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Abstract. Systems engineering literature identifies many different kinds of complexity. One 
paper cataloging complexity for the purpose of modifying systems engineering cost estimates 
identified more than 30 types. The research described in this paper investigates the idea of 
sorting and organizing the many concepts of complexity and showing the relationships 
between them on a single two-dimensional chart. 

The Systems Engineering Complexity Contexts (SECC) chart was developed to show 
how a large number of complexity concepts relate to systems engineering and to each other. 
All but two of the 30 types from the paper mentioned above fit on this chart. Those two 
appear as aspects that may apply to all other boxes on the chart instead of as orthogonal 
elements, which was the desired representation.  

Introduction 

Complexity is often blamed for systems engineering problems, (Britcher, 1998; Calvano 
& John, 2004; Kurtz & Snowden, 2003; Stevens, Brook, Jackson, & Arnold, 1998; White, 
2005) but rarely does the process of fixing blame involve crafting a precise definition of the 
problem. The systems engineering literature describes a wide range of concepts of 
complexity, including the number and type of stakeholders, the organization’s maturity and 
scope, and the required product quality. (Maier, 2007)  In fact, a paper cataloging complexity 
for the purpose of adjusting systems engineering cost estimates, Young, Farr, and Valerdi 
(2010) identified more than 30 types.  

It is very difficult to apply such a broad topic as complexity to the equally broad topic of 
systems engineering. Systems engineering comprises all life cycle phases, from early analysis 
to anomaly resolution. Various groups, from government acquisition offices to programmers, 
require many different views of systems engineering. Even if there were only one kind of 
complexity, it could still apply differently to each aspect of systems engineering. Multiply the 
number of possible variations by the number of complexity types and it quickly becomes 
apparent that without a simple framework, describing the effects of complexity on systems 
engineering would be too convoluted to be useful. 

In 1962 Hall stated that the genesis of systems engineering was the need to deal with 
complexity (Hall, 1962). Perhaps after fifty years it is time for systems engineering to deal 
with the confusion resulting from the large variety of complexity concepts. Can the various 
concepts be brought together in an organized form? Is there a way to show their relationships, 
perhaps on a single two-dimensional chart? Would the chart permit a newly identified 
conceptualization of complexity to fit within its structure? 

The goal of this research is to identify such a two-dimensional structure. Success will be 
achieved if all or nearly all of the relationships among different aspects of systems 
engineering complexity can be shown on one chart, without requiring elements that apply to 
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all boxes (which would represent an additional dimension).  Success also implies that when a 
new typology of complexity arises, its elements can fit in a specific place on the chart.  

This paper describes a structure that comes close to achieving these goals. A new chart, 
the Systems Engineering Complexity Contexts (SECC) chart, was derived from the 
complexity concepts discussed in Young, et al. (2010) All of the concepts from Young, et al. 
can be located on the structure, except for two that are captured not as the desired orthogonal 
elements but as aspects that may apply to all other boxes on the chart. These two non-
orthogonal aspects keep the SECC from fully meeting the intended goal of the research.  

Methodology 

Complexity definitions. An early and ongoing step in this research identified many different 
ways that systems engineering has encountered complexity. Some of the most often 
mentioned attributes of complexity are that it makes projects difficult, that it involves large 
system or project size and high connectivity, and that it arises from many causes, ranging 
from difficult requirements to project management.  The Young, et al. paper was identified as 
the most complete compendium of complexity definitions and was therefore chosen for the 
initial test of the structure. 

Typology. Another research step, described in a previous paper (Sheard and Mostashari, 
2010), created a typology of complexity:  structural types (size, connectivity, and inhomo-
geneity or diversity), dynamic types (short-term and long-term), and sociopolitical types.   
These types were challenged through application to systems engineering for a survey of 
complexity vs. project outcomes (Sheard, 2012); the result was the addition of entities (those 
things that are evaluated as more or less complex). Entities include the System itself, the 
Project building the system, the Environment (both socio-political and technological), and 
Cognition (a subjective or cognitive type). (Sheard and Mostashari, 2011) 

Application to systems engineering. These steps were preparatory to the main goal: 
organizing the ways that different definitions of complexity apply to systems engineering. 
The SECC structure followed from describing what happens in the Environment entity that 
leads to a Project entity being set up to build a System entity. Ways in which each entity can 
be complex are emphasized in the descriptions. These three entities are linked via the life 
cycle of systems. The fourth entity, Cognition, was added later to emphasize ways in which 
other activities lead to confusion, uncertainty, frustration, and lack of knowledge. Showing 
how the activities for each entity relate, the full-page SECC diagram allows each of the 30+ 
types of complexity from Young, et al. to be located upon it.  

