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Abstract System complexity in development of products for
the automated assembly systems causes significant issues, if
left unaddressed. Products with similar level of complexity
tend to cause similar issues in production. Development of
product families based on complexity is an important tool to
avoid such issues. This paper presents a novel approach to
classify the products based on complexity level for assembly
systems. Assembly aspects are then used, which define the
complexity levels of individual parts. The individual part
complexity level is further merged with the assembly se-
quence in the form of binary rooted trees. Hierarchical clus-
tering is also employed to find the similarity coefficients of
different products. These products are finally segregated based
on the generated coefficients. Four products are used as a part
of thorough case study to show the working principle of the
proposed approach along with the results and associated
discussion.
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1 Introduction

It has been an intuitively appealing belief that having a
large product variety base will inspire sales for the com-
petitive market and generate additional revenue [1].
Initially, as the products offered become more attractive,
the sales are improved. But, with the continuous in-
crease in variety, the law of diminishing returns suggests
that the returns do not keep up with the expenses [2]. In
such circumstances, the company is obligated to opti-
mize its external variety with respect to the internal
complexity based on product differentiation [3]. The de-
sign and development of product families is a recog-
nized and effective method to control product variety
for a diverse market forte [4, 5]. In addition to helping
by reusing proven elements within firm’s activities and
outputs by balancing cost to the delivered variety ratio,
product family formation can also provide an array of
benefits including reduction in system complexity and
development risks, improvement in the ability to up-
grade the products, better responsiveness of the
manufacturing processes, and upgraded flexibility [6].
The core intention of any company when investing in
product family formation is to provide sufficient variety
to its customers while keeping cost to the delivered va-
riety ratio at an acceptable level within their manufactur-
ing capabilities [7].

Owing to these increased variations in products, fluc-
tuating market demands and massive production rates
have changed the production paradigms considerably
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[8]. Multiple new automated assembly lines have
emerged to address these issues by providing rapid
change in structure as well as hardware/software [9].
Moreover, customized system configurations for a prod-
uct family can be generated for a group of products
similar to various aspects [10]. This family formation
can be based on several criteria such as similarity in
shape of components, and assembly of components
[11]. In general, all manufacturing systems consist of a
diverse combination of resources such as workers, ex-
perts, managers, tools, machines, and computers. As
time progresses, these systems become more and more
complex due to the evolution of parts manufactured,
their associated product features, shapes, etc. Modern
manufacturing systems, hence, broadly set up their flow
lines based on two distinct sequences: operation se-
quences for part manufacturing and assembly sequences
for product formation. Furthermore, due to their highly
automated nature, these systems have complex

Fig. 1 Flow chart of the
proposed methodology

architectures. Many production stages such as material
processing, handling, and transportation are integrated to
produce complicated and intricate products. As the com-
plexity of these systems increase, disruptive events like
machine failures tend to increase as well. However, it is
worthy to note that like many other things in life, com-
plexity cannot increase indefinitely. There is always an
“upper critical threshold” above which the complexity
ceases to increase.

It is imperative to point out here that part/product
complexity and system complexity are two separate en-
tities. Complex products generally require a complex
setup. It is sometimes possible to manufacture complex
products using a relatively simpler system at the cost of
system throughput (jobs per hour). Another alternative is
to use a more dedicated system at the cost of system
flexibility. Existing techniques when considering system
complexity do not focus on the complexity of the prod-
ucts and therefore ignore the associated issues (e.g.,
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Fig. 2 Binary rooted trees for the
example presented

Node 3

unexpected errors and delays) especially when opera-
tions are considered along with assembly sequences as
depicted in reconfigurable assembly systems (RAS) [12,
13]. A higher level of consideration towards complexity
is recommended to the product family design stage es-
pecially when considering more decision variables/
parameters spread across product, manufacturing pro-
cess, and supply chain domains [14].

Therefore, a generic yet extendable methodology is
proposed in this paper based on product family forma-
tion and examining the complexity of the individual
parts as a head start. A complex industrial case study
is also presented to test the generic methodology. The
rest of the paper is divided as follows: Section 2 pre-
sents the literature review in the related area; Section 3
displays the proposed methodology in a detailed and
elaborative manner; Section 4 tests the proposed meth-
odology on an industrial case study; Section 5 displays
the results along with their discussion; and, finally,
Section 6 presents the conclusions drawn.

2 Literature review

The conceptual foundation of cellular manufacturing is
based on group technology in which similar parts, based
on various criteria, are grouped together [15]. As in
many other aspects of reconfigurable manufacturing sys-
tems (RMS), the basis of part family formation lies in
“cellular manufacturing.” In literature, various re-
searchers, based on various criteria, have grouped parts

Fig. 3 Modified binary rooted
trees for the example presented
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into part families. These include operational similarity,
modularity, reusability, and demand.

For RMS, an algorithm was proposed by Abdi and
Labib [16] for grouping of part families based on oper-
ational similarities using the Jaccard similarity coeffi-
cient [17]. Instead of using a single criterion, Galan
et al. [18] proposed a systematic approach by incorpo-
rating multiple criteria such as modularity, reusability,
compatibility, demand, and commonality. A weighting
method called analytic hierarchy process (AHP) [19]
was also used to agglomerate the five coefficients into
a single coefficient after which a clustering technique
called average linkage hierarchal clustering [20] was
used to form a binary linkage rooted tree known as a
dendrogram [21]. Many other clustering techniques [22]
also exist for the formation of dendrogram. Using the
concept of Jaccard similarity coefficient, a modified
clustering algorithm was proposed by Rakesh et al.
[23]. Considering two characteristics of RMS: capacity
and functionality, a bi-criterion-based evolutionary ge-
netic algorithm for the formation of production families,
was developed by Pattanaik and Kumar [24]. Grouping
products based on operations sequence is a common
grouping criterion in manufacturing/machining applica-
tions [25]. Galan et al. proposed that it is important to
consider the operation sequence in grouping parts to
accommodate many products on the same line and re-
duce the required reconfigurations [18]. Variety manage-
ment of products is hence not infrequent in literature
[26].

