
Chapter 2 

Complexity and Safety 

Nancy G. Leveson1 

Abstract. Complexity is overwhelming the traditional approaches to preventing 
accidents in engineered systems and new approaches are necessary. This paper 
identifies the most important types of complexity related to safety and discusses 
what is necessary to prevent accidents in our increasingly complex engineered 
systems.  

1   The Problem 

Traditional safety engineering approaches were developed for relatively simple 
electro-mechanical systems. The problem is that new technology, especially 
software, is allowing almost unlimited complexity in the systems we are building. 
This complexity is creating new causes of accidents and changing the relative 
importance of traditional causes. While we have developed engineering techniques 
to deal with the older, well-understood causes, we do not have equivalent 
techniques to handle accident causes involving new technology and the increasing 
complexity of the systems we are building. A potential solution, of course, is to 
build the simpler systems, but usually we are unwilling to make the necessary 
compromises.  

Complexity can be separated into complexity related to the problem itself and 
complexity introduced in the design of the solution of the problem. For 
complexity that arises from the problem being solved, reducing complexity 
requires reducing the goals of the system, which is something humans are often 
unwilling to do. Complexity can also be introduced in the design of the solution of 
the problem and often this “accidental complexity” (in the words of Brooks [cite]) 
can and should be eliminated or reduced without compromises on the basic system 
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goals. In either case, we need new, more powerful safety engineering approaches 
to dealing with complexity and the new causes of accidents arising from it. 

2   What Is Complexity? 

Complexity is subjective; it is not in the system itself but in the minds of observers 
or users of the system. What is complex to one person or at one point in time may 
not be to another. Consider the introduction of the high-pressure steam engine in 
the first half of the nineteenth century. While engineers quickly amassed 
information about thermodynamics, they did not fully understand what went on in 
steam boilers, resulting in frequent and disastrous explosions. Once the dynamics 
of steam were fully understood, more effective safety devices could be designed 
and explosions prevented. While steam engines may have seemed complex in the 
nineteenth century, they no longer would be considered complex by engineers. 
Complexity is relative and changes with time. 

With respect to safety, the basic problem is that the behavior of complex 
systems cannot be thoroughly planned, understood, anticipated, and guarded 
against, that is there are “unknowns” in predicting system behavior. The critical 
factor that differentiates complex systems from other systems is intellectual 
manageability. 

We can either not build and operate intellectually unmanageable systems until 
we have amassed the knowledge to fully understand their behavior or we can use 
tools to stretch our intellectual limits and to deal with the new causes of accidents 
arising from increased complexity. 

Treating complexity as one indivisible property is not very useful in creating 
tools to deal with it. Some have tried to define complexity in terms of one or two 
properties of a system (for example, network interconnections). While useful for 
some problems, it is not for others. I have found the following types of complexity 
of greatest importance when managing safety:  

• Interactive complexity arises in the interactions among system components. 
• Non-linear complexity exists when cause and effect are not related in any 
obvious (or at least known) way. 
• Dynamic complexity is related to understanding changes over time. 
• Decompositional complexity is related to how we decompose or modularize 
our systems.  

Other types of complexity can certainly be defined, but these seem to have the 
greatest impact on safety. 

The rest of the paper discusses each of these types of complexity, their 
relationship to safety, and how they can be managed to increase safety in the 
complex systems we build. 
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2.1   Interactive Complexity 

The simpler systems of the past could be thoroughly tested before use and any 
design errors identified and removed. That left only random component failure as 
the cause of accidents during operational use. The use of software is undermining 
this assumption in two ways: software is allowing us to build systems that cannot 
be thoroughly tested and the software itself cannot be exhaustively tested to 
eliminate design errors. Note that design errors are the only type of error in 
software: Because software is pure design, it cannot “fail” in the way that 
hardware does (including the hardware on which the software is executed). 
Basically, software is an abstraction.  

One criterion for labeling a system as interactively complex, then, is that the 
level of interactions between the parts of the problem has reached the point where 
they no longer can be anticipated or thoroughly tested. An important cause of 
interactive complexity is coupling. Coupling leads to interdependence between 
parts of the problem solution by increasing the number of interfaces and thus 
interactions. Software has allowed us to build much more highly coupled and 
interactively complex systems than was feasible for pure electro-mechanical 
systems. 

Traditionally, accidents have been considered to be caused by system 
component failures. There may be single or multiple failures involved, and they 
may not be independent. Usually some type of randomness in assumed in the 
failure behavior.  

In interactively complex systems, in contrast, accidents may arise in the 
interactions among components, where none of the individual components may 
have failed. These component interaction accidents result from system design 
errors that are not caught before the system is fielded. Often they involve 
requirements errors, particularly software requirements errors. In fact, because 
software does not “wear out,” the only types of errors that can occur are 
requirements errors or errors in the implementation of the requirements. In practice, 
the vast majority of accidents related to software have been caused by software 
requirements errors, i.e., the software has not “failed” but did exactly what the 
software implementers wanted it to do but the implications of the behavior from a 
system standpoint were not understood and led to unsafe system behavior. 