Entities 

To apply complexity concepts, one must ask is what is the object—the “entity”—that is 
complex. Within systems engineering there are three to five different kinds of entities that 
may be complex.  Four of these five include the following: 

1) the (technological) System being designed and built 

2) the (socio-technical) Project doing the building 

3a)  the technological Environment into which the system will be inserted when built 
(e.g., the hardware and software technical systems with which this system must 
interface, for starters) 
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3b)  the socio-political system related to the technological environment, generally 
system stakeholders (Sheard and Mostashari, 2011)  

 
The last two, 3a and 3b, could be considered separate entities, or grouped together into an 
entity called the “environment,” the “supersystem,” or the “complex system encompassing 
the technological system being built.”  

The following could be considered a fifth entity:  

4)  the subjective human experience when thinking about, designing, or using the 
system, called Cognition   

These entities are shown in Figure 1, with 3a) and 3b) grouped together into “Environment” 
and subjective experiences (Cognition) added.  

 

 

Figure 1. Entities 

The entities are shown as yellow, green, pink, and blue, respectively. To differentiate 
them when the paper is not viewed in color, the varied border lines indicate the same 
information. In the rest of this paper, activities related to each of these entities are color- and 
border-coded as follows: 

x Project-related activities have yellow fill (dash-dot border) 

x System-related activities have green fill (solid border)  

x Environment-related activities have pink fill (dash border) 

x Cognition-related activities have blue fill (dotted border)   

When activities relate to two different entities, both colors appear.  

Activities related to the entities 

In this section, the entities are decomposed into interrelated parts using the system life 
cycle as a framework. Although a system is specified prior to being built, specification is not 
the beginning of the life cycle: it actually begins when a problem is perceived.  

Environment entity, discussion #1. The perceived problem is expressed under the 
Environment entity, starting as: “Environment is an ongoing system: the Way Things Are.” 
The environment has perceived problems. Someone, possibly a politician, interest group, or 
contractor in a “pre-proposal” effort, envisions a potential solution to one or more of the 
problems. 

The environment also includes stakeholders, some of whom have resources that can be 
applied to improve the Way Things Are. The envisioned solution will provide a desired 
intervention into the Way Things Are. Once the envisioned solution, a budget, and an 
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organization to do the building have been agreed on, system development begins. These 
activities are shown in Figure 2. 

 

 

Figure 2. Environment, from the Way Things Are to Initiating System Development 

Note that the yellow fill (dash-dot border) indicates that the last activity concerns the 
Project entity as well as the Environment entity.  Green/red (solid/dashed border) indicates an 
interface between the System and the Environment. 

Project entity. Next is the Project entity. The project’s organization usually exists before a 
project is started, although not always. At some point the organization establishes a project, 
which in general consists of many people who interact and form changing teams. Their work 
consists of many tasks, some of which build system elements. Note that “tasks build 
elements” represents an interface between the Project and the System entities. Figure 3 shows 
this sequence and the interface relationship.  

 

 

Figure 3. Project, from Organization Through Tasks 

 

The project itself is initiated with a plan of how the resources will be spent (i.e., the 
budget). The immediate goal is to produce the desired system. A better goal is to reduce the 
problem experienced in the Way Things Are, by means of producing an effective system and 
inserting it effectively into the environment. Organizations that understand how the project 
goals relate to the environment are better able to produce effective systems. Figure 4 shows 
this sequence. Many of these activities are shown as interfaces, either between the Project 
and the System (green/yellow), the Project and the Environment (yellow/red), or the System 
and the Environment (green/red). 

1146



 

 

Figure 4. Project Life Cycle 

 

Environment entity, discussion #2. When the system is eventually inserted into the 
environment, it affects the Way Things Are, ideally to the point of resolving the original 
problem (Figure 5). Thus it causes the Way Things Are to change (evolve). Note that the Way 
Things Are was never fully understood, nor were all of its elements or behaviors, and its 
problems were also uncertain. (Uncertainty, since it resides in the human mind, is shown as 
blue, the color for the Cognition entity.) 