Here, a question may arise. Why product families
should be formed at the outset of complexity? It has been

B2*

0.1 0.3 0.5 0.1 0.1 0.3
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Table 1  Comparison of existing complexity values from reference [24] and complexity values using the proposed complexity values

Engine Piston Car Fan Motor
Assembly

Domestic Appliance | 3-pin Electric Power
Drive Plug

‘1 0 " [} X, r.
oo & o -~ 1 r'
. .:»4». : H gy 1[
L) g ~
_— k- g D
( i o
\ -J/ 3 s
Product Complexity No. of Normalized System Type V;,V, Product
Value Parts complexity complexity
(From (Xi)cpart det
reference)
Engine Piston .
6.38 8 0.7975 Mechanical 0.5,0.5 0.8988
Assembly
Car Fan Motor 5.76 9 0.6400 Electrical 0,05 0.3200
Domestic
. . 5.85 9 0.6500 Electrical 0,05 0.3250
Appliance Drive
3-pin Electric }
5.59 7 0.7986 Electrical 0,0.5 0.3993
Power Plug

proved by researchers in the past that ignoring complex-
ity leads to significant issues in productivity [27].
Hubbert [28] showed that severe problems with the elec-
tric systems of Mercedes E-series resulted from the com-
plexity of those systems. Due to similar issues in prod-
ucts in a relatively short span of time, complexity has

now become an essential criterion of product develop-
ment [29]. Therefore, to reduce complexity, one must
be able to assess it. One of the more common techniques
is the complexity assessment of modular product families
[30]. In reconfigurable systems [31], multiple factors
contribute towards the overall complexity of the system

Table 2 Similarity matrix for the

four products M Engine piston Car fan motor Domestic 3-pin electric
assembly appliance drive power plug
Engine piston assembly 1 0 0.0086 0.1370
Car fan motor - 0.9914 0.8630
Domestic appliance drive - - 1 0.8716

3-pin electric power plug -

- - 1
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[32]. These include operation sequences, part features,
and inter-part connectivity. Some of these factors con-
tribute towards the part manufacturing complexity [33],
while other factors affect part assembly complexity [34].
Using these factors, the overall complexity of the prod-
uct can be computed [35] which subsequently helps in
the formation of product families.

Consequently, the literature reviewed showed that al-
though several criteria have been used for the formation
of product families [18], complexity in conjunction with
binary rooted trees has not yet been explored. Using the
complexity of the individual parts and the complexity of
the overall product, based on the increasing levels of
complexity, product families can be formulated. It
should be noted that complexity is one of the factors
to be considered for product family formation.
Moreover, there exists a sufficient gap for working to-
wards product family formation based on complexity
while considering other factors such as assembly joints.
This will not only help alleviate certain complexity re-
lated issues, but will also group together the products
with similar levels of complexity while avoiding distur-
bance in assembly setup, thus untying the complex
products from simple ones. The subject paper, therefore,
presents an approach to form product families based on
complexity as explained above. The methodology for
the approach is presented in detail in the following
section.

3 Proposed product family formation method
for RAS

This section describes the proposed method for product
family formation for manufacturing and assembly sys-
tems based on complexity. Figure 1 shows the flow
chart for the proposed approach. Major part attributes
that play a significant role in the assembly of the overall
product formation are considered in this approach.

Initially, from the available part data, all the relevant
attributes to the designer are considered. These attributes
can vary depending upon the industry and the associated
products. Some of the possible attributes considered for
this work are listed in the Appendix. After that, keeping
in view the available setup, machine modules, etc. for
the given setup, process plans and possible assembly
joints are generated for each product. Next, the individ-
ual part and product complexities are tabulated using the
existing techniques [34]. Finally, using the proposed
methodology, part similarity coefficient, product similar-
ity coefficient, and overall product similarity coefficient
are formulated. Details of these are discussed in the
subsequent sections.

3.1 Proposed similarity coefficient based on complexity
of individual parts

Multiple techniques exist in literature for the computa-
tion of complexity of individual parts [36] as well as
products [37]. The part complexity is primarily based
on attributes such as feature types, number of features,
surface finish, size, thickness, and weight. These attri-
butes can be segregated into two main groups in which
one contributes towards the part manufacturing com-
plexity while the other caters mainly towards the prod-
uct assembly complexity. As this research is based on
product family formation for assembly systems, the at-
tributes contributing towards product assembly complex-
ity are considered. One of the techniques used for com-
plexity index computation is hence applied using
weighted factors on features as shown in Eqgs. 1 and 2
[34]:

_ XiCiy
J

Cy (1)

where Cj, is the relative handling complexity factor, Cj,
is the average handling complexity, and ;j is the number
of handling attributes considered.

