, and some related notions, such as views, may help us cope
with complex systems. What is definitely reduced by abstraction is programming
complexity. Abstraction is not unique to the software world. It has been used effec-
tively for ages by anyone who has had to build mathematical models of complex
systems—physicists, engineers, economists, ecologists, and many others. Some-
times, we are so expert in abstraction that we do not notice that we have abstracted
away essential details of the real system! So, abstraction can genuinely reduce com-
plexity, but the reduction is usually temporary. At some stage, most of the details
have to be reintroduced into the solution. However, we should not underestimate the
usefulness of abstraction while we develop our understanding of the system that has
to be built.

Modularization is a special case of separation of concerns. We do this, i.e., mod-
ularize, at many stages in software development. For example, we may modularize
the requirements so that the required behavior is easier to understand. Typically
this is done along functional lines. We can modularize the software design (and the
code) so that it has some desirable properties. For example, information hiding was
postulated by Parnas [21, 22] so that the software design would be easy to maintain
under classes of foreseen changes. And, speaking of ‘classes’, object oriented de-
sign/programming was developed to further enhance our ability to modify existing
design modularization when subjected to change. In all these cases, modularization
has come to mean encapsulation of behavior and/or data in modules. Each module
is relatively simple and the modules communicate with each other through pub-
lic interfaces. This is not only an example of separation of concerns, it is also an
example of an old standby in dealing with complexity—divide-and-conquer. Mod-
ularization lies at the very heart of modern Software Engineering. It has proved to
be extremely effective in providing a mechanism for structuring software designs in
particular.

Modularization has become so useful, in fact, that software experts proclaim that
it is possible to reduce complexity through the use of modularization and other sim-
ilar software engineering techniques and principles. We now think that this view



4 Separating Safety and Control Systems to Reduce Complexity 87

is flawed. There is a very good reason why it is useful to differentiate between
problem complexity and programming complexity. If we are correct in supposing
that there is such a concept as problem complexity, it suggests a principle we can
formulate as conservation of complexity. Simply put, our conjecture is that we can-
not reduce the programming complexity of a system to the extent that it is ‘less
than’ the problem complexity of that system, whatever measure we use for com-
plexity. In the case of modularization, for example, we might say that the indi-
vidual program components are simplified while their interactions are made more
complex. In fact, it is often observed that the (programming) complexity of mod-
ern systems is not in their components, but in the interactions between compo-
nents.

So, if we cannot really reduce the programming complexity of a safety-critical
system below its problem complexity, and if the dependability of the system is
adversely affected by high problem/programming complexity, how can we build
highly dependable safety-critical systems?

There are a number of good answers to this question—and this book contains
many of them. Our answer focuses on an idea that supersedes the concept of mod-
ularization, namely separation of concerns. This approach has provided excellent
solutions in a number of instances in the past. Our suggested approach is an ex-
treme case of separation of concerns. What if we can partition the system so that
we have components with no (or very little) interaction between them? For ex-
ample, Canadian regulations for nuclear power generation state that safety sys-
tems in nuclear power plants have to be completely separated from the control
systems in that plant, and isolated as much as possible from each other (where
there is more than one safety system). Similar regulation is actually common in
other countries [18, 19], as well as in the process control domain. A significant
difference seems to be how strictly the regulation is enforced across countries
and between the domains. A decade or so ago, there was general adherence to
this principle of separation. There is now pressure to relax/remove this restric-
tion. The pressure comes from manufacturers of these systems, not from regula-
tors!

Analogous principles are used in other settings: operating systems kernels, com-
munication kernels, etc. In recent years we have found that there are advantages in
building dynamically adaptive embedded systems. These systems often have to react
to malfunctions and/or changes in the environment. It seems to us that this principle
of separation may be just as important for these systems as it is for many current
safety-critical systems. Many adaptive and reconfigurable embedded systems inte-
grate safety-critical and mixed-criticality components. We believe that these systems
should be designed so that the safety and adaptive components must be separated
for the same reasons that safety and control systems are separated. This could even
cover separation of components such as those for communication from components
corresponding to application features [7].

A recent paper on separation of concerns and its usefulness in relation to de-
pendability of systems makes similar points about the usefulness of separation of
concerns in relation to establishing the dependability of systems. [10]. The paper



88 A. Wassyng et al.

focuses on the idea of simplicity as the underlying basis for the feasibility of es-
tablishing dependability. We revisit a few of the arguments in this paper below and
add our own. Most importantly, we replace the undefinable notion of simplicity (a
call to arms proclaimed for several decades by Tony Hoare [8], and now reissued
by Lui Sha [24] and others), by the definable and scientific concept of problem
complexity.

For the remainder of this chapter we will use separation of safety and control
systems in the context of the nuclear power domain to illustrate the concepts and
principles, referring to other examples as and when necessary. We first introduced
the idea of conservation of complexity in an invited paper [27] specific to adaptive
systems, which served as the basis for this chapter.

4.2 Reducing Complexity

A fundamental reason for separating control and safety systems is that we believe
that, at least in the nuclear domain, fully isolated safety systems are inherently less
complex than are the systems that control the reactor (“fully” here means one ex-
treme of separation, what we might call physical separation). The safety subsystem
is literally isolated from the control system and each safety subsystem (there were
two at Darlington) is totally separated from the other. The disparity in complexity is
even greater between safety systems and integrated safety and control systems. We
also believe that this reduced problem complexity enables us to design, build, and
certify the behavior of the safety system to a level of quality that would be difficult
to achieve for an integrated, and thus more complex, system.

