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Dynamic stock control tasks have been frequently used in laboratory experiments in
behavioural research to investigate understanding of dynamic systems. In these studies,
the dynamic system is often represented in the form of a simulation model, and they
almost exclusively focus on how the structure of a system (i.e. the simulation model)
affects human’s inference of system behaviour. In doing so, these studies fail to consider
that human’s performance on dynamic decision making tasks might also be a function
of the complexity embedded in other task components like goals, input, processes, output,
time and presentation. Hence, the objective of this paper is to carve out what task
complexity entails when applied to dynamic stock control tasks in order to determine
its usefulness for future research on human understanding of such tasks. In this paper,
task complexity is conceptualized consisting of ten complexity dimensions: (1) size; (2)
variety; (3) redundancy; (4) ambiguity; (5) variability; (6) inaccuracy; (7) novelty; (8)
incongruity; (9) connectivity; and (10) temporal demand. Copyright © 2016 John Wiley
& Sons, Ltd.
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INTRODUCTION

Dynamic stock control tasks have been frequently
used in laboratory experiments in behavioural re-
search to illustrate poor human understanding of

dynamic systems (Gonzalez and Dutt 2011).
Dynamic stock control tasks are a specific type of
dynamic decision tasks. Decision tasks are
dynamic whenever decisions made at time t alter
the state of the system and, thus, the information
that conditions decisions that have to be made at
time t +1. In fact, the decision maker and the sys-
tem are entwined in feedback loops whereby deci-
sions alter the state of the system, giving rise to

*Correspondence to: Hendrik Stouten, Institute for Management
Research, Radboud University Nijmegen, The Netherlands.
E-mail: h.stouten@fm.ru.nl

Received 18 February 2015
Accepted 21 March 2016Copyright © 2016 John Wiley & Sons, Ltd.

Systems Research and Behavioral Science
Syst. Res 34, 62–77 (2017)
Published online 21 April 2016 in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/sres.2399

 10991743a, 2017, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sres.2399 by U

niversity O
f T

w
ente Finance D

epartm
ent, W

iley O
nline L

ibrary on [23/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



new information and leading to new decisions
(Diehl and Sterman 1995: 198). More specifically,
in dynamic stock control tasks, people need to
balance (an) accumulation(s), or increase or
decrease (an) accumulation(s) towards (a)
predefined goal(s), by making repeated decisions
about the inflow(s) and/or outflow(s) through
which the accumulation(s) is/are allowed to vary.
In order to make these decisions, participants
receive information feedback about their
decisions’ outcomes in each time period (Gonzalez
and Dutt 2011: 1905). Important is that the accu-
mulation(s) and flow(s) might also be part of a
larger system determining the rates of change
affecting the accumulation(s). The assumption
underlying these tasks is that when participants
are able to balance the accumulation(s), or increase
or decrease (an) accumulation(s) towards (a)
predefined goal(s), they also understand the
dynamic system which alters the accumulation(s).
Stocks, flows and feedback are central

elements of dynamic systems. Investigating in
how far humans are able to understand these
elements is therefore fundamental for the further
development of systems theory. In this field,
computer simulation has proven to be useful in
capturing the dynamic behaviour of accumula-
tions and their flows. Hence, it is no surprise that
many studies deal with dynamic stock control
tasks in the form of computer simulation models
(e.g. Atkins et al. 2002; Diehl and Sterman 1995;
Gonzalez and Dutt 2011; Özgün and Barlas
2012; Yasarcan 2010, 2011). User-interfaces allow
task performers to interact with these computer
simulation models through making decisions
and receiving information feedback about the
outcome of their implemented decisions on the
state of the accumulations. Researchers that have
applied these computer simulation models as
dynamic stock control tasks discovered that
people have difficulties with balancing the
accumulation(s) or increase or decrease (an)
accumulation(s) towards (a) predefined goal(s).
They state that this is especially true for system
structures containing (1) strong feedbacks (e.g.
Diehl 1989; Diehl and Sterman 1995; Langley
et al. 1998; Paich and Sterman 1993; Young et al.
1997); (2) non-linear relationships between vari-
ables (e.g. Paich and Sterman 1993; Sterman

1989b; Sterman 1989a); and (3) significant time
delays between action and response or in the
reporting of information (e.g. Arango 2006;
Barlas and Özevin 2004; Broadbent and Aston
1978; Diehl 1989; Diehl and Sterman 1995;
Sterman 1989b). As a result, these researchers
conclude that people have difficulties inferring
system behaviour from system structure be-
cause (1) humans have limited cognitive abilities
to capture the complexity of dynamic systems
(e.g. misperceptions of feedback; Sterman
1989a; Sterman 1989b); and, partially because
of this, (2) humans apply erroneously (simple)
decision heuristics when managing complex
systems (e.g. correlation heuristic; Cronin et al.
2009).

However, an important limitation of the
above-mentioned studies is their almost exclu-
sive focus on how the structure of a system
(represented in the form of a simulation model)
affects human’s inference of system behaviour.
These studies do not take into account that there
might be potential sources other than the struc-
ture of the system that contribute to the com-
plexity of the task. Let us illustrate this by
looking at a dynamic stock control task recently
published by Gonzalez and Dutt (2011) as a task
that can be used for behavioural research on
human understanding of dynamic systems. Their
elegantly designed task consists of an accumula-
tion which changes over time solely based on
two inflows and two outflows. One of each is
within the task performers direct control (i.e. deci-
sion variables) and one of each is an exogenously
defined environmental inflow and outflow,
respectively. Hence, the mathematical formaliza-
tion of the model is fairly simple and is given by
Equation 1.