e
Ci= —lk L (2)

where C; /is the relative insertion complexity factor, C; is
the average insertion complexity, and k& is the number of
insertion attributes considered. Now, the part complexity
(Cpart) based on these factors is computed as shown in
Eq. 3 [34]:

coo_ Ci¥iChy + C¥iCis
part - i
Y Chp+Y5C

To find similarity between parts, an upper and lower
threshold is required. As complexity cannot increase in-
definitely, there is an upper critical threshold above
which complexity ceases to increase. Now, there are
several options available at this junction. Three of these
are as follows:

(3)

i. Set an unusually high complexity as the upper criti-
cal threshold to avoid possibility of any complexity
value coming out greater than the upper threshold. A
possible drawback of this approach is that the com-
plexity of the real parts may turn out to be extremely
small and incomparable with this number.

ii. Set a complexity value close to real parts’ complex-
ity values. This will make the complexity of real
parts comparable to the maximum value, but the risk
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Fig. 4 A sample dendrogram for four products

of model failure is much higher since it is possible
for parts to have greater complexity than the upper
threshold.

iii. Choose upper and lower threshold amongst the
complexities of existing parts. This will not only
remove the possibility of model failure, but also
make a realistic comparison amongst parts.

Based on this, the similarity coefficient (Prt;) is then com-
puted as shown in Eq. 4:

Cparti— Cpartj ’

w=fil== Complexity Values

== == Threshold 1

= == == Threshold 2
0.8 7
0.7 4
0.6
0.5 4
0.4 4

0.3 4
0.2 4

Similarity Coefficient

0.1

0
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Product ID
Fig. 6 Proposed similarity graph of dendrogram in Fig. 4

ACBD

where ¢pax and ¢y are the maximum and minimum part
complexities. It should be noted that the obtained values
are dependent upon the available part complexities. For
instance, four parts: @, b, ¢, and d, have complexity
values 0.5, 0.7, 1.3, and 1.4, respectively. As the highest
and lowest values are 1.4 and 0.5, therefore, ¢ =1.4
and ¢, =0.5. Prt,, will be computed as shown below:

L 1= <Prt.< 0.5-0.7
Priy =1 —— 0=Pry=<1 4)  prey, = 11057071 _ 5 20g
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Fig. 5 Using a 2D plot of temperature effects [28] (b) of a U-type pipe bend (a) to form the similarity graph (c)
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Fig. 7 a—d Four variants of
compressors

() Variant # 29-200

3.2 Proposed similarity coefficient based on product
assembly sequence

The assembly sequences can be represented as binary
rooted trees showing parallel operation capabilities (see
Fig. 2). The most commonly used metric for binary trees
is the “Robinson-Foulds distance” [38]. This metric can
be used to assess the similarity/dissimilarity between

(b) Variant # 68-410

(¢) Variant # 66-200 (d) variant # 66-300

The two binary trees By and B, having m; and m,
number of leaves respectively can be taken as an exam-
ple to illustrate the principle. The sets, D; and D», con-
tain m; — 1 and m, — 1 number of subsets. Each subset
contains the leaves under each node after which
Robinson-Foulds distance can then be calculated by
Eq. 5 [39]. This is further detailed by Eq. 6.

two or more assembly sequences. The part manufactur- RF(T1,72) = 1 |D1AD2)| (5)
ing sequence, however, is usually not represented as 2

. . . . 1
b1nar¥ .r(?oted trees due to the limited parallel operation RF(T1,T2) = - |D1\D2 + D2\DI| (6)
capabilities. 2
Table 3  Individual part complexity for variant #29-200
Part no. 1 2 3 4 5 6 7 8 9 10 11 Product
Cp 0.64 0.64 0.68 0.69 0.64 0.68 0.69 0.75 0.64 0.72 0.72
>Cy 3.30 3.30 3.70 3.85 3.30 3.70 3.85 4.46 3.30 4.19 4.19
C; 0.68 0.68 0.71 0.86 0.68 0.71 0.75 0.86 0.71 0.89 0.89
>C; 231 231 2.02 2.96 231 2.02 2.84 2.96 2.02 3.19 3.19 () Crart
Crart 0.66 0.66 0.69 0.76 0.66 0.69 0.72 0.79 0.67 0.79 0.79 0.714
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Table 4 Individual part complexity for variant #68-410

Part no. 1 2 3 4 6 7 19 8 20 12 21 11 Product
C, 0.64 0.64 0.68 0.69 0.68 0.69 0.68 0.75 0.64 0.72 0.69 0.72

>Ch 3.30 3.30 3.70 3.85 3.70 3.85 3.70 4.46 3.30 4.19 3.85 4.19

C; 0.68 0.68 0.71 0.86 0.71 0.75 0.71 0.86 0.71 0.75 0.75 0.89

>C; 2.31 2.31 2.02 2.96 2.02 2.84 2.02 2.96 2.02 2.22 2.84 3.19 22 Crart
Crart 0.66 0.66 0.69 0.76 0.69 0.72 0.69 0.79 0.67 0.73 0.72 0.79 0.713
Here, the “A” symbol represents symmetric difference where- RE. — RE RE ;
as the “\” symbol represents the dissimilarity between the § 7 max (7)
subsets, i.e., DI\D2 represents number of subsets present in RE.. — my + mp (8)
D, but not in D,, and vice versa. For example, the two trees mx T

shown in Fig. 2 each have four leaves and three nodes. For the
tree By, node 3 forms the subset {1, 3}, node 2 has {2, 4}, and
node 1 has {1, 3, 2, 4}. Therefore, B; has a subset D; = {{1,
3%, {2, 4}, {1, 3, 2, 4}}, and similarly, the tree B, has
D, = {{1, 2}, {3, 4}, {1, 2, 3, 4}}. The order of the leaves
within the subset is unimportant. Now, DI1\D2 turns out to be
2 as the subsets {1, 3} and {2, 4} are present in D; but not in
D». Similarly, D2\D1 turns out to be 2 as {1, 2} and {3, 4} are
present in D, but not in D;. Substituting these values in Eq. 6
results in: RF (B}, B>)=0.52+2)=2.