The safety systems at Darlington were of the order of tens of thousands of lines
of code, whereas the control system was of the order of hundreds of thousands. Now,
given extant criticisms of the lines of code metric for complexity, we do not want
to use this essentially qualitative measure for anything other than to emphasize the
difference in size and, therefore, the likely significant difference in programming
complexity—and by inference, problem complexity as well. This order of magni-
tude difference in programming complexity alone indicates the impact on analyz-
ability of the two pieces of software. As we know, more or less any verification
approach (testing based or proof based) suffers from exponential growth in the size
of the search space in relation to ‘size’. Hence, the control system, and similarly
an integrated control and safety system, will not be an order of magnitude more
difficult to analyze, but exponentially harder.

At this point, it may be useful to discuss the principle that we have called the con-
servation of complexity. We assert that systems and their requirements have some
level of inherent complexity. Sometimes, systems are designed so that they are more
complex than necessary, ditto requirements. However, for a particular system, there
is some level below which its complexity cannot be reduced. Principles like modu-
larity do not reduce this inherent complexity; they simply redistribute it. Modularity
may reduce complexity of parts. However, if we want to consider the complexity of
the complete system we must ‘add’ the complexity of interactions between parts.



4 Separating Safety and Control Systems to Reduce Complexity 89

Modularization in the usual sense is taken to mean division into parts in relation
to the functionality or features to be delivered by the application. The divide and
conquer strategy in problem solving is often taken as the pattern on which to base
such functional decompositions. What is often forgotten in such discussions is that
the decomposition of a problem into subproblems that are easier to solve must be
accompanied by a recomposition operation that is not ‘free’. This recomposition in-
volves some level of complexity. The complexity of interaction mentioned above is
a direct reflection of this cost of recomposition. In fact, it has often been observed
that the complexity of modern, large systems is down to the interaction between
components, whilst components themselves tend to be trivial. Very few would ar-
gue that modern large systems are not complex, though some might argue that they
have somehow reduced the complexity of the application. If there is any truth to this
latter claim, it must, in our view, be related to programming complexity: surely no
one would disagree with the assertion that the programming complexity of a modu-
larized design is significantly lower than that of a monolithic design. So, this line of
argument does not provide evidence for having lowered problem complexity in any
way; in fact, our use of the word conservation in this context implies that it cannot
be reduced.

Now, separating safety and control in a system is not an example of modulariza-
tion in the usual sense, because, surely, we are not taming complexity by moving
complexity to interaction. Separation, in this example, creates two independent sys-
tems, at least one of which is going to be inherently lower in problem complexity
than that of the original problem. Of course, the other part, the control system, may
also be inherently less complex than the original requirements, but the two systems,
taken together, are no less complex than the original integrated system because of
the conservation of complexity. This separation is an example of separation of con-
cerns that cuts across functional hierarchies. In fact one might characterize it as
doing the opposite of aspect weaving! It disentangles safety concerns from the var-
ious parts of the system and packages them up in a separate subsystem, never to be
weaved again into the application.

Of course, such a complete separation may not be possible in all systems. Adap-
tive and dynamically reconfigurable systems may be examples of such systems. For
these, we need to develop a better understanding of the separation that is feasible
and how this contributes to a division that still enables the development of greater
confidence in the safety component, because its problem complexity is significantly
lower than that of the original problem and, further, its interactions with the rest
of the system are also of less complexity than the original. The differences in com-
plexity still have to be significant enough to enable the claim of simpler analysis. An
example of such a system, where complete separation is not possible, is that of op-
erating systems and trusted kernels. One of the motivations for building operating
systems using trusted kernels is exactly the issue of low complexity and analyz-
ability. The kernel is significantly simpler than the whole operating system and its
interactions, usually defined through a small interface with the rest of the operating
system, are also significantly less complex than interactions in the other parts of the
operating system.



90 A. Wassyng et al.

4.2.1 The Effect of Reduced Complexity on Quality and
Dependability

In our context, it is the effect of complexity on dependability and the quality of the
software that is of primary interest. Surprisingly perhaps, we have not yet in this
chapter discussed any sort of definition for ‘complex system’. This is not an over-
sight. It seems to be a fact of life that people instinctively know what complexity
means, but defining it has occupied the minds of countless philosophers and re-
searchers from many domains over many years—and we still do not have a widely
accepted definition of what constitutes a complex system. In a very recent paper,
Ladyman, Lambert and Wiesner [14] list many ‘definitions’ of a complex system,
including the following one that we found to be the most appropriate in our context.
This definition originally appeared in [29]:

“In a general sense, the adjective ‘complex’ describes a system or compo-
nent that by design or function or both is difficult to understand and verify.
[. . . ] complexity is determined by such factors as the number of components
and the intricacy of the interfaces between them, the number and intricacy of
conditional branches, the degree of nesting, and the types of data structures”.

This statement seems to fit our notion of programming complexity. It is directly
related to the notion of “aggregate complexity”, which ‘concerns how individual
elements work in concert to create systems with complex behavior’ [16]. There have
been many attempts to create practical and representative metrics for programming
complexity, and some of them use the components of this definition (see [6] for
representative examples). However, none has met with any significant success, and
the metric most commonly used in practice is an old and simple one that we referred
to earlier—lines of code (LOC). There are many documented problems with using
LOC as a metric for programming complexity [11], but alternatives seem to fare no
better [5]. This brings us to our first point.