Accumulationt ¼ Accumulationt�1 þ ðUser Inflowt

þEnvironmental Inflowt �User Outflowt

�Environmental OutflowtÞDT

(1)

The objective of the task is to increase the two
gallons of water that are initially in the accumulat-
ing container to four and keep it at that level after-
wards. In order to achieve this, an user-interface
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with a visual representation of the task and infor-
mation requirements is provided to the task per-
former as illustrated in Figure 1.

Research on human understanding of dynamic
systems would, like Gonzalez and Dutt (2011),
use this dynamic stock control task (or similar
tasks like, for instance, the beer game or fish
banks) mainly to investigate how changes in the
structure of the system (for instance, changes in
the equations behind the environmental inflow
and outflow) affect human’s inference of the
behaviour of the accumulation. In doing so, these
studies hardly ever take into account that such
tasks are more complex than ‘just’ the complexity
of the underlying system structure. There is, for
instance, also the way in which the task is
presented to the task performer and the process
by which the task performer needs to perform
the task. For instance, in Gonzalez and Dutt’s
(2011) study, the procedure was organized in
such a way that task instructions were given to
the task performers on the computer before
engaging in the task. Participants were encour-
aged to ask questions after reading the instruc-
tions and were also handed a paper copy of the

instructions. Participants were not given any
information concerning the nature of the environ-
mental inflow and outflow, and were told that
these environmental flows were outside their
control over the entire course of the task. They
were asked to control the accumulation for 100
time periods which completed the task.

The importance of these ‘other task characteris-
tics’ (e.g. type of information or instructions
provided) was recently illustrated by Fischer
and Degen (2012) who showed that task charac-
teristics, like the format or design of a task, can
improve human’s understanding of ‘simple’
stock-and-flow behaviour. Their study clearly
shows that if we aim at studying human’s under-
standing of dynamic systems through tasks, we
need to look at the complexity of the entire task
instead of just the dynamic system underlying
the task. The idea of looking at ‘task complexity’
more holistically is nothing new as the first
important attempt of defining the construct dates
back to the mid of the 1980s (e.g. Wood 1986).
Nevertheless, its application to research on
human understanding of dynamic systems using
stock control tasks based on simulation models

Figure 1 User-interface of Gonzalez and Dutt’s (2011) generic dynamic control task
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remains virtually absent. As such, the objective of
this paper is to make a first attempt at carving
out what task complexity entails when applied
to dynamic stock control tasks in order to deter-
mine its usefulness for future research on human
understanding of such tasks. Consequently, the
research question for this paper is: What is task
complexity in the context of dynamic stock con-
trol tasks? To be explicit, dynamic stock control
tasks are, given this paper’s context of laboratory
experiments in decision making research, tasks
that contain a simulation model as a substitute
for the real system that needs to be controlled.
We also want to stress that this paper is limited
to the conceptualization of task complexity only.
The authors believe that sufficient attention
should be devoted to the conceptualization of
this multidimensional construct in order to pave
the way for an effective operationalization and
measure of task complexity in the context of dy-
namic stock control tasks.1

The contribution of this study is to illustrate
that there is more at work in dynamic stock con-
trol tasks than ‘just’ the structure of the elements
of the system. Laboratory experiments that aim
at assessing human understanding of dynamic
systems need to take a more holistic concept of
task complexity into account. On the one hand,
this implies that, if you are interested in how sys-
tem structure affects human understanding of
dynamic systems, our study will provide you
with insights in variables that you might need
to control for in your experimental design. On
the other hand, if you are interested in how dif-
ferent aspects of task design, that are different
from the system structure, affect task perfor-
mance, you will also be able to use our conceptu-
alization of task complexity in order to gain
insights in variables that you might need to con-
trol for.
In order to address our research question, this

paper mainly draws on Liu and Li’s (2012)
review and ‘generic conceptualization’ of task
complexity and translates it towards the context
of dynamic stock control tasks. Liu and Li’s

(2012) conceptualization is chosen as it is a recent,
comprehensive and well-grounded review of
previous attempts to conceptualize task complex-
ity. This paper starts by illustrating the existence
of two approaches for defining task complexity:
an objective approach and a subjective approach.
The objective approach, basically, defines task
complexity as a property of the task and indepen-
dent of task performers, whereas the subjective
approach considers task complexity as a conjunct
property of task and task performer characteris-
tics. Next, we give an argumentation of why the
objective approach is chosen as most suited given
the experimental laboratory context of this study.
However, objective task complexity cannot be an
intrinsic property of a task per se because tasks
entail inevitably subjective aspects as they are
created by a creator and observed by an observer.
Objective task complexity should therefore be de-
fined more precisely as an intrinsic property of a
task model where a task model is an inter-
subjectively agreed-on, simplified, prototypical
representation of the task (Liu and Li 2012: 558).
The objectivity of this redefinition of task com-
plexity is embodied in the fact that the task
model allows for manipulation and quantitative
assessment of task complexity. In the next sec-
tion, this paper continues by defining what a task
is and puts forth a task model representing dy-
namic stock control tasks. This task model pro-
vides the key to defining objective task
complexity which consists of ten complexity di-
mensions: (1) size; (2) variety; (3) redundancy;
(4) ambiguity; (5) variability; (6) inaccuracy; (7)
novelty; (8) incongruity; (9) connectivity; and
(10) temporal demand. In the discussion section,
this ‘new’ conceptualization of task complexity
is subsequently compared and linked to the
following already known complexity concepts:
(1) system complexity; (2) detail complexity; (3)
dynamic complexity; (4) structural complexity;
(5) information complexity; and (6) social com-
plexity. The discussion section also highlights
the value of our conceptualization of task
complexity for future research on human
understanding of dynamic systems. This paper
ends with a conclusion that briefly summarizes
this ‘new’ conceptualization of task complexity
and its potential for future research.