Dissimilarity between the trees increases as the RF
value increases. This RF value represents dissimilarity
value between the trees. Now, instead of using numeric
values of parts in the assembly sequences, taking the
complexity values of the parts and accordingly generat-
ing RF value of the trees is proposed in this paper. The
complexity values of each part can further be computed
by any one of the many techniques already presented in
literature [34, 40]. But, for this research, the complexity
values are computed using the product assembly com-
plexity [34]. For instance, the complexity values of parts
1, 2, 3, and 4 are 0.5, 0.1, 0.1, and 0.3, respectively. The
modified rooted trees are shown in Fig. 3.

The modified D* = {{0.5, 0.1, 0.1, 0.3}, {0.5, 0.1}, {0.1,
0.3}} and D,* = {{0.5, 0.1, 0.1, 0.3}, {0.5, 0.1}, {0.1,0.3}}.

where RF,.; is the maximum possible RF distance and
and m, are the number of leaves of trees 1 and 2, respectively.
Normalization of RF distance can be carried out using Eq. 9:
RF,, — "EmaRE (9)
RF nax

where RFg, is the normalized RF distance. It should be noted
that the RF distance cannot be set as the only measure for the
calculation of product similarity coefficient. Therefore, after
the computation of RF distance, the maximum number of
possible assembly joints (PAJ,,,..) are generated using the ba-
sic definition (see Eq. 10) along with the number of possible
assembly joints (PAJ) for a setup. Number of PAJs for a set of
parts for a given products can be computed using Eqs. 10 and
11:

n,-z—n,-

>PAJ>(n~1) (10)

where n; represents the number of parts of product i, n; — 1
represents the minimum number of joints (PAJ,,), and ;> —
n; represents the maximum number of joints (PAJ,,.,) required
to form a product.

nl_z_ni Fi o Fi o Fi o
Substituting these new values in Eq. 6, the new RF (B,*,  PAJ;=— <mZ]B(mvle7k) + z‘c(nrlvﬁk) +0§lD(071717k)
B,*)=0.5 (0 + 0) = 0. To compute the similarity value RF, 1
Egs. 7 and 8 are used. (11)
Table 5 Individual part complexity for variant #66—200
Part no. 4 7 8 11 14 13 15 16 17 18 Product
C, 0.69 0.69 0.75 0.72 0.72 0.72 0.68 0.64 0.64 0.72
>Ch 3.85 3.85 4.46 4.19 4.19 4.19 3.70 3.30 3.30 4.19
C; 0.86 0.75 0.86 0.89 0.83 0.83 0.71 0.68 0.71 0.80
>C; 2.96 2.84 2.96 3.19 2.72 2.72 2.02 231 2.02 3.18 () Crart
Crart 0.76 0.72 0.79 0.79 0.76 0.76 0.69 0.66 0.67 0.75 0.734
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Table 6 Individual part complexity for variant #66—300

Partno. 1 2 3 4 6 7 8 11 22 14 13 15 16 17 18 Product
Cy 0.64 064 068 069 068 069 075 072 072 072 072 068 0064 064 0.72

>C 330 330 370 385 370 385 446 419 419 419 419 370 330 330 4.19

C; 068 068 071 08 071 075 08 089 080 083 08 071 068 071 0.80

>C; 231 231 202 296 202 284 29 319 318 272 272 202 231 202 318 Y(x)Cpan
Cpart 0.66 066 069 076 069 072 079 079 075 076 076 069 066 067 075 0.719

where B represents the number of assembly joint(s) omit-
ted based on logical assembly constraints. C represents
the joint(s) omitted based on datum constraints, and D
represents joint(s) omitted based on other constraints. It
has been observed in the past that only considering RF
distance to compute similarity between assembly or part
manufacturing sequences has led to significant issues.
Products with completely different features ended up
with the same RF distance. Therefore, the similarity co-
efficient (Eqs. 12 and 13) for the whole product is com-
puted by considering RF distance as well as PAJ:

) (12)

(13)

where Pdt;; represents the product similarity coefficient and w,
and wy, represent the weightage factors for the product.

PAJ~PAJ;
PAJmax_PAJmin
VO<w, < 1,0<w, < 1

Pdt; = woRFg, + wp (1—‘

w, +wp =1

3.3 Proposed similarity coefficient based on merged
complexity

The similarity coefficient for merged complexity mea-
sures the similarity between different products based

Table 7  Part similarity matrix based on complexity for variant #29—
200

Part 1 2 3 4 5 6 7 8 9 10 11

1 -1 075 024 1 0.75 054 0 093 0 0

2 - 075 024 1 0.75 054 0 093 0 0

3 - 049 075 1 0.79 025 0.82 025 025
4 - 024 049 0.70 0.77 030 0.76 0.76
5 - 0.75 054 0 093 0 0

6 - 0.79 025 0.82 025 025
7 - 047 0.61 046 046
8 - 0.07 1 1

9 - 0.07 0.07
10 - 1

11 -

on their overall complexity. In certain cases, it is possi-
ble that two products are similar both at part and prod-
uct levels, resulting in a similar overall complexity co-
efficient. It is also possible that the products having
completely different parts end up with a marginally dif-
ferent overall complexity coefficient.