1. Reduction in size. The crucial fact here is that we use the resulting code size of
the system as a measure of programming complexity. Size can be measured in
LOC as discussed above. This assumes that LOC is typically correlated with the
number of system inputs and outputs, the number of classes/modules, and even
the state space of the system. Thus LOC provides us with an indication of pro-
gramming complexity. The specific ‘size’ does not matter. We are interested in
the size merely as an indication of the programming complexity of the system,
and hence the feasibility of using rigorous (mathematical) methods and tools to
complement more typical approaches, and to be able to retain sufficient intel-
lectual control over the design and implementation of the system to achieve the
required dependability. At this stage in the history of software engineering, we
are capable of using formal techniques to specify the requirements and design
of ‘small’ systems, and thus be able to mathematically verify designs against



4 Separating Safety and Control Systems to Reduce Complexity 91

requirements and code against designs with a level of rigor that is not yet pos-
sible for larger systems [26]. One conclusion to draw here is that reduction in
programming complexity may not really be effective unless the resulting system
is small enough to be amenable to a variety of validation and verification meth-
ods, not just testing. Constructing and certifying safety systems that are smaller
than a hundred thousand LOC is a very different task compared with systems
that are hundreds of thousands of LOC, let alone millions of LOC. Note that ver-
ification is just one of the activities adversely affected by the size of the system
(programming complexity of the system), but it is a pivotal one.

Returning to the point at issue: if we can achieve a significant reduction in
the size of the application, we believe that it is possible to reduce the problem
complexity of that application. Put another way, the only way to reduce the size
of an application by a significant amount is to reduce the problem complexity of
the application. There is a trite but important assumption implicit here, and that
is that the application has not been so poorly designed that we could achieve a
significant reduction in programming complexity simply by doing a better job.

We believe that we can reduce the problem complexity of the system in a
number of ways:

• we can scale back the number of features planned for the system;
• we may be able to reduce the number of inputs and/or outputs;
• scaling back efficiency requirements often reduces the complexity inherent in

the system;
• we can require a rudimentary user interface rather than a sophisticated one;
• we can reduce or eliminate concurrency;
• we can restrict or eliminate interfaces to other systems;
• we can remove error handling;
• we can relax timing requirements.

Most readers will be quite familiar with the above list—or one very much like it.
We see some or all of these actions all the time in industry. We may even have
resorted to using these ‘simplifications’ ourselves. If we further examine each
of these ‘cuts’, we can envision quite easily that each of them would result in a
reduction in the size of the implemented system, measured by LOC. This would
seem to confirm that these ‘cuts’ would reduce the problem complexity of the
system. This fits in well with our suggestion that one way to reduce the problem
complexity of a system is to partition the system. If we partition the system into
two parts, for example, and if we can isolate a small, cohesive subset of the orig-
inal requirements into a separate system, then that system will have significantly
fewer features, inputs and/or outputs, than did the original, integrated system.
There are usually two reasons for making the above ‘cuts’ to a system under de-
velopment. The first is that we are far behind schedule and the schedule has to
be met (not always true), so that if we do not reduce the scope of the system,
we will not meet the schedule. The second is that if we try and get everything
done, the quality (correctness, dependability) of the resulting system will be in-
adequate. In other words, experience has taught us that if we are struggling with



92 A. Wassyng et al.

maintaining the quality of the system under development, reducing the number
of features, inputs and/or outputs may allow us to achieve the target quality of
the system. This shows that we have, for years, instinctively linked problem com-
plexity with system dependability. The greater the complexity, the more difficult
it is to achieve the required dependability.

2. Reduction in algorithmic complexity. Simple algorithms and data structures are
easier to construct correctly in the first place, and subsequently are easier to ver-
ify as being correct. Manual verification poses few challenges and automated
verification is often quite straightforward. On the other hand, proving that com-
plex algorithms achieve desired results and that they are implemented correctly,
presents us with significant challenges. This is easy to see when we examine the
progress we have made in certifying scientific computation software packages.
Scientific computation packages (as well as statistical packages) have a long his-
tory, going back to the 1960s. These early versions were surprisingly reliable
in spite of the lack of sophistication regarding their development—by today’s
standards. An advantage that they enjoyed was that each method was based on
strong mathematical knowledge about the algorithms and also about tests that
should be performed to confirm that the methods were working correctly. As sci-
entific computation grew more ambitious, the problem complexity of the pack-
ages grew tremendously. Today, many researchers are deeply concerned about
the dependability of scientific computation [12]. The increase in algorithm com-
plexity has led directly to an increase in problem complexity so that development
and verification of large scientific computation software suites remains an open
and extremely challenging research field [4]. To reduce problem complexity in
a system with considerable algorithmic complexity, it is not sufficient to simply
partition the system into two parts. We have to partition the system in such a way
that one part will have significantly reduced algorithmic complexity. Fortunately
this is possible in many of the systems we are interested in. Later, in Sect. 4.2.3,
we will show why we believe that separation of safety and control is likely to
result in a safety system that has much less algorithmic complexity than either
the associated control system, or the integrated system.