1 The following reference might be interesting for those interested in
this next step of operationalizing and measuring task complexity:
Liu and Li (2014).
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APPROACHES IN DEFINING TASK
COMPLEXITY

Task complexity is one among the many concepts
that lack a general and widely accepted
definition. The reason being that task complexity
is defined differently across various domains and
even within the same domain. In addition, differ-
ent types of tasks often also have their own
definitions and operationalization of task com-
plexity. However, the variety of definitions that
exist fall within two broad approaches: the objec-
tive approach versus the subjective approach
(Liu and Li 2011, 2012; Rouse and Rouse 1979).

Proponents of the objective approach consider
task complexity to be directly related to task
characteristics and independent of task
performers. ‘Objective’ in this sense refers to de-
fining task complexity in a purely object/task-
related way. In general, two distinct views can
be identified within the objective approach. The
first is the structuralist view which defines task
complexity from the structure of a task. Task
complexity can in this view, for example, be de-
fined as a function of the number of elements of
which the task is composed and the relationships
between those elements (Liu and Li 2012). Wood
(1986), Campbell (1988), Bonner (1994) and Ham
et al. (2012) are some examples of existing concep-
tualizations of task complexity belonging to this
view. The second view within the objective ap-
proach is the resource requirement view which
defines task complexity as resource requirements
imposed by a task. Basically, any task characteris-
tic that influences the resource requirements
placed on task performers can be within the idea
of task complexity (Liu and Li 2012). In this view,
the concept of resource represents the resources
in human information processing, such as visual,
auditory, cognitive and psychomotor resources
(McCracken and Aldrich 1984), but also knowl-
edge (Gill 1996; Kieras and Polson 1985), skills
(Byström 1999) and even time (Nembhard and
Osothsilp 2002). The idea is that task performers
are required to invest more resources during task
performance for more complex tasks. In contrast
to the subjective approach of task complexity,
these resource requirements are not considered
on an individual, task performer-dependent

basis. Rather, prototypical resource needs are
taken into consideration.

Proponents of the subjective perspective con-
sider task complexity as a conjunct property of
task and task performer characteristics. ‘Subjec-
tive’ in this sense refers to defining task complex-
ity in a subject-related way. When the complexity
of the task outruns the capacity of the task per-
former, the task performer will perceive the task
as complex. In the subjective approach, complex-
ity sometimes becomes a ‘state of mind’ affecting
the way the task performer performs the task
(Liu and Li 2012: 557). Hence, task complexity
is, in this approach, the complexity perceived by
the task performer. It is therefore also often
referred to as perceived (e.g. Marshall and Byrd
1998; Te’eni 1989), or experienced complexity
(e.g. Campbell 1988). Task complexity is in this
approach a relative term (Gonzalez et al. 2005).
The interaction view on task complexity applies
this subjective definition of task complexity as it
is the only view who defines task complexity as
a product of the interaction between task and
task performer characteristics (Liu and Li 2012:
555). Studies that have used this interaction view
to conceptualize task complexity are, for
example, Byström and Järvelin (1995) and
Vakkari (1999).

Of course, both the objective and the subjective
approach to defining task complexity have
strengths and weaknesses. However, Liu and Li
(2012) identify two serious problems when defin-
ing task complexity subjectively which makes
this approach unsuitable for the purposes of this
study. First, because subjective task complexity
mixes the effects of task, task performer and envi-
ronment, it makes it hard, if not impossible, to
generalize findings across tasks. Second, subjec-
tive task complexity makes it impossible to
distinguish between the complexity of a task
and its difficulty. Both problems are overcome
when defining task complexity objectively. How-
ever, the classic ways of defining task complexity
from the structure of a task or the resource
requirements imposed by a task has recently
been criticized by Liu and Li (2012). They con-
vincingly point out that objective task complexity
cannot be an intrinsic property of a task per se be-
cause tasks entail inevitably subjective aspects as
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they are created by a creator and observed by an
observer. Objective task complexity should there-
fore be defined more precisely as an intrinsic
property of a task model where a task model is
an inter-subjectively agreed-on, simplified,
prototypical representation of the task (Liu and
Li 2012: 558). The objectivity of this redefinition
of task complexity is embodied in the fact that
the task model allows for manipulation and
quantitative assessment of task complexity.
Hence, this redefinition does not mix the effects
of the task, task performer and environment,
and it also allows for distinguishing between task
complexity and task difficulty. Task complexity is
then defined as a function of the objective charac-
teristics of the task model that represent the task,
whereas task difficulty involves the interaction
among task, task performer and context charac-
teristics. In general, task difficulty refers to the
extent to which task performers perceive
difficulty in performing a task. Following this
conceptualization, equally complex tasks can be
perceived differently with regard to their
difficulty depending on the task performer and
the task context (this relationship is not further
investigated in this article).
Given the fact that this paper’s focus is on

laboratory experiments and given the fact that
Liu and Li’s (2012) redefinition of the task com-
plexity concept allows for manipulation and
quantitative assessment, this study opts to apply
Liu and Li’s (2012) conceptualization of task
complexity and investigates how it usefully can
be employed in the context of dynamic stock
control tasks. This implies that in the remainder
of this paper we follow the objective approach
in defining task complexity according to Liu
and Li’s (2012) abovementioned objective
definition and structuralist view of task complex-
ity as the intrinsic property of a task model.