Component interaction accidents were noticed as a growing problem starting in 
the Intercontinental Ballistic Missile Systems of the 1950’s when interactive 
complexity in these systems had gotten ahead of our tools to deal with it. System 
engineering and System Safety were created to deal with these types of problems 
[Leveson, 1995]. Unfortunately, the most widely used hazard analysis techniques 
stem from the early 1960s and do not handle today’s very different types of 
technology and system design.  

An important implication of the distinction between component failure and 
component interaction accidents is that safety and reliability, particularly in 
complex systems, are not the same although they are often incorrectly equated. 
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Making all the components highly reliable will not prevent component interaction 
accidents or those arising from system design errors. In fact, sometimes they 
conflict and increasing one will even decrease the other, that is, increasing safety 
may decrease reliability and increasing component reliability may decrease system 
safety.  

The distinction between safety and reliability is particularly important for 
software-intensive systems. Unsafe software behavior is usually caused by flaws 
in the software requirements. Either there are incomplete or wrong assumptions 
about the operation of the controlled system or required operation of the computer 
or there are unhandled controlled-system states and environmental conditions. 
Simply trying to get the software “correct” or to make it reliable (however one 
might define that attribute for a pure abstraction like software), will not make it 
safer if the problems stem from inadequate requirements specifications. 

2.2   Non-linear Complexity 

Informally, non-linear complexity occurs when cause and effect are not related in 
an obvious or direct way. Sometimes non-linear causal factors are called “systemic 
factors” in accidents, i.e., characteristics of the system or its environment that 
indirectly impact all or many of the system components. Examples of systemic 
factors are management pressure to increase productivity or reduced expenses. 
Another common systemic cause is the safety culture, which can be defined as the 
set of values upon which members of the organization make decisions about safety. 
The relationship between these systemic factors and the events preceding the 
accident (the “chain of events” leading to the accident) are usually indirect and 
non-linear and often omitted from accident reports or from proactive hazard 
analyses. Our accident models and techniques assume linearity, as discussed below.  

Along with interactive complexity, non-linear complexity makes system 
behavior very difficult to predict. This lack of predictability affects not only 
system development but also operations.  The role of operators in our systems is 
changing. Human operators previously were directly controlling processes and 
usually following predefined procedures. With the increase in automation, 
operators are now commonly supervising automation that controls the process 
rather than directly controlling the process itself. Operators have to make 
complex, real-time decisions, particularly during emergencies, and non-linear 
complexity makes it harder for the operators to successfully make such real-time 
decisions [Perrow, 1999]. Complexity is stretching the limits of comprehensibility 
and predictability of our systems. 

Newer views of human factors reject the idea that operator errors are random 
failures [Dekker, 2005; Dekker, 2006]. All behavior is affected by the context 
(system) in which it occurs. Human error, therefore, is a symptom, not a cause; it 
is a symptom of a problem in the environment, such as the design of the 
equipment and human-automation interface, the design of the work procedures, 
management pressures, safety culture, etc. If we want to change operator  
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behavior, we need to change the system in which it occurs. We are designing 
systems in which operator error is inevitable and then blaming accidents on 
operators rather than designers. Operator errors stemming from complexity in the 
system design will not be eliminated by more training or telling the operators to 
be more careful. 

2.3   Dynamic Complexity 

Dynamic complexity is related to changes over time. Systems are not static, but we 
often assume they are when we design and field them. Change, particularly in 
human and organizational behavior, is inevitable as is change (both planned and 
unplanned) in the non-human system components.  

Rasmussen [1997] has suggested that these changes often move the system to 
states of higher risk. Systems migrate toward states of high risk, according to 
Rasmussen, under competitive and financial pressures. The good news is that if 
this hypothesis is true, the types of change that will occur are potentially 
predictable and theoretically preventable.  

We want flexibility in our systems and operating environments, but we need 
engineering design and operations management techniques that prevent or control 
dangerous changes and detect (before an accident) when they occur during 
operations.  

2.4   Decompositional Complexity 

Interactive, non-linear, and dynamic complexity are related to the problem being 
solved and not necessarily the solution, although they impact and are reflected in 
the design of the system. For the most part, complexity in the design of the 
solution is not very relevant for safety. But design complexity does have a major 
impact on our ability to analyze the safety of a system. The aspect of design that 
most affects safety, in my experience, is decompositional complexity. 

Decompositional complexity arises when the structural decomposition of the 
system is not consistent with the functional decomposition. Decompositional 
complexity makes it harder for designers and maintainers to predict and 
understand system behavior. Safety is related to the functional behavior of the 
system and its components: It is not a function of the system structure or 
architecture. Decompositional complexity makes it harder for humans to 
understand and find functional design errors (versus structural flaws). For safety, 
it also greatly increases the difficulty for humans to examine the system design 
and determine whether the system will behave safely. Most accidents (beyond 
simple causes such as cuts on sharp edges or physical objects falling on people) 
occur as a result of some system behavior, i.e., the system has to do something to 
cause an accident.  
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Because verifying safety requires understanding the system