On the one hand, products having low complexity
within a certain product family result in oversimplifica-
tion of the processes and in turn result in underutiliza-
tion of assets. On the other hand, products having high
complexity result in overcomplicated processes, thus
causing unexpected accidents and delays. It should also
be noted that the overall complexity coefficient is based
on the complexities of individual parts and not on the
part assembly sequence and joints as discussed previ-
ously in Section 3.2. Moreover, change in the basic sys-
tem is yet another aspect to consider. For example, an
electronic device with small, thin parts might oddly re-
sult similar to a mechanical transmission with heavy,
tight-tolerance parts. To overcome this, the complexity
computed using the handling, insertion attributes are
combined with vector distances, V; and V,. The product
complexity is then computed using Eq. 14:

Table 8 Part similarity matrix based on complexity for variant #68—
410

Part 1 2 3 4 6 7 19 8 20 12 21 11
1 -1 075 024 0.75 054 0.75 0 093 044 054 0
2 - 075 024 0.75 0.54 0.75 0 093 044 054 0

3 — 0.49 1 0.79 1 0.25 0.82 0.69 0.79 0.3
4 - 049 0.7 049 077 03 08 0.7 038
6 - 0.79 1 0.25 0.82 0.69 0.79 03
7 - 0.79 047 0.61 09 1 0.5
19 - 0.25 0.82 0.69 0.79 03
8 - 0.07 0.56 047 1
20 - 0.51 0.61 0.1
12 - 09 0.6
21 - 0.5

11 -
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Table 9  Part similarity matrix based on complexity for variant #66—
200

Part 4 7 8 11 14 13 15 16 17 18

- 07 08 08 1 1 05 02 03 1
- 05 05 07 07 08 05 06 07
8 - 1 0.8 08 02 -0 0.1 0.7
11 - 08 08 02 -0 0.1 0.7
14 - 1 05 02 03 1
13 - 05 02 03 1
15 - 0.7 08 05
16 — 09 03
17 - 0.3
18 —
n
det =Vi+V, Z:] (xi)cpart (14)
i—

where C,, represents the merged product complexity, x;
represents the weightage factor for individual part com-
plexity (Cpar), and V; and V., represent the vector dis-
tances for the product systems.

Three systems are considered: electrical, mechanical,
and hybrid. For the electrical products, V; and V, are set
to 0 and 0.5, respectively. Similarly, for the mechanical
products, V; and V. are set to 0.5 and 0.5, respectively,
and for the hybrid systems, V; and V, are set to 1 and 1,
respectively. This aids in eliminating the possibility of
products from different systems having the same com-
plexity. For example, in ref. [36] on page 102 (Tab. 5.2),
the complexity values of 6.38, 5.76, 5.85, and 5.59

respectively are chosen for four parts: engine piston as-
sembly, car fan motor, domestic appliance drive, and 3-
pin electric power plug. The complete computations for
the four parts are shown in Table 1. It is evident that the
normalized complexity (column 4) of all systems are
significantly close. Now, after the application of Eq.
14, the value of product complexity (column 7) is sig-
nificantly different for the electrical and mechanical sys-
tems. The overall similarity coefficient M; is calculated
as shown in Eq. 15:

‘C,‘_Cj‘

My=1- ,0<8,<1 (15)

Cmax ™~ Cmin

where ¢; and ¢; are the overall complexity coefficients of
products i and j. Also, ¢,,.x and c,,;, represent maximum
and minimum overall complexity coefficients amongst
the given products. Using the modified complexity
values (Table 1 column 7), the similarity coefficients
based on the four products are shown in Table 2. The
mechanical system (engine piston assembly) has signif-
icantly low similarity to the electrical system products
(Table 2 row 2). The other products show a greater
amount of similarity amongst one another.

3.4 Relative clustering

The more common methods used for product family for-
mation include hierarchical clustering [21, 41] and pre-
cedence charts [42]. These trees are formed using vari-
ous optimization techniques including but not limited to
genetic algorithms (GAs). The results are then shown
using a dendrogram (see Fig. 4) [19, 43].

Table 10  Part similarity matrix based on complexity for variant #66—300

Part 1 2 3 4 6 7 8 11 22 14 13 15 16 17 18

1 - 0.7 0.77 0.76 0.98 0.98 0.49 0.24 0.3 0.97 1 0.7 0.77 0.76 0.98
2 - 0.47 0.46 0.68 0.68 0.79 0.54 0.61 0.73 0.7 1 0.47 0.46 0.68
3 - 1 0.79 0.79 0.25 0 0.07 0.74 0.77 0.47 1 1 0.79
4 - 0.79 0.79 0.25 0 0.07 0.74 0.76 0.46 1 1 0.79
6 - 1 0.46 0.21 0.28 0.95 0.98 0.68 0.79 0.79 1

7 - 0.46 0.21 0.28 0.95 0.98 0.68 0.79 0.79 1

8 — 0.75 0.82 0.51 0.49 0.79 0.25 0.25 0.46
11 - 0.93 0.26 0.24 0.54 0 0 0.21
22 - 0.33 0.3 0.61 0.07 0.07 0.28
14 - 0.97 0.73 0.74 0.74 0.95
13 - 0.7 0.77 0.76 0.98
15 - 0.47 0.46 0.68
16 - 1 0.79
17 - 0.79
18 -
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Fig.8 Binary rooted trees for the four variants as presented in literature [45]. a T1: variant #29-200. b T2: variant #68—410. ¢ T3: variant #66-200. d T4:

variant #66-300

In the proposed relative clustering technique, when
there are more than one similarity coefficients involved,
a weighting method is applied to form similarity coeffi-
cient matrix (Egs. 4, 12, and 15). The method is similar
to the hierarchical clustering technique used in literature.