TASK AND TASK MODEL

In order to explain what a task model is, we first
need to agree on what a task is as there is in the
literature limited consensus on the understand-
ing of a task and its characteristics (Hackman
1969; Liu and Li 2012; Wood 1986). Back in the

1960s, Hackman (1969) identified four
approaches to defining task. The first approach
is labelled ‘task qua task’ and defines tasks in
terms of ‘objective’ properties of tasks. The
second approach is referred to as ‘task as behav-
iour requirement’ and defines tasks based on
the response a subject should emit in order to
achieve some criterion of success given the stim-
ulus situation. The third approach defines task
as a behaviour description and focuses on the
response the performer actually does (and not
should) emit, given the stimulus condition.
Finally, the ‘task as ability requirement’-approach
defines tasks by involving specification of the
patterns of personal abilities or characteristics
required for successful task completion.

Based on his conceptualization, Hackman
(1969) proposed that a definition of a task for
the behavioural sciences should follow an
objective approach, or what he referred to as the
‘task qua task’-approach. His reasons for this
choice were quite similar to the above-mentioned
reasons for choosing the objective approach
instead of the subjective approach when defining
task complexity. Hackman (1969) even explicitly
stated that the ‘task qua task’-approach allows
for precise operational specification, and it is also
the only approach which defines a task
completely independently of the behaviour to
which it is expected to relate. Hackman’s (1969:
113) objective definition of a task is still widely
used in research and reads as follows: ‘a task
may be assigned to a person (or group) by an
external agent or may be self-generated. It consist
of a stimulus complex and a set of instructions
which specify what is to be done vis a vis the
stimuli. The instructions indicate what opera-
tions are to be performed by the subject(s) with
respect to the stimuli and/or what goal is to be
achieved’. Hackman’s approach of defining a
task links very well with the objective approach
of defining task complexity and is therefore in
this paper used as a steppingstone for designing
a task model.

Earlier in this paper, a task model was defined
as an inter-subjectively agreed-on, simplified,
prototypical representation of the task. We now
add to this that such a representation is a config-
uration of different task components. Hackman’s
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(1969) definition of a task contains four classes of
objective task components: (1) stimuli; (2)
instructions; (3) operations; and (4) goals.
Hackman’s (1969) definition together with other
classic definitions and models of tasks (e.g.
Bonner 1994; Farina and Wheaton 1971; Li and
Belkin 2008; Wood 1986) were recently
extensively reviewed by Liu and Li (2012) in
order to identify generic classes of objective task
components. Their review concluded with identi-
fying the following six generic classes of objective
task components: (1) goal; (2) input; (3) process;
(4) output; (5) time; and (6) presentation.
Figure 2 illustrates how these classes of generic
task components can be supplemented with a
new generic task component which we will call
‘modelled system structure’ in order to design a
task model of a dynamic stock control task based
on a simulation model.

In this task model, ‘goal’ and ‘input’ serve as
the prerequisites of the process required to
generate a task output. In general, a goal is de-
fined as a desired output which may complete
the task or a desired state which may be used to
compare the output of the task against. In the
case of dynamic stock control tasks, the last
definition is more appropriate because the goal
is to balance (an) accumulation(s), or increase or
decrease (an) accumulation(s) towards (a)
predefined goal(s). Inputs in this model
aggregate the collection of information cues,
stimuli, data, procedures, guidance, instructions
and random events at the beginning and during
the performance of the task. Next, the process of
the task can, in general, be defined in terms of
paths, steps, actions and operations needed to

perform the task. Crucial in the process of
performing dynamic stock control tasks is that
task performers need to make decisions about
the inflow(s) and/or outflow(s) through which
the accumulation(s), as part of the stock-and-flow
structure represented by the computer simula-
tion model, is/are allowed to vary. Hence, there
is an interaction between the process and the
modelled system structure that needs to be man-
aged. This is represented in the task model by a
double headed arrow between ‘process’ and
‘modelled system structure’. The process of a task
is also affected by the temporal dimension of the
task where time itself might in turn be
determined by the goal definition of the task
(e.g. balance the accumulation as quickly as
possible). Eventually, decisions will be
implemented in the modelled system structure
generating task output. The latter refers to the
product or outcome of the task process, which
in the case of dynamic stock control tasks become
effective via the modelled system structure. In
turn, the output of the task in a dynamic control
task (might) serve as or affect input and/or the
goal of the next iteration of this repeated
decisions making process. So, output can
(partially) become input in the next iteration
which will be used to assess during the process
whether the task goal(s) are reached or not. In
addition, output can also affect the goal through
the process of goal adaptation (Lant 1992) which
result in ‘floating goals’ (Senge 1990; Sterman
2000). Goals might for instance erode in order to
reduce cognitive dissonance (Festinger 1957).
Finally, the last task component is ‘presentation’
which refers to the fact that ‘goal’, ‘input’ and
‘output’ are presented to the person performing
the task in order to initiate or affect the task.
Presenting these task components might be done
in various ways/formats. Hence, presentation is
about how the content of these task components
are made available to the task performer.