4.2.2 Modularization and Abstraction Cannot Reduce Problem
Complexity

Modularization is often touted as a way of reducing complexity. In fact modulariza-
tion (and abstraction) cannot reduce problem complexity, but may actually increase
programming complexity, in order to, for example, improve maintainability. Still,
“conquering complexity” is a common phrase used to describe how modularization
supposedly makes things simple enough for designers to be able to cope with the po-
tential complexity of an application. The motivation for this comes from the divide
and conquer problem solving techniques used in many areas of mathematics, engi-
neering and science [23]. As noted above, the divide and conquer tactic is intended



4 Separating Safety and Control Systems to Reduce Complexity 93

to reduce the solution of some problem to the solution of several subproblems, each
of which is a ‘simpler’ problem than the original. But an often unstated part of this
tactic is the necessity to find a way of composing the solutions of the subproblems
to provide the solution to the whole problem. So the overall problem complexity
of the solution to the problem is a function of the complexity of the solutions to
the subproblems and the complexity of the composition mechanism used to ‘aggre-
gate’ the overall solution. The same may be said about programming complexity,
though the function used to compute this overall complexity will likely be different
from the one used for problem complexity. This function may differ from problem
to problem and from one composition function to another. In modern large systems,
the ‘composition’ operator on subproblem solutions may be extremely complex, and
inherently so.

In fact, many modern systems may have little programming complexity in any
particular module, but the numbers of modules and the variety of interactions and
behaviors possible as a result of their combination boggle the mind. There is no ob-
vious reduction in overall complexity as compared with the system’s problem com-
plexity. In fact, the real tactic behind the divide and conquer method is to reduce
the solution of an ‘unknown’ to that of a number of known problems and a known
technique for combining their solutions. The overt purpose of the tactic is not reduc-
tion of overall problem complexity, but a reduction in the complexity of the solution
process undertaken to solve the problem—reducing the solution problem to known
patterns of solutions. If (inherent) problem complexity is to mean anything, then
no tactic will have the effect of reducing it. In fact, one might say that engineering
methods address the issue of solution complexity—the problem of finding a solu-
tion to an application problem—by systematizing the tactics used to solve a specific
class of application problems. One might conjecture that programming complexity,
as discussed above, somehow reflects this solution complexity. However, we do not
plan to go further in this direction in this chapter.

In respect of programming complexity, it may be conjectured that modularization
techniques sometimes act to increase it. The pattern of solutions to sub problems and
their composition may well act to introduce ‘artificial complexities’ (non-essential
complexities) in relation to basic problem complexity. This is perhaps best exem-
plified by the problems of entanglement in object oriented implementations. As an
example, in a recent investigation of a three tiered application (database, generic
application software, and company specific application software), three functions of
interest at the database level were potentially called by more than 80,000 functions
at the generic application level, but this was again reduced to five functions at the
company specific level. The enormous numbers associated with the middle layer
were largely the result of the use, perhaps inappropriate, of inheritance structures.
This kind of programming complexity does not appear to be uncommon in the ob-
ject oriented world. We should note here that the problem of analysis in relation
to dependability is clearly more a function of programming complexity than prob-
lem complexity, assuming that the former is always greater than the latter. However,
problem complexity defines a minimum analysis complexity to be expected for the
application.



94 A. Wassyng et al.

We now come to the consideration of abstraction in relation to complexity. While
modularization is often said to reduce complexity by reducing a complex system to
its parts, abstraction is said to reduce complexity by ‘forgetting’ unnecessary details.
Certainly, we would agree with this statement if the complexity referred to in the last
sentence was programming complexity. The ‘unnecessary details’ referred to above
are always intended to be those necessary to make the problem solution executable
on a computer. However, it is not clear to us why abstraction should reduce problem
complexity. An abstract model that captures the essence of a problem must also
inherit its complexity.

Having said that, there may be one abstraction technique (and perhaps others)
that appears to reduce problem complexity, namely the use of views or viewpoints
[17, 20]. A view of an application is a partial specification that not only leaves out
unnecessary details, but also leaves out aspects of the application problem. The view
might be seen as presenting a subproblem, and the inherent problem complexity of
this subproblem may well be less than that of the whole. The analysis of the view
may then indeed be simpler than that of the whole. However, as for modularization,
we may well have difficulties in putting views together and performing the analysis
related to this ‘view composition’. So we find that again, the technique does not
really reduce problem complexity. The use of views is an example of separation
of concerns in the more general sense discussed above. As such, when it comes to
establishing dependability properties of an application, it may be quite efficacious in
reducing the complexity of performing an analysis by dividing the analysis into parts
that may require differing levels of rigor. An example of this will be discussed next:
separating safety subsystems from control subsystems. However, for this to happen,
there also has to be a commensurate reduction in programming complexity related
to the core dependability concerns. If, as is usual in implementing applications, the
views developed at the abstract level have no direct correspondences with parts of
the application, then the programming complexity introduced by the implementation
completely overwhelms the reduced complexity of individual views.

It is possible that a catastrophic example of this kind of complexity leading to
disaster was the integration of patient billing information with the control of clinical
X-ray therapy machines such as those reported in the articles in the New York Times
[1, 2]. We have no written documentation confirming this, but have been told that
this happened. Whether it is accurate or not, the possibility is very real. The medical
device in question had no separate safety system; it was integrated with the control
features. A very serious error occurred when the settings for the shields used to focus
and aim the X-rays were accidentally left fully open leading to a serious overdose
of radiation applied to a patient. Although the machine was regularly checked and
calibrated, because the machine’s software was directly linked to the billing system,
the next time the patient came in for therapy, the device’s software recovered patient
information from the billing system and set the device to the configuration used in
the previous overdose. So, it is possible to conjecture that a serious error imparting
profound harm to the patient, which could have been prevented by a separate safety
system, was compounded as a result of increased problem complexity caused by
linking the device to billing subsystems. The initial error could be said to have been



4 Separating Safety and Control Systems to Reduce Complexity 95

caused by combining safety and control features into a complex whole, resulting in a
highly complex system that was too complex for proper safety analysis. The second
(and subsequent errors) were the result of making the dependability problem even
more complex by introducing the link to the billing system.