Now, instead of using conventional techniques in-
volving dendrogram, similarity graph is developed by
studying the 2D plots used to observe the temperature
effects of turbulence in fluid mechanics (see Fig. 5)

Fig. 9 a-d Part similarity graphs (a) TI
for the four products
im0 9 8 7 6 5
() T3

[44]. These curves are used to observe the turbulent
behavior of fluids by observing temperature variations
under different volumetric flow rates for various pipe
configurations. The work presented shows a “U-type”
pipe bend in Fig. 5a. Flow is passed through this pipe
and turbulence behavior is then observed. The graphs
formed for temperature difference between lines B and
C (U-type bend) in Fig. 5a is shown in Fig. 5b. ATzc
represents the surface temperature difference and 64

(b) T2

17
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K2

0.79 0.79 0.67 0.79 0.72 0.69 0.66 0.66 0.66 0.69 0.76

(c) T3

FON

079 0.79 0.72 0.76 0.76 076 0.69 0.66 0.67 0.75

(b) T2

S

0.79 0.72 0.73 0.67 0.790.720.69 0.69 0.66 0.66 0.69 0.76

(d) T4

AN

0.69 0.66

0.66 0.69 0.76 0.72 0.79 0.79 0.76 0.76 0.66 0.69 0.75 0.67

Fig. 10 Modified binary rooted tress for the four variants using part complexity. a TM1: variant #29-200. b TM2: variant #68—410. ¢ TM3: variant #66—

200. d TM4: variant #66—300

represents normalized temperature difference. If the
resulting curves formed under different boundary condi-
tions are closer to the mean, it can be concluded that
pipe configuration under the given conditions has less
turbulent behavior. Observing the curves for the normal-
ized temperature difference closely, the same concepts
can be applied for product family formation (Fig. 5c),
i.e., designing a product family dendrogram alternative,
a similarity graph based on the same principles. Product
similarity values increase gradually towards the higher
normalized threshold of 1. This is further elaborated by
the example in Fig. 6.

The product identification numbers (IDs) (x-axis) are
placed in decremental values of similarity coefficients
(y-axis). The products having higher similarity coefficients

Table 11  Similarity index using conventional binary rooted trees (a)
and proposed binary rooted trees (b).

Product (a) Product (b)

TI T2 T3 T4 TMI TM2 TM3 TM4
Tl ~ 029 000 026 TMI - 029 000 035
T2 - 000 033 TM2 - 010 042
T3 ~ 055 TM3 - 055
T4 - TM4 -

@ Springer

show greater complexity-based similarity. The products are
assigned to the product family based on the similarity coeffi-
cients generated. Two thresholds are chosen at similarity value
of 0.7 and 0.4. The products having similarity coefficients
above upper threshold are more similar than the products be-
tween thresholds 1 and 2, and so forth. Applying this concept
on the dendrogram of Fig. 4, products A and C have high
similarity coefficient than products B and D, and all products
have overall similarity of 0.30. Comparing the dendrogram
with the proposed similarity graph (Fig. 6) and setting thresh-
old as 1 (S1 =0.7) for the product family formation, the only
product family formed is of products A and B. If threshold is
set as 2, two families, AB and CD can be formed. If, however,
the threshold is set even lower (say 0.2), all the products
ABCD fall into a single product family. The dendrogram
shows the similarity coefficient while assembling the parts to
obtain the final product, and it does not show the similarity of
all the parts. The proposed similarity graph, however, shows
all the product combinations with high similarities, graphical-
ly. This can help to form product family of more than two parts

Table 12 PAJs for the

four products Product a b c d

PAJ 1 1 9 13
PAJ s 55 66 45 91
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Table 13 Product

similarity coefficients Product ~ T1 T2 13 T4

(Pdt) for the four

products with w, = 0.5 T1 - 064 048  0.65

and w, = 0.5 T2 - 053  0.69
T3 - 0.73
T4 _

as shown in the results. There are two possible methods of
forming thresholds: defining an arithmetic value (e.g., 0.5,
0.7) or setting a given number of products (e.g., maximum
product family of four products). Both alternatives are possi-
ble and are used in the industry. If on the one hand the number
of variable products is a matter of concern, then latter method
is applied. If on the other hand the similarity between these
products is a matter of concern, then the former method is
applied.
There are two main advantages of similarity graph.

1) The proposed similarity graph shows all product families
having similarity above that threshold, like a dendrogram.
But, in the dendrogram, it is difficult show the number of
product groups having similarity above a threshold. This
phenomenon is graphically shown in the similarity graph
via number of dots above threshold.

2) As the similarity graph shows groups of products as dots
instead of lines, the similarity graph is capable of handling
more data in a confined space.

Further elaboration of the proposed clustering techniques is
carried out in the following sections.