TASK COMPLEXITY IN INDIVIDUAL
DYNAMIC STOCK CONTROL TASKS

As objective task complexity is an intrinsic
property of a task model, the next step is to

Figure 2 Generic task model of a dynamic stock control task
based on a simulation model
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derive task complexity from the task model
developed in Figure 2. This is accomplished
through introducing factors making a task
complex or an indicator showing that the task is
complex (Liu and Li 2012). We will refer to these
factors and indicators as ‘factors contributing to
complexity’.2 These factors are related to the task
components of a task model and can therefore be
used to describe and differentiate tasks as well as
task complexity among tasks. As these factors
can be summarized into logical sets of task com-
plexity dimensions, they provide the bridge be-
tween the task model and objective task
complexity. The collection of these complexity di-
mensions is by Liu and Li’s (2012) referred to as a
task complexity model in which each dimension
consists of several complexity factors that charac-
terize task complexity in more detail.
Table 1 is a matrix illustrating how the differ-

ent classes of task components of the task model
(represented in the first two rows of the matrix)
are linked to the different complexity dimensions
of the task complexity model for dynamic stock
control tasks (represented in the first two col-
umns of the matrix) by means of the factors con-
tributing to complexity (represented in the
remaining cells of the matrix). The content of this
matrix is mainly a translation and extension of
Liu and Li’s (2012) review and ‘generic conceptu-
alization’ of task complexity towards the context
of dynamic stock control tasks. In doing so, an ef-
fort was made to stay as close as possible to their
original conceptualization of task complexity
allowing for constructively increasing the body
of knowledge on task complexity. As a result,
our matrix consists of 10 complexity dimensions:
(1) size; (2) variety; (3) redundancy; (4) ambigu-
ity; (5) variability; (6) inaccuracy; (7) novelty; (8)
incongruity; (9) connectivity; and (10) temporal
demand. Each of these dimensions is formulated
in a way that they, most likely, positively corre-
late with the multidimensional concept of task
complexity of which they are part. In the remain-
der of this section we will define each of these
complexity dimensions through adapting Liu
and Li’s (2012) definitions for the specific context

of dynamic stock control tasks when necessary.
When the dimensions deviate from their work,
the sources of the definition will be clearly indi-
cated in a reference.

The size of a dynamic stock control task is
defined in terms of the quantity of task compo-
nents for the following classes: (1) goal: the
number of goals; (2) input: the amount of input
in terms of information and stimuli; (3) process:
the number of actions, steps, paths (i.e. paths to
arrive at ‘solution’) and decisions; (4) modelled
system structure: the number of variables,
relationships between these variables, equations
and potential states or potential behaviours
(Schwaninger 2009); and (5) output: the amount
of output in terms of information and stimuli.

Variety is defined as the heterogeneity in task
components and applies to the following classes
of task components: (1) goal: the diversity of
goals; (2) input: the diversity of information and
stimuli; (3) process: the diversity of actions, steps,
paths and decisions; (4) modelled system struc-
ture: the diversity of variables, relationships
between these variables, equations and potential
states or potential behaviours (Schwaninger
2009); (5) output: the diversity of output informa-
tion and stimuli; and (6) presentation: the hetero-
geneity in terms of simultaneous or successive
presentation of information and stimuli (Das
et al. 1975).

Redundancy captures the needlessness of
(parts of) task components embedded in the task.
Redundancy applies to input, output, goal,
process and modelled system structure. Redun-
dancy in the input or output can, for instance,
emerge when more input or output is given than
necessary to understand and fulfil the task, or
when input or output are unnecessarily repeated
multiple times. Redundancy in the process can
happen when actions, steps, paths and decisions
are unnecessarily taken in order to perform the
task. Finally, the modelled system structure
(mirroring a stock control system that needs to
be managed) might have a lot of variables and
relationships that do not contribute to the core
dynamics of the model. Hence, redundancy in a
modelled system structure occurs when not the
entire model structure is necessary to capture
the models core dynamics.

2 These factors correspond to Liu and Li’s (2012) ‘Complexity contrib-
utory factors’.
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Ambiguity refers to the degree of clarity of the
input, goal, output and presentation. For input,
goal and output, clarity has mainly to do with
completeness and precision. Precision concerns
the fineness of distinctions made between the
attributes that compose variables/factors (Babbie
2013: 188). Being precise leads to being specific.
Besides completeness, specificity and precision,
clarity has also to do with the amount of structure
in the content of the input, goal and output of the
task. For instance, the level of structure attributed
to the content of the task instructions and guidance
(e.g. structured versus unstructured guidance). For
presentation, clarity is about the choice of presenta-
tion format (e.g. tabular or graphical) and the level
of structure attributed to the presentation format.
Variability refers to changes in or unstable

characteristics of task components over time. In
dynamic stock control tasks variability is mainly
observed in the rate of change of input, goal
and output as the output of the task at time t
serve as or can affect the input and/or the goal
of the task for the next iteration of the task, which
in turn leads to changes in output. This dimen-
sion also covers random events in the input
(e.g. noise) and robustness (i.e. the ability of a
modelled system structure to resist change under
a wide range of ‘unusual’ conditions that stress
its designers’ assumptions) and the level of
stochasticity of the modelled system structure.
Inaccuracy applies to the following classes of

task components: (1) input; (2) goal(s); (3) output;
and (4) modelled system structure. Accuracy is
about reflecting the real world and should not
be confused with precision or specificity (see the
Ambiguity-dimension). Babbie (2013: 188)
explains this distinction well with the following
example: ‘Describing someone as “born in New
England” is less specific than “born in Stowe,
Vermont”—but suppose the person in question
was actually born in Boston. The less-specific
description, in this instance, is more accurate, a
better reflection of the real world’. Hence,
inaccuracy has to do with misleading
information/stimuli which is a common artifact
of complex tasks based on (a) complex system(s)
(i.e. in this case a modelled system structure). In-
accuracy of the modelled system structure has to
do with the internal validity of the model.