4.2.3 Why Control Is More Complex than Safety

The shutdown system in a Canadian nuclear power plant is designed to monitor
whether safety limits are exceeded, and in such cases to initiate the shutdown of the
plant. The shutdown must be irrevocable once started, which simplifies the logic—
but this principle is sometimes relaxed if the additional logic required is minimal.
A nuclear reactor operates by initiating and then controlling a nuclear chain reaction.
This reaction is constantly changing and so the nuclear control system algorithms
initiate actions that are definitely not irrevocable. These control system algorithms
are designed to keep the reactor operating within safe limits, but their purpose is
to maximize productivity by maximizing the power level, and so they are far more
complex than the simple checks against safety limits implemented in the shutdown
systems.

The difference between control and safety systems is reflected in the mathemati-
cal analyses that are performed for these two classes of systems. The nuclear safety
analysis always assumes that trips are taken to completion, and this simplifies the
required behavior. The same assumption is clearly not appropriate for the control
systems. Partly as a result of this assumption, in our experience, almost all the algo-
rithms required in nuclear shutdown systems are extremely simple. This is certainly
not true of the control systems. Note that we are not saying that the mathematical
nuclear safety analyses performed to obtain requirements for the shutdown systems
are simple. They are not, and correctness of the scientific computation code used to
perform these analyses is an ongoing research topic.

There are at least two primary reductions in complexity that we expect to see
in safety systems. The first is a reduction in size, and the second is a reduction in
algorithmic complexity.

1. Reduction in size. The shutdown system is responsible for monitoring reactor
attributes (neutronics, pressure, temperature, flow of coolant, etc), checking them
against pre-determined limits, and initiating a shutdown if necessary. It has to
be able to accept a very limited set of operator inputs, and may have limited
communication functions to perform. If we use the number of lines of source
code as an indication of complexity, we expect that it should be of the order of
tens of thousands, and the number of system inputs and outputs under a hundred
for each. These are then relatively small programs by modern standards, and
tend to be more amenable to the application of rigorous software engineering
techniques in ways and at a level that would not be possible for more complex
systems, which typically require hundreds of thousands of LOC. As an example,
the shutdown systems for the Darlington Nuclear Generating Station in Ontario



96 A. Wassyng et al.

are of the order of 30,000 to 40,000 LOC. The control system for the same plant
is upwards of 500,000 LOC. Alternatively, there may be other measures of size
that are more meaningful in this context and do not correspond directly to LOC,
but relate to complexity of analysis.

2. Reduction in algorithmic complexity. The control systems in nuclear power
plants contain algorithms that are designed to control the nuclear chain reaction
such that the plant operates at maximum power and still maintains all its moni-
tored parameters within safe operating limits. These algorithms are also designed
so that the controlled behavior is stable. By comparison, most of the algorithms in
the shutdown systems are incredibly simple. A huge proportion of the algorithms
implement simple checks of monitored values against predefined limits. Some of
the algorithms have to cope with simple timing behaviors, while others imple-
ment very basic hysteresis behavior, and signal calibrations. The complexity of
these algorithms is demonstrably orders of magnitude less than those required
for the control systems.

As noted above, by reducing both size and algorithmic complexity, we have directly
addressed the two main complicating factors in the analysis of software. By reduc-
ing the size of the program and by reducing algorithmic complexity, we will have
reduced analysis complexity exponentially. In the ongoing battle to build depend-
able systems, this should be considered a signal achievement.

4.3 Separation of Concerns

There is a long-standing principle in software engineering that we can use separa-
tion of concerns to control complexity in software systems. Separation of control
and safety systems can be viewed as a special case of separation of concerns, and
there is at least one recent example in the software literature indicating that people
are recognizing the importance of this [10]. Again, there is a case to be made that this
separation of concerns is not the same as modularization. It is more like the splitting
of the system into parts in a way that does not respect the rules of modularization.
The ideas behind aspects come to mind. It seems to us that work in adaptive and
reconfigurable systems has failed to consider adequately the use of such separation
mechanisms to affect better control of safety functions. There is a real opportunity,
in exploring these ideas, to improve safety mechanisms for this emerging class of
systems.

4.3.1 Physical Separation: Reducing Complexity

A fundamental safety principle is to maintain physical separation and independence
between safety systems and control systems. This helps limit the impact of com-
mon cause failures and systemic errors, and provides protection against sabotage



4 Separating Safety and Control Systems to Reduce Complexity 97

and cyber-attacks. These are important principles that establish the requirements to
assure that high reliability requirements are met. Physical separation as a primary
safety principle has been a standard requirement throughout the process control in-
dustry for decades, and independent protection layers are mandated in international
standards such as IEC 61508 [9]. As noted above, this is also a requirement in the
regulation of nuclear power plants in both Canada and the USA. The only engineer-
ing arguments against this principle come from considerations of efficiency rather
than safety. However, where such an argument arises, safety always trumps effi-
ciency. If a safe system is not efficient enough, design engineers need to find a
different solution. The question of where to draw the line between integration and
strict separation of safety and control systems has gained some traction in recent
years. Some manufacturers of nuclear power station control systems do not wish
to separate safety systems from control systems, and, compounding the problem,
wish to integrate plant management systems and even billing systems into the crit-
ical software controlling the power generation. Others wish to weaken the physical
and logical separation of redundant control systems by allowing communication and
interaction between them, to save cost by reducing the number of parts. As a con-
sequence, there is, unfortunately (in our opinion), a recent and deleterious trend to
weakening the physical separation between shutdown systems, and between shut-
down and control systems. We address this development in Sect. 4.5.