4 Industrial case study

Anindustrial case study involving four variants of compres-
sors as shown in Fig. 7 is used to demonstrate the formation
of product families using the proposed techniques for indi-
vidual part and overall product complexity. Smaller parts
like washers, nuts, and bolts have also been considered.
Careful examination shows that most of the parts are

Table 14  Product complexities (C,) and product similarity coefficient
(M) for overall product complexity

Product T1 T2 T3 T4
Coar 0.857 0.856 0.867 0.860
M T1 T2 T3 T4

T1 - 0.92 0.08 0.77
T2 - 0.00 0.69
T3 - 0.31
T4 -

e = = Threshold 1

=== Similarity Values

0.8
0.7

0.6

0.5

0.4

Similarity Coefficient

0.3

0.2 . T . T T |
M34 M12 M

Product Groups

Fig. 11 Product similarity graph for the similarity coefficient Pdt

designed to fit in only a particular manner. Also, most of
them are symmetric. Other factors similarly play an impor-
tantrole in the computation of complexity of these parts, the
complete details of which can be found in the Appendix.

The proposed model is initially developed in Excel and
then imported into MATLAB. C), rand C; ,for each part of
the four products are computed using tables provided in the
Appendix [34]. To illustrate the basic computations in the
Appendix, handling and insertion complexity values of part
1 of product variant #29-200 (Italicized in Table 3) are as
follows:

* Handling: Symmetry = 1, Size = 0.74, Thickness = 0.27,
Weight = 0.5, Grasping and manipulation = 0.91,
Assistance = 0.34, Nesting and tangling = 0.58, Optical
magnification = 0.8.

Sum of these factors = 5.14.

Number of factors = 8.

C,=5.14/8 = 0.64.

Sum x C, =>C,=5.14 x0.64 =3.30

+ Insertion: Holding down = 0.54, Alignment = 1, Insertion
resistance = 0.87, Accessibility and vision = 0.57,
Mechanical fastening = 0.42.

Similarity (Percentage)
w
=}

¢ 2 3 4

Product
Fig. 12 Dendrogram for similarity coefficient Pdt
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Fig. 13 Product similarity graph for the similarity coefficient M

Sum of these factors = 3.40.

Number of factors = 5.
C;=3.40/5=0.68.

Sum x C;=>C;=3.40 x 0.68 =2.31

CiY|Chy + CYECiy  0.64 x 3.30 +0.68 x 2.31
YiChs+35Ci 3.30+231

Cpurt : =0.66

Cy and C; are computed using Eqgs. 1 and 2. Cp,y is then
computed using Eq. 3. The results of the remaining parts for
the variant #29-200, 68-410, 66200, and 66300 are then
showninTables 3,4, 5,and 6, respectively. After computing
the individual C,,y, similarity coefficients for the parts are
calculated using Eq. 5. The values are shown in Tables 7, 8,
9, and 10. These values represent the similarity between
individual parts within a single product. For example, sim-
ilarity value of 0.75 (Italicized in Table 7) shows that parts 1
and 3 have a 75% similarity. Once the similarity matrices
have been formed, binary rooted trees of the four variants
(Fig. 8) were developed based on their part joining prece-
dence to form the product. After that, the modified binary
rooted trees were formed by replacing the part numbers with

Similarity (Percentage)
(9]
o

100 . —>
1 2 4 3
Product

Fig. 14 Dendrogram for the similarity coefficient M/
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the complexity values (Cpqye). Further work using these
graphs is detailed in results.

5 Results

The part similarity graphs are obtained by applying the
proposed model on four products (Fig. 7) using the com-
plexity coefficients as a measure from Tables 5, 6, 7, and
8 (see Fig. 8). Threshold 1 and threshold 2 are set to 0.85
and 0.70 respectively. These threshold values were decid-
ed based on the outputs from part similarity matrices and
are subject to change based on the specific part family
outputs. Based on these values, considering threshold 1,
part families formed are (1,2), (1,5), (2,5), (3,6), (8,10),
(8,11), and (10,11) as binary paired groups (because they
all have a similarity value 1), or a complete family of parts
1,2,3,5,6,8,9, 10, and 11 for the variant #29-200. So,
by the proposed model, more than two parts (nine in this
case) can be grouped in to a single part family. If thresh-
old 2 is considered, then 7 and 4 are also included in the
part family. The part families for the remaining variants
can be observed from Fig. 8b—d as well.

Moving on from part family towards product family, as
discussed in the previous section, for the four products used
as case study in this paper, the binary rooted trees were
developed by multiple authors previously [45—47] as shown
in Fig. 9 [48]. The modified binary trees were then devel-
oped using the binary rooted trees, and the complexity
values are presented in Tables 3, 4, 5, and 6 (see Fig. 10).
Utilizing Eqs. 5-9, the normalized RF distances for the four
products were developed and are shown in Table 11.

A comparison is further shown in Table 11 between the
binary rooted trees (conventional) and modified binary
rooted trees (proposed). It should be noted that the results
shown for the modified binary rooted trees are completed
after applying the PAJs on the trees (see Table 12). As
discussed in the previous sections, the normalized RF dis-
tance cannot be set as the only measure for the computation
of similarity index. Therefore, using the simulated values of
possible assembly joints (Table 12) and applying Egs. 12
and 13, the product similarity coefficients (Pdt) are shown
in Table 13. If the data of Table 13 is compared with that of
Table 11 (a), significant differences can be observed. It
should also be noted that the two weightages w, and w,,
(see Eq. 9) are set to 0.5. These are subject to change.