Although the internal validity of a simulation
model can only be assessed subjectively in the
context of the purpose for which the model is
designed, the technical correctness of the model,
as part of the internal validity construct, can
however be assessed objectively.

Novelty refers to the appearance of novel,
irregular and non-routine events/actions or pre-
sentation formats within the task. This dimension
mainly relates to the repetitiveness within the
process of accomplishing the task, but it also
captures the possibility of new input entering
the task process through the appearance of non-
routine events. It needs to be stressed that
novelty has in this conceptualization nothing to
do with the novelty of the task for the task per-
former as this would not fit the objective ap-
proach to defining task complexity to which we
have committed ourselves. Novelty is distinct
from variety as, for instance, a high diversity of
actions might still be repetitive if they, for in-
stance, always follow the same sequence through-
out the iterations required to accomplish the task.

Incongruity is defined as the inconsistency,
mismatch and incompatibility of task
components. Incongruity can be attributed to
task components if they do not fit with the other
task components within or across classes of task
components. Incongruity applies to all classes of
task components except for time. Three types of
factors contributing to complexity are distin-
guished here: (1) mismatch; (2) conflict; and (3)
compatibility. Mismatch is distinct from conflict
as mismatch does not necessary imply conflict.
The instructions of the task might, for instance,
not perfectly match the process. Nevertheless,
this does not imply that they conflict. On the
other hand, goals, for instance, might conflict
among each other when attaining one goal ne-
gates or subverts attaining another (Locke et al.
1981). Finally, incongruence in the presentation
can emerge if the presentation format is not
adapted to other task components. For instance,
presenting ‘behaviour over time’ as input to a
task verbally in the form of a narrative can be less
compatible than presenting it in an actual graph-
ical representation.

Connectivity is a term borrowed from Milling
(2002) and refers to the interrelateness of a
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system. Hence, this dimension only applies to the
modelled system structure. A proxy for the
interrelateness of the modelled system structure
could simply be the amount of relations over
the amount of variables. More elaborate
measures could take the strength of the relation-
ships into account.

Temporal demand is specified as time
availability or concurrency between tasks
and/or presentations imbedded in the task. This
dimension is therefore exclusively linked to the
task component of time.

DISCUSSION

This discussion section will mainly illustrate how
this ‘new’ conceptualization of task complexity
relates to already existing complexity concepts
within the scope of dynamic stock control tasks.
These complexity concepts are: (1) system
complexity; (2) detail complexity; (3) dynamic
complexity; (4) structural complexity; (5) infor-
mation complexity; and (6) social complexity.
Throughout this paper, we made clear that the
complexity of a dynamic stock control task is
more than just the complexity of the underlying
stock control system (in this case formalized in
the form of a modelled system structure). This
brings us to discussing what system complexity
is and how it links with task complexity.

Stock control systems are complex systems,
and the many definitions of complex systems
mainly boil down to the idea of systems with
multiple elements adapting and reacting to the
pattern of multiple interactions these elements
create (e.g. Arthur 1999; Rind 1999). Given this
definition scholars regularly distinguish between
detail complexity and dynamic complexity (e.g.
Bozarth et al. 2009; Senge 1990; Sterman 2000).
In light of this definition, detail complexity of a
system is about the multiple elements and the
multiple relationships, whereas dynamic com-
plexity has to do with the interactions between
these elements.

To be more precise, detail complexity of a sys-
tem is about the distinct number of components,
parts, (interdependent) variables or relationships
that make up a system (Bozarth et al. 2009;

Dörner 1997; Senge 1990). Detail complexity is
the type of complexity most people think about
when talking about complexity. Besides the fact
that detail complexity is mainly used to refer to
complexity in systems, detail complexity is also
identified within tasks but often under a different
label. Sterman (2000: 21), for instance, applies the
term combinatorial complexity to refer to detail
complexity which lies in finding the best solution
out of an astronomical number of possibilities.
Wood (1986: 66) uses the term component com-
plexity which is a direct function of ‘the number
of distinct acts that need to be executed in the
performance of the task and the number of dis-
tinct information cues that must be processed in
the performance of those acts’. In sum, detail
complexity, whether it be detail system complex-
ity or detail task complexity, deals with ‘quantity
of elements’ and is captured in the complexity
dimension called ‘size’. In this sense, detail sys-
tem complexity in dynamic stock control tasks re-
lates to the stock control system which is
captured by the simulation model.

Where detail complexity is relatively straight-
forward to grasp, dynamic complexity is not.
This clearly comes about when investigating the
variety of ways in which scholars have attempted
to define this concept. A first and commonly
used way to define dynamic complexity is
through specifying which structural components
a system needs to have in order to be able to gen-
erate dynamically complex behaviour. These
structural components seems to be multiple feed-
backs, time delays, nonlinearities and accumula-
tions (Langley and Morecroft 2004; Sterman
1994). However, this type of definitions do not
describe what dynamic complexity is as it only
describes what dynamically complex systems
are. A second way defines dynamic complexity
as complexity in which a system’s response to a
given set of inputs is not obvious or unpredict-
able (e.g. Bozarth et al. 2009; Senge 1990). Dy-
namic complexity is defined subjectively in this
case which does not align with the objective ap-
proach of defining concepts we set out to achieve
in this paper. Finally, a third way of defining dy-
namic complexity is to refer to the non-stationary
nature of the parameter values for the relation-
ships between (state) variables, elements and/or
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task components (e.g. Wood 1986). Given this last
and objective definition, dynamic complexity is
captured in the task complexity dimension called
‘variability’.
Structural complexity refers to the degree to