So how does this relate to our discussion on complexity? If we look again at
our opening sentence in Sect. 4.2, we see that we described the separated systems
as ‘fully’ isolated, meaning physically separated. There was a good reason for this.
Physical separation of the systems helps us show that there is minimum, hopefully
zero, interaction along interfaces between the systems. We need to show that any
interaction between the systems is restricted to those interactions possible in their
environments. This is not the same as having to cope with interactions through a
common interface. To achieve this, the systems must be logically separate from
each other. Demonstrating this conclusively is sometimes nontrivial. Actual physical
separation makes this a much easier task. Logical connections are only possible
where there are physical connections, and these would then be clearly visible—or,
even better, non-existent.

As an aside, and not connected to our discussion on complexity, there are addi-
tional reasons that physical and logical separation of safety systems from each other
and from control systems benefits the cause of dependability and safety.

The first of these is related to common cause failures [19]. Common cause fail-
ures occur when more than one component in a system fails due to a single shared
cause. This is clearly not limited to software and has been studied over a signif-
icant period of time. Prevention of common cause failure is a staple of interna-
tional standards and regulations related to high-dependability systems, for example,
the Common-Cause Failure Database and Analysis System: Event Data Collection,
Classification, and Coding [18], and Guidelines on Modeling Common-Cause Fail-
ures in Probabilistic Risk Assessment [19], nuclear regulatory documents published
by the Nuclear Regulatory Commission in the USA. The Common Cause Failure



98 A. Wassyng et al.

Database1 is a data collection and analysis system that is used to identify, code and
classify common cause failures events.

Separation on its own is not enough to prevent common cause design errors.
In this case we need to add diversity and independence to our toolset. Diversity
and independence are sound arguments (for software, enforced diversity [3] should
be preferred), and are reflected in all international standards that apply to high-
dependability systems. Diversity and independence do not make sense unless the
systems are physically and conceptually separated from each other. Any common-
ality between the systems would serve to reduce the efficacy of these principles.

The second reason why standards and regulations mandate separation of control
and safety systems is that future maintenance of an integrated system would be much
more difficult. This is actually somewhat affected by the complexity of the system.
Changes to the system would have to be ‘guaranteed’ not to adversely affect existing
safety functions. If the separation between control and safety is effected through the
software design/logic and not through physical and logical separation, it is much
more difficult to demonstrate/prove that changes to the control system cannot affect
the safety functions. A carefully constructed information hiding design can alleviate
but cannot eliminate this concern. The situation can be made even more difficult if
the control and safety systems are treated as an integrated system. These issues are
particularly pertinent to adaptive and reconfigurable systems, in which the principles
of separation are not well understood.

4.3.2 Ideas for Separate Safety Systems in Other Domains

We have seen that separation of control and safety is not confined to the nuclear
domain. It is enforced throughout the process control industry as well. It seems
clear to us that we should be considering using this principle in domains such as
automotive and medical devices. Microkernels are a good example of a less drastic
separation of safety and other functions. The nucleus keeps the system safe (memory
checks and messaging as core functionalities) and the rest of the operating system
provides the main functionality. Here we do not have physical separation, but design
separation enforced through the mechanisms associated with layered architectures.
Microkernels have been certified and/or verified: QNX certified for SIL3, and seL4
has been verified [13].

We have recently had occasion to consider software-driven radiation machines.
These devices are effective life-savers in the fight against cancer, but they also can
be devastatingly harmful if they malfunction. Two thoughts come to mind with these
devices:

1. Manufacturers/vendors seem to be more concerned with including features that
will help sell the devices rather than with controlling the complexity of the device
so that they can be more confident that the device is fail-safe; and

1The US Nuclear Regulatory Commission’s Common-Cause Failure Data Base (CCFDB):
http://nrcoe.inel.gov/results/index.cfm?fuseaction=CCFDB.showMenu.

http://nrcoe.inel.gov/results/index.cfm?fuseaction=CCFDB.showMenu


4 Separating Safety and Control Systems to Reduce Complexity 99

2. It should be possible to add a low-complexity safety system that will ‘guarantee’
that the device does not deliver an overdose to any patient.

The safety system could, for example, require simple inputs from the doctor that
limit the allowable dosage for a specific patient, and then monitor the radiation to
ensure this dosage is not exceeded. This safety system would be completely inde-
pendent of the control system that ‘drives’ the device. It would also be independent
of any billing system that might compromise safety features, preventing accidents
such as the ones noted above.

There are currently a number of active safety functions included in modern cars.
These include automatic braking, adaptive cruise control, lane departure warning
systems, adaptive high beam and adaptive headlamps. Typically, these are imple-
mented as self-contained, isolated units, although some of them clearly have to be
integrated with other functions—braking for instance. Although the auto industry
seems to have realized that keeping such components as isolated as possible helps
to deal with complexity issues and increases our ability to engineer extremely de-
pendable systems, this objective is undermined by the need to interconnect some
subsystems, e.g., braking and throttle subsystems, and the fact that subsystems may
share processors and communication buses with other subsystems. It may be that we
can further improve the dependability and maintainability of the systems by isolat-
ing safety from control again, rather than by relying on functional modularization.