This uncertainty and other issues can lead to side effects. Sometimes the system did not 
do what was intended. Sometimes the system did do what it was supposed to do, but the 
environment experienced an unexpected change in response to the system’s presence. 
Sometimes the environment had features that were simply not understood and therefore not 
designed for. Usually, the Way Things Are has also evolved because of reasons unrelated to 
the system. These reasons combine so that the effect of the system is not quite as positive as 
originally envisioned.  

Thus there is a new problem, one that perhaps can be ameliorated by the creation of a new 
system, given appropriate sponsors and resources, and the cycle begins again. 

 

 

Figure 5. Environment: System Inserted Into the Way Things Are 

 

System entity. To describe the complexity of a technological system, it is useful to look at 
how it is composed. The system has many diverse, interconnected elements that are 
organized in a multi-level structure. Each element has its own structure and behaviors. There 
are usually many paths through a technological system, especially through its software, that 
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need to be tested. The system behavior arises from the connected elements and sometimes 
displays known patterns, but at other times shows emergent behavior that is surprising. 
Figure 6 shows these aspects of the situation. The blue (dashed border) indicates that the 
fourth entity, Cognition, comes into play where there is significant uncertainty. 

 

 

Figure 6. System and its Elements 

 

Subjective or cognitive complexity (Cognition). People have cognitive limitations. Inability 
to understand or predict creates uncertainty, which causes risk and makes people uneasy. 
Therefore, people take steps to reduce uncertainty, by dividing up or sharing tasks, or by 
creating support tools. This is shown in Figure 7.   

 

 

Figure 7. Cognition Aspects 

 

In addition to these activities, all activities mentioned so far have some uncertainty; the 
ones with arguably the most show half blue (although if they already had two colors, blue 
was not added).  

Additional activities. Two other steps are necessary before bringing the above threads 
together. The first step is to note two generalities: the Way Things Are changes with time (as 
does each activity related to any of the entities), and all of the steps consume and produce 
information, which can be handled separately from the actual performance of the activity.  
The second step is to add two activities performed during element design and build: “element 
technology maturity” and “computer and software expertise needed,” which are both Project- 
and System-related; see Figure 8.  
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Figure 8. Two Final Activities 

Note that computer and software expertise areas were specified because a lack of these two 
kinds of expertise appeared in descriptions of complexity from the literature. (Complexity as 
a scientific topic has been applied to computers and software much more often than it has to 
other kinds of systems.) Clearly other expertise areas are also needed to develop systems, and 
they also occupy this box. 

Systems Engineering Complexity Contexts (SECC) chart 

The overall chart that shows all these aspects of systems engineering that may be complex is 
called the Systems Engineering Complexity Contexts (SECC) chart (Figure 9). The chart is 
created by orienting the above threads mostly vertically and showing interconnects among 
them. Because the System entity shares many activities with the Project entity and many with 
the Environment entity, System is placed in the middle. Project activities are shown on the 
left, followed by combined System/Project activities and System activities. Environment 
activities follow, and Cognition is on the right. Arrows drawn between the activities duplicate 
the above arrows (solid lines) and add new lines (dashed lines), generally between entities. 

 

Figure 9. Systems Engineering Complexity Contexts (SECC) 
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The best way to understand the story is to start with the Way Things Are, as has been done 
in the descriptions above. Other paths are also instructive, particularly looking at the newly-
added (dashed) lines. Essentially, the technological System is built by the Project to solve a 
problem in the Environment. Difficulties arise because of complexities related to all three 
entities, as well as limitations of people (Cognition entity). Uncertainties lead to risks as well 
as to mitigating activities such as tool development. Risks may turn into project issues or may 
affect how well the system solves the environmental problem. 

If the SECC really addresses the complexities related to systems engineering, then 
various taxonomies developed to describe complexities in systems engineering contexts can 
be related to the elements of the chart. The test of this hypothesis is described in the next 
section. 

Verification 

Two tests were performed to see whether the SECC chart captures the important kinds of 
complexity, as applied to systems engineering. The first was to verify that the types of 
complexity noted in Young, et al. could be located on the chart, since that compendium was 
the impetus for making the chart. The second was to see whether the chart was general 
enough to apply easily to other typologies.   

First test: Young, et al. types of complexity. Table 1 lists the types of complexity adapted 
from Young, et al. Their sources are shown in the table, but those sources are not included in 
the reference section of this paper unless cited elsewhere. Note that their work cataloged the 
kinds of definitions discussed by different sources without attempting to resolve overlaps. 
Figure 10 shows that indeed all of these can be assigned to specific locations on the SECC 
chart. Numbers in the left column of Table 1 correspond to the white numbers in black ovals 
on the figure.  