which a task is performed using task specific
knowledge, operators and goals (Gill 2008: 254).
Structural complexity is not a property of the task
itself but of the problem space used to perform
the task, where a problem space is a representa-
tion of the cognitive system that will be used to
perform a task described in terms of 1 a set of
states of knowledge; (2) operators for changing
one state into another; (3) constraints on applying
operators; and (4) control knowledge for deciding
what knowledge to apply next (Card et al. 1983:
87). Hence, following this structural complexity
definition, low structure (e.g. unfamiliar tasks) is
more complex than high structure (e.g. routine
tasks). Structural complexity is not included in
our conceptualization of task complexity as it is
defined as an interaction between the performer’s
problem space and the particular task being per-
formed. Hence, structural complexity is defined
subjectively and refers to a performer’s mental
models (Gill and Cohen 2008) which may vary
significantly across task performers.
Information complexity consists of both (1)

formal complexity and (2) semantic complexity
(Ganzeboom 1984). Formal complexity relates to
the observable information elements in a stimuli
and relates, in terms of our complexity dimen-
sions, to ‘size’, ‘variety’ and ‘redundancy’. Se-
mantic complexity refers to the meaning
associated with the information. Hence, stimuli
that have exactly the same form can still differ
in meaning (e.g. ABBA versus BAAB)
(Ganzeboom 1984). Although the term semantic
complexity has its origin in the field of linguistics,
semantics is not any longer restricted to the
meaning of words. One now also speaks, for
example, of ‘visual semantics’. Semantics has
now a broader sense and is more seen as a system
of meanings within the mind itself (Durgnat
1982). Consequently, semantic complexity is a
subjective form of complexity because meaning
is shaped in the mind of the recipient of the stim-
uli. In this respect, semantic complexity is not
part of our conceptualization of task complexity.

Finally, social complexity (often also referred to
as behavioural complexity) characterizes the ex-
tent to which there is diversity in the aspirations,
mental models and values of decision makers
(Roth and Senge 1996: 93). Vennix (1996) points
out that this diversity is a result of peoples
continuous striving for the creation of reality. As
people might perceive the reality only partially
through selective perception, mental models are
social and partial representations of reality. As
this paper only conceptualizes task complexity
for individual dynamic stock control tasks, social
complexity is not considered in our conceptuali-
zation. Future research could extend the task
conceptualization towards dynamic stock control
tasks for groups. Doings so will probably need
the inclusion of complexity dimensions capturing
the social complexity construct.

Besides the fact that this paper only looks at
task complexity of dynamic stock control tasks
for individuals, some other limitations of this
study should be highlighted. First and most im-
portant, this conceptualization of task complexity
is a first attempt in capturing this construct when
talking about dynamic stock control tasks. It does
not pretend to be exhaustive, nor does it pretend
to be based on solid empirical evidence. Exhaus-
tiveness might even be impossible for similar
reasons as Hackman (1969: 110) pointed out that
defining tasks in terms of ‘objective’ properties
of tasks may never be exhaustive because of the
almost limitless number of possible descriptive
dimensions which are available. Second, this pa-
per draws heavily on Liu and Li’s (2012) paper
called ‘Task complexity: a review and conceptu-
alization framework’. However, clear choices
are made to differentiate our conceptualization
of task complexity of dynamic stock control tasks
for their ‘generic’ task complexity construct.
Some of their factors contributing to complexity
and complexity dimensions were, to our opinion,
still quite subjective in nature. These were, if
possible, converted to objective factors or dimen-
sions, or removed from our conceptualization.
Liu and Li’s (2012), for instance, also include
‘action complexity’ as a dimension in their task
complexity construct. Action complexity is
specified as the cognitive and physical require-
ments inherent in human actions during the

Syst. Res RESEARCH PAPER

Copyright © 2016 John Wiley & Sons, Ltd. Syst. Res 34, 62–77 (2017)
DOI: 10.1002/sres.2399

Task Complexity in Individual Stock Control Tasks 73

 10991743a, 2017, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sres.2399 by U

niversity O
f T

w
ente Finance D

epartm
ent, W

iley O
nline L

ibrary on [23/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



performance of a task. For example, the complex-
ity of activating a button and of detecting an
occurrence of an alarm would be different. To
our opinion, action complexity is subjective and
is therefore removed from our conceptualization.
Nevertheless studies illustrate the importance of
this dimension for human–computer interaction
(e.g. Bedny et al. 2012).

Last, we want to illustrate the value of our
conceptualization of task complexity for future
research on human understanding of dynamic
stock control tasks. Apart from just the value it
brings to the deeper understanding of the task
complexity concept and providing a basis for
the operationalization and hopefully measure-
ment of the construct in the near future, the main
contribution of this study is to illustrate that lab-
oratory experiments that aim at assessing human
understanding of dynamic systems need to take a
more holistic concept of task complexity into
account. This implies that our study provides
insights which variables need to be controlled
for in experimental designs. Ideally, further
research based on our conceptualization would
try to identify which factors within our
complexity matrix most significantly affect task
performance/human understanding of dynamic
systems. Such insights would help when design-
ing experiments as this points towards important
variables to control for.