Finally, for the overall product similarity coefficient
(M;)), the overall part complexity coefficient is required.
This was computed and is shown in the last columns of
Tables 3, 4, 5, and 6. As all four are mechanical parts,
therefore V; and V, are both set to 0.5. Applying these
values to Eq. 14 reveals the values of C,;, which are then
applied to Eq. 15 to find M;; (tabulated in Table 14).
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The product similarity graph and the dendrogram for the
product similarity coefficient “Pdt” are shown in Figs. 11
and 12 and for the product similarity coefficient “M” are
shown in Figs. 13 and 14, respectively. It is evident that
the families formed are completely different irrespective
of the threshold set for the products. Two factors cause this
phenomenon: one, the RF distance and PAJs are considered
in the RF based complexity and, two, in the similarity coef-
ficient M, the overall product complexity is catered based
on system-based vectors. Hence, the formation of different
product families is justified. It is indeed possible in certain
cases to arrive at the same product families using M and Pdt.
But, that is conditional to the fact that the assembly se-
quences, joints, and their variations do not play any role in
the complexity of the products.

6 Conclusion

A model for the product family formation based on com-
plexity was presented in this paper. The model is initially
focused on part complexity but is specifically designed for
assembly system complexity. The complexity attributes
considered are assembly-focused. The hierarchical groups
between different parts within the products were also con-
sidered. The model is novel in multiple ways. Firstly, RF
distance hasnotbeenused to compute complexity previous-
ly. Also, the addition of possible assembly joints’ coeffi-
cients (see Table 13) allows the model further depth.
Moreover, there is a strong possibility that two products
varying in all major aspects may end up with the same
complexity-based RF distance. The PAJs allowed the model
another basis for differentiation. Furthermore, the addition
of system-based vectors allowed to further distinguish be-
tween products. With the help of these contributions, the
odd chance of a mechanical- and electrical-based product
ending up with very high similarity coefficients is dimin-
ished. Another novelty is the proposed similarity graph.
This can be used as an alternate to the dendrogram allowing
the user much more data in a confined space and allows the
user to set quantity-based thresholds.

The developed model for the formation of product fam-
ilies is part focused, but as a future work, it can be modified
to accommodate a wide range of products. For instance, if
the parts are being assembled in parallel assembly lines
(based on the parallel capability of the machine), Eq. 8 can
be modified to accommodate this change. In addition, since
the model starts off from the complexity of individual parts,
it can be extended to manufacturing as well, if the part com-
plexity is modified to accommodate the part manufacturing.
However, multiple changes may still be required to fully
incorporate manufacturing into the model. Weighted meth-
od was used to incorporate the assembly joints into the RF

distance and complexity-based similarity coefficients. This
is a very common method to incorporate multiple factors.
Another possible method is multi-level integration.

The main technique to define and carry out the similar-
ity calculations was integer programming. Some of the
main reasons include its conventional ease of use, its abil-
ity to define and simulate the similarity matrices with
ease, and its reputation in previous research.

Finally, the model was compared with the previous work
on complexity. The complexity values of the previous au-
thors for products from different systems were very close to
one another. After the application ofthe proposed complex-
ity coefficient, the results were significantly different.
Similarity coefficient was then computed, and the results
were displayed using both dendrogram and similarity
graphs.

Nomenclature

Ch s Relative handling complexity factor

o Average handling complexity factor

Ciy Relative insertion complexity factor

C; Average insertion complexity factor

Coart Individual part complexity

Prt; Similarity coefficient between parts i and j
RF Robinson-Foulds distance

RF, Normalized Robinson-Foulds distance

RF Maximum Robinson-Foulds distance

my, mo. Number of leaves for the binary rooted trees
my,

Dy, Ds.. Sets containing part groups based on binary
Dy rooted trees

PAJ Number of possible assembly joints

Wa, Wp...  Weightage factors

W,

Pdt; Similarity coefficient between products i and j
M;; Overall product similarity coefficient between

products 7 and j
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Appendix

Table 15  Some of the possible attributes considered for this work

Group Attribute Description Average complexity factor, Cr
Handling attributes Symmetry (v + ) a+ <360 0.70
360 <« + <540 0.84
540 < + <720 0.94
a+ =720 1.00
Size > 15 mm 0.74
6 mm < size < 15 mm 0.81
<6 mm 1
Thickness >2 mm 0.27
0.25 mm < size < 2 mm 0.5
<0.25 mm 1
Weight <10 Ib (light) 0.5
>10 b 1
Grasping and manipulation Easy to grasp and manipulate 0.91
Not easy to grasp and manipulate 1
Assistance Using one hand 0.34
Using one hand with grasping aids 1
Using two hands 0.75
Using two hands with assistance 0.57
Nesting and tangling Parts do not severely nest or tangle and are not flexible. 0.58
Parts severely nest or tangle or are flexible. 1
Optical magnification Not necessary 0.8
Necessary 1
Insertion attributes Holding down Not required 0.54
Required 1
Alignment Easy to align or position 0.86
Not easy to align or position 1
Insertion resistance No resistance 0.87
Resistance to insertion 1
Accessibility and vision No restrictions 0.57
Obstructed access or restricted vision 0.81
Obstructed access and restricted vision 1
Mechanical Fastening processes Bending 0.34
Riveting 0.58
Screw tightening 0.42
Bulk plastic deformation 1
Non-Mech. fastening processes No additional material required 0.58
Soldering processes 0.67
Chemical processes 1
Non-fastening processes Manipulation of parts or sub-assemblies (fitting or adjusting of parts...) 0.75
Other processes (liquid insertion...) 1
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