 

Table 1. Complexity Types from Young, Farr, and Valerdi (2010) 

# Type of Complexity  Sources 
1 Hierarchical/Structural (# levels) Ross & Arkin, 2009; Kolasa, 2005; 

Kitano, 2002; Edelman & Gally, 
2001  

2 Configuration Complexity     Ǝ 
3 Complicatedness/ Functional Complexity       Ǝ 
4 Subjective Complexity  Reitsma, 2003  
5 Statistical Complexity       Ǝ 
6 Algorithmic/Deterministic Complexity       Ǝ��;   Manson, 2001 
7 Aggregate Complexity (interrelationships) Manson, 2001 
8 Project Complexity (organizational and technological)  Baccarini, 1996 
9 Project Complexity (assembly, system, array) Sauser et al., 2005; Shenhar & Dvir, 

1996 
10 Product Complexity (physical) Williams, 1999 
11 Structural Organizational Complexity  Xia & Lee, 2004, 2005 
12 Structural IT Complexity       Ǝ 
13 Dynamic Organizational Complexity       Ǝ 
14 Dynamic IT Complexity       Ǝ 
15 Inter-Component Complexity (can grow exponentially) Rumpler, 2006 
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# Type of Complexity  Sources 
16 Interface Complexity (by component)      Ǝ 
17 Implementation Complexity (e.g. code)      Ǝ 
18 System-level Complexity (emergent)      Ǝ 
19 Structural Complexity (design and structure, persistent) Laird & Brennan, 2006; Tran et al., 

2002; Fenton, 1994; Lew et al., 1988 
20 Conceptual Complexity (psychological)       Ǝ 
21 Computational Complexity (algorithms)      Ǝ 
22 Structural/Combinatorial Complexity  Mostashari & Sussman, 2009 
23 Behavioral Complexity (unpredictability)       Ǝ 
24 Nested Complexity (technical/socio-technical)      Ǝ 
25 Evaluative Complexity (multiple stakeholder 

viewpoints)  
     Ǝ 

26 Static* Complexity  Sheard & Mostashari, 2009 
27 Dynamic Complexity       Ǝ 
28 Social-Political Complexity       Ǝ 
29 Technical Complexity (Systems Integration- based)  Jain et al., 2008 
30 Programmatic Complexity (Systems Integration based)       Ǝ 
31 Configuration Complexity (Systems Integration based)       Ǝ 
32 Operational Complexity (Systems Integration based)       Ǝ 
33 Organizational Complexity (Systems Integration based)       Ǝ 
* This term was used in an early version made available to Young, Farr, and Valerdi, but was changed 
to “Structural” before publication. 

 

 

Figure 10. SECC Chart Locates Complexity Types 
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Second test: two additional typologies. 

Sheard and Mostashari’s (2010) six types are numbered in the key of Figure 11, which 
identifies where the six types appear on the SECC chart.  

Size refers to extent (often appearing as amount of money dedicated to the project or to 
maintaining an ongoing system) or other countable items such as number of users, number of 
hits, number of components or platforms or parts or lines of code. Size appears on the SECC 
chart wherever a number of things or people are mentioned.  

 

 

Figure 11. Types of Complexity Applied to These Activities 

 

Connectivity refers to the number of connections among parts, whether physical 
interfaces, logical interfaces (including buses, protocols, or messages), social connections, or 
perhaps process sequence. Connectivity appears on the SECC chart when elements, 
behaviors, or people interact. 

Inhomogeneity, also called diversity, includes the number of different kinds of elements 
or interfaces; it also comes into play when a space or ecosystem has a variety of niches or 
differentiated areas where characteristics are different from the average.  Complexity due to 
architectural considerations (such as hierarchies, layers, or clusters) is included here as well.  
Inhomogeneity appears on the SECC chart where diversity or architectural patterns are 
mentioned.  
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Short-term dynamics constitute considerations in the operational time frame, for example, 
the urgency of action to prevent a catastrophic explosion. This appears on the SECC in the 
box about change, which is one of the cross-cutting factors that applies to most things.  

Long-term dynamics considers evolution of a species, state, or configuration into an 
entirely new system as its pieces adapt, evolve, or perhaps are replaced with a new 
technology. This appears on the SECC with respect to the evolution of the Way Things Are 
and in the evolution of the organization that forms projects. 