In addition, we also see huge value for task
design as well as for task rehearsal strategies.
We will try to briefly illustrate these last two by
returning back to Gonzalez and Dutt’s (2011)
dynamic stock control task which we have
discussed earlier (see Figure 1). To quickly recap,
the objective of the task is to increase two gallons
of water in an accumulation to four and keep it at
that level afterwards. The accumulation has two
inflows and two outflows. One of each is within
the task performers’ direct control (i.e. decision
variables), and one of each is an exogenously
defined environmental inflow and outflow, re-
spectively. The procedure in order to perform
the task was organized in such a way that in-
structions were given to the task performers on
the computer before engaging in the task. Partic-
ipants in Gonzalez and Dutt’s (2011) study were
encouraged to ask questions after reading the

instructions and were also handed a paper copy
of the instructions. Participants were not given
any information concerning the nature of the
environmental inflow and outflow, and were told
that these environmental flows were outside
their control over the entire course of the task.
They were asked to control the accumulation for
100 time periods which completed the task.

In designing such tasks in the future, our task
complexity construct can now be used in order
to make task designers more aware of their
choices in task design and how that might affect
task performance and/or learning outcomes.
Each complexity dimension of our task complex-
ity construct can be considered in task design.
Gonzalez and Dutt (2011) have, for instance,
presented the instructions required to perform
the task in a very heterogeneous manner as they
were presented both computer-based and
paper-based. In addition, having the instructions
on paper during the task might also affect the
way in which task performers process informa-
tion (e.g. simultaneous or sequential processing).
Furthermore, the current state of the water level
and the goal are both visually represented on
the user-interface in the form of a graph and in
the form of a number which might include some
redundancy. The task contains also ambiguity be-
cause the task does not provide clear information
about rules that govern the environmental inflow
and outflow. More comments like these could be
formulated based on our conceptualization of
task complexity. However, it needs to be pointed
out that these comments do not necessary detract
from the design of this task or compromise the re-
sults of the study. They just illustrate that our
conceptualization of task complexity can make
task designers more aware of the choices they
make in designing tasks. Future research could
also use our conceptualization of task complexity
and turn it into a tool to assess the complexity
level of tasks. Furthermore, our conceptualiza-
tion could form the basis for a tool that provides
a standard for describing and later on maybe
measuring task complexity of dynamic stock
control tasks in future research on human under-
standing of dynamic stock control tasks. Eventu-
ally, the insights gained from this line of inquiry
might yield dynamic stock control tasks that are
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designed in a way that overcomes poor perfor-
mance in managing dynamic complex systems.
Next to task design, our conceptualization of

task complexity can also play a role in develop-
ing more engaging task rehearsing strategies
with regard to dynamic stock control tasks.
Rehearsal as a strategy to increase task perfor-
mance over successive trials has been applied in
many studies, often in combination with provid-
ing information feedback about the reaction of
the system to decisions made in the task. Re-
hearsal in these studies was mainly just
performing the same task multiple times in a
row which has not yet been proven hugely
successful in increasing task performance (e.g.
Gary and Wood 2011; Langley and Morecroft
2004; Özgün and Barlas 2012; Paich and Sterman
1993). Wisely varying different factors contribut-
ing to complexity over successive trials might
be a strategy that could improve task
performance through making rehearsal more
challenging. There is, for instance, evidence that
adding uncertainty to the task in the form of
stochasticity to the modelled system structure
(the variability–complexity dimension) can affect
motivation which in turn might affect task per-
formance (e.g. Ozcelik et al. 2013). Another
option lies, for instance, in the ‘gradual increase
in complexity’ approach where the complexity
of the task is increased gradually over the succes-
sive trails in order to increase task performance
in relatively complex tasks (e.g. Yasarcan 2010).

CONCLUSION

The objective of this paper was to undertake a
first attempt at carving out what task complexity
entails within the context of dynamic stock
control tasks in order to determine its usefulness
for future research on human understanding of
such tasks. This paper illustrates that objective
task complexity of a dynamic stock control task
consists of ten dimensions: (1) size: in terms of
the quantity of task components; (2) variety:
defined as the heterogeneity in task components;
(3) redundancy: capturing the needlessness of
task components; (4) ambiguity: defined as the
degree of clarity of task components; (5)

variability: in terms of changes in or unstable
characteristics of task components over time; (6)
inaccuracy: specified as the inaccuracy of task
components where accuracy is about reflecting
the real world; (7) novelty: as referred to the ap-
pearance of novel, irregular and non-routine
events/actions or presentation formats within
the task; (8) incongruity: in terms of the inconsis-
tency, mismatch, incompatibility of task compo-
nents; (9) connectivity: as the interrelateness of
the control system represented in the form of a
modelled system structure; and (10) temporal de-
mand: specified as time pressure or concurrency
between tasks and/or presentations imbedded
in the task.

This ‘new’ and detailed conceptualization of
task complexity is valuable for future research
on human understanding of dynamic stock con-
trol tasks; and, more specifically, for laboratory
experiments that aim at assessing human under-
standing of dynamic systems. These experiments
can benefit from our conceptualization of task
complexity in their choice of dependent, indepen-
dent and control variables. Future research on
task complexity can therefore focus more thor-
oughly on how the identified complexity dimen-
sions or factors contributing to complexity affect
human understanding of tasks. Investigating
task complexity in more detail might lead to bet-
ter task design or better strategies to use tasks
more effectively, resulting in improved human
understanding of such tasks. All this is of great
importance, as this might shed a new light on
why empirical results on the complexity–
performance relationship are inconsistent. See
Liu and Li (2011) for a summary of this empirical
evidence and the different relationships between
complexity and performance (negative, positive,
contingent and inverted-U shaped).
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