4.4 Reducing Programming Complexity: The Engineering
Approach

Engineers are continually faced with the issue of problem complexity and its im-
pact on engineering design. For most situations met by engineers in their every day
work, engineers have developed a way of dealing with this issue: the engineering
method, or what Vincenti calls normal design [25]. Over time, as engineers solve
specific problems in some domain, the successful approaches are incorporated into
a standard engineering method specific for those kinds of devices [25]. Devices in
this sense are the subject of normal design methods. Engineers know that if they
follow the prescriptions of the method, including which analyses to do when and
which decision to make in light of results of analysis, they are likely to design a safe
and effective product. As we have noted elsewhere [28], this also forms the basis of
the prescriptive regulatory regimes in classical engineering. Radical design involves
design problems that are not within the normal envelope associated with a normal
design method. Some new element is introduced, e.g., untried technology, or some
new combination of technologies, which takes the design problem outside the incre-
mental improvement normal design supports. This makes the achievement of safe
and effective designs more problematic and requires much more serious attention
to justification of safety properties. From the point of view of problem complexity,
normal design helps to tame this complexity, but not reduce it, by systematizing



100 A. Wassyng et al.

standard solutions to design problems. In analogy with divide and conquer tech-
niques, the motivation behind normal design is not that of reducing problem com-
plexity, but the reduction of programming complexity. This also sheds some light on
the ongoing discussion of process based standards in software certification versus
product based standards [28]. Engineers put a lot of store in normal design methods
providing a higher level of assurance of safety and effectiveness of products. A pro-
cess based standard for software development standardizes the process to be used in
developing a new software product, but does not propose a normal design method
for software, either generally or for a specific domain. This is the missing ingredient
required to enable a process based claim for the product to be safe and/or effective.
Until such process standards evolve to be the equivalent of normal design methods,
we cannot give them much credit for reducing programming complexity, and such
process based claims probably should be mistrusted.

One of the principles we would expect/hope to see in a software process stan-
dard based on normal design, is the guidance for how to separate control and safety
systems so as to reduce the problem complexity of the safety system.

4.5 Conclusion

Separation of control and safety systems can be viewed as a special case of separa-
tion of concerns. This is not the same as modularization. It is a strict partitioning of
the system into at least two parts, one of which contains the safety related behavior.
The idea is that the separated and isolated safety system will have lower problem
complexity than would the integrated system. Unlike the dangerous practice in as-
pect oriented programming, it is not our intention to weave the separated concern
back into the application software.

We believe that separation of control systems and safety systems in the nuclear
power industry is not only a good principle to follow, but that rigorous adherence
to this principle should make it possible to analyze the system to an extent where
we develop much greater confidence in the safety of the plant. The reasons are pre-
sented above, but the primary reason is that the reduction in complexity allows us to
employ techniques that currently would not be possible for more complex systems.
Without these mathematically based techniques we would be reduced to relying on
testing alone to show conformance with requirements and correctness. It would also
be much more difficult to apply techniques such as model checking, to confirm safe
behavior at the requirements level. Recent trends in the nuclear industry would seem
to indicate that manufacturers wish to abandon, at least to some degree, the need for
separation of safety and control functions, and, arguably even worse, they want to
abandon the basic principle of physical and logical separation between replicated
safety functions. This trend is dangerous, because it moves complexity from else-
where in the system, back into the safety function, thus significantly increasing the
complexity of the safety function without significant reduction in the complexity of
the control function. There appears to be no gain here, except an economic one. We
are concerned that manufacturers seem to think that one time cost savings in the



4 Separating Safety and Control Systems to Reduce Complexity 101

original development of these systems would be more important than the increased
assurance we could realize in the dependability and safety of these systems. In fact,
it is quite likely that adherence to this principle of separation will result in a long-
term cost reduction, since the safety components in the overall system will be less
likely to require corrective modification over the life of the system. Other modifi-
cations/enhancements can typically be made with reduced re-verification since the
simpler safety systems can be pre-verified with ranges for constants, and informa-
tion hiding designs on these smaller systems can help us prove the localization of
changes.

The nuclear power domain is but one example domain in which this technique
of separating control and safety should be common practice—preferably mandated
by regulatory authorities. It also seems clear to us, that this same principle can be
applied to building highly dependable, cyber-physical systems, such as medical de-
vices and ‘smarter cars’.

Acknowledgements This work is supported by the Ontario Research Fund, and the National
Science and Engineering Research Council of Canada.

References

1. Bogdanich, W.: Radiation offers new cures, and ways to do harm. The New York Times Online
(2010). Published January 23, 2010. Available online: http://www.nytimes.com/2010/01/24/
health/24radiation.html

2. Bogdanich, W., Rebelo, K.: A pinpoint beam strays invisibly, harming instead of healing.
The New York Times Online (2010). Published December 28, 2010. Available online: http://
www.nytimes.com/2010/12/29/health/29radiation.html

3. Caglayan, A., Lorczak, P., Eckhardt, D.: An experimental investigation of software diversity
in a fault-tolerant avionics application. In: Proceedings Seventh Symposium on Reliable Dis-
tributed Systems, pp. 63–70 (1988)

4. Easterbrook, S., Johns, T.: Engineering the software for understanding climate change. Com-
put. Sci. Eng. 11(6), 65–74 (2009)

5. Fenton, N., Neil, M.: Software metrics: successes, failures and new directions. J. Syst. Softw.
47(2–3), 149–157 (1999)

6. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach. PWS
Publishing Co., Boston (1998)