Socio-political complexity comprises the non-technical considerations that arise when 
human agents have opinions, intents, schemes, and plans to obtain resources and incentives 
(this is often considered the realm of social sciences and liberal arts rather than of hard 
science and engineering). Socio-political complexity appears on the SECC chart under two of 
the Cognition entity activities, two of the Environment activities, and three of the Project 
entity activities. Of course, like dynamics, people are involved in almost every aspect of 
systems engineering. 

Some of the boxes shown on the diagram that do not have indicators of type are 
descriptions of the world the way it is (the Way Things Are box and related boxes), or of how 
a project works, and do not indicate complexity per se.  

Maier (2007) addressed 11 different dimensions of complexity, shown in Table 2. Most of 
these dimensions fit well into the Systems Engineering Complexity Contexts structure, but 
two do not. His “Situation objectives” and “Feasibility” do not have an obvious location. 
However, inserting “Feasibility of meeting intervention objectives” next to “Intend to provide 
desired intervention in the Way Things Are” under Environment locates the “Situation 
objectives” dimension. Similarly inserting “Feasibility of meeting project objectives” next to 
“Understand goals” and “Plan effort vs. budget,” between Project and System, locates 
“Feasibility.”  In this case the Systems Engineering Complexity Contexts chart can be 
extended without significant rewriting to accommodate an additional second set of definitions 
or dimensions of systems engineering complexity. 

Table 2. Maier’s Dimensions of Complexity 

Factors in Complexity of System Development Efforts (Maier, 2007) 
Factor Spectrum 
Sponsors One, with funding, ņ�0DQ\��ZLWKRXW�IXQGLQJ 
Users 6DPH�DV�WKH�VSRQVRUV�ņ�8QNQRZQ 
Technology /RZ��ņ�6XSHU-high 
Feasibility Easy ņ Not 
Control Centralized ņ Virtual 
Situation Objectives Tame ņ Wicked 
Quality Measurable ņ One-shot, unstable 
Program Scope <$1M ņ   >$1B 
Organizational maturity High ņ First of kind 
Technical Scope Discrete Product ņ Assemblage of products and 

enterprises 
Operational Adaptation Stable ņ Full Scope Adaptation 
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Uses of the SECC chart 

The SECC chart describes how normal systems engineering works, with a focus on the 
ways that systems and systems engineering can be complex. More specific ways of dealing 
with complexity can be developed if what “complexity” really is can be made clearer. It was 
difficult to describe the needed tools, training, measures, standards, or research direction 
when systems engineering was seen as a featureless monolith. Defining a number of systems 
engineering roles and implementations improved the practice by allowing discussions of 
processes, tools, etc., to address specific types of systems engineering (Sheard 1996 and 
2000). Clarifying the complexity related to systems engineering is expected to have a 
comparable effect, allowing development of specific complexity remedies for specific types 
of systems engineering. 

In the case of every kind of complexity studied with respect to systems engineering in a 
doctoral dissertation (Sheard 2012), complexity was associated with worse outcomes for all 
statistically significant associations. It is advantageous to reduce complexity as much as 
possible, without creating rigidity or overly restricting the supported operational modes. But 
to reduce complexity, it is important to know where complexity appears. The SECC provides 
a structure that can be used to identify a broad range of complexities.  

To use the SECC, practitioners should step through the diagram with respect to a situation 
or system they are involved in. They should identify activities (boxes on the chart) where 
their situation or system is more complex than normal (at possibly two levels: a stretch, and 
far worse than anything their organization has done to date). The complexities should be 
examined to identify risks, which should be analyzed for likelihood and consequence and 
mitigated so far as resources allow. The worst complexities should be reviewed periodically 
to ensure the risks are being worked down.  

Summary 

Systems engineering is a broad process, ranging from early analysis through parts lists 
and test results. The breadth can be shown schematically by following activity paths that 
move among entities. The external world entity owns the larger system into which the system 
must fit; it also owns the stakeholders and their resources that can be brought to bear upon a 
problem by establishing a project that will create a technological system. The concept of 
human cognition is represented in a fourth entity that helps capture other aspects of 
complexity associated with the system, project, and environment.  Complexity can apply 
differently to all these aspects of systems engineering.  

Displaying all the entities on one chart shows how various complexities from a broad 
range of the literature fit into the systems engineering context. Ultimately, types of 
complexity that are shown by research to be predictive of project or system outcomes  can be 
identified as early indicators of project and system success (Sheard, 2012). Other useful 
research would include determining where information complexity fits within the Systems 
Engineering Complexity Contexts diagram and how to tell whether the information is 
complex. 
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