7. Fischmeister, S., Sokolsky, O., Lee, I.: A verifiable language for programming real-time com-
munication schedules. IEEE Transactions on Computers 1505–1519 (2007)

8. Hoare, C.A.R.: The emperor’s old clothes. Commun. ACM 24(2), 75–83 (1981)
9. IEC 61508: Functional safety of electrical/electronic/programmable electronic (E/E/EP)

safety-related systems: Parts 3 and 7. International Electrotechnical Commission (IEC) (2010)
10. Jackson, D., Kang, E.: Separation of concerns for dependable software design. In: Proceedings

of the FSE/SDP Workshop on Future of Software Engineering Research, FoSER’10, pp. 173–
176. ACM, New York (2010)

11. Jones, C.: Software metrics: good, bad and missing. Computer 27(9), 98–100 (1994)
12. Kelly, D.F.: A software chasm: software engineering and scientific computing. IEEE Softw.

24(6), 119–120 (2007)
13. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D.,

Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: formal
verification of an OS kernel. In: Proceedings of the ACM SIGOPS 22nd Symposium on Op-
erating Systems Principles, SOSP ’09, pp. 207–220. ACM, New York (2009)

http://www.nytimes.com/2010/01/24/health/24radiation.html
http://www.nytimes.com/2010/01/24/health/24radiation.html
http://www.nytimes.com/2010/12/29/health/29radiation.html
http://www.nytimes.com/2010/12/29/health/29radiation.html


102 A. Wassyng et al.

14. Ladyman, J., Lambert, J., Wiesner, K.: What is a complex system? http://philsci-archive.pitt.
edu/8496/ (2011). Preprint

15. Lee, L.: The Day the Phones Stopped. Donald I. Fine Inc., New York (1991)
16. Manson, S.M.: Simplifying complexity: a review of complexity theory. Geoforum 32(3), 405–

414 (2001)
17. Niskier, C., Maibaum, T., Schwabe, D.: A pluralistic knowledge-based approach to software

specification. In: Ghezzi, C., McDermid, J. (eds.) ESEC ’89. Lecture Notes in Computer Sci-
ence, vol. 387, pp. 411–423. Springer, Berlin (1989)

18. NRC Staff: Common-cause failure database and analysis system: event data collection, clas-
sification, and coding. Tech. rep. NUREG/CR-6268, US Nuclear Regulatory Commission
(1998)

19. NRC Staff: Guidelines on modeling common-cause failures in probabilistic risk assessment.
Tech. rep. NUREG/CR-5485, US Nuclear Regulatory Commission (1998)

20. Nuseibeh, B., Kramer, J., Finkelstein, A.: A framework for expressing the relationships be-
tween multiple views in requirements specification. IEEE Trans. Softw. Eng. 20, 760–773
(1994)

21. Parnas, D.: On the criteria to be used in decomposing systems into modules. Commun. ACM
15(12), 1053–1058 (1972)

22. Parnas, D.L., Clements, P.C., Weiss, D.M.: The modular structure of complex systems. IEEE
Trans. Softw. Eng. SE-11(3), 66–259 (1985)

23. Polya, G., Stewart, I.: How to Solve It. Princeton University Press, Princeton (1948)
24. Sha, L.: Using simplicity to control complexity. IEEE Software, 20–28 (2001). http://doi.

ieeecomputersociety.org/10.1109/MS.2001.936213
25. Vincenti, W.G.: What Engineers Know and how They Know It: Analytical Studies from Aero-

nautical History. Johns Hopkins University Press, Baltimore (1993)
26. Wassyng, A., Lawford, M.: Lessons learned from a successful implementation of formal meth-

ods in an industrial project. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003: Interna-
tional Symposium of Formal Methods Europe Proceedings. Lecture Notes in Computer Sci-
ence, vol. 2805, pp. 133–153. Springer, Pisa (2003)

27. Wassyng, A., Lawford, M., Maibaum, T., Luxat, J.: Separation of control and safety systems.
In: Fischmeister, S., Phan, L.T. (eds.) APRES’11: Adaptive and Reconfigurable Embedded
Systems, Chicago, IL, pp. 11–14 (2011)

28. Wassyng, A., Maibaum, T., Lawford, M.: On software certification: we need product-focused
approaches. In: Choppy, C., Sokolsky, O. (eds.) Foundations of Computer Software. Future
Trends and Techniques for Development. Lecture Notes in Computer Science, vol. 6028,
pp. 250–274. Springer, Berlin (2010)

29. Weng, G., Bhalla, U., Iyengar, R.: Complexity in biological signaling systems. Science
284(5411), 92 (1999)

http://philsci-archive.pitt.edu/8496/
http://philsci-archive.pitt.edu/8496/
http://doi.ieeecomputersociety.org/10.1109/MS.2001.936213
http://doi.ieeecomputersociety.org/10.1109/MS.2001.936213

	Chapter 4: Separating Safety and Control Systems to Reduce Complexity
	4.1 Introduction
	4.2 Reducing Complexity
	4.2.1 The Effect of Reduced Complexity on Quality and Dependability
	4.2.2 Modularization and Abstraction Cannot Reduce Problem Complexity
	4.2.3 Why Control Is More Complex than Safety

	4.3 Separation of Concerns
	4.3.1 Physical Separation: Reducing Complexity
	4.3.2 Ideas for Separate Safety Systems in Other Domains

	4.4 Reducing Programming Complexity: The Engineering Approach
	4.5 Conclusion
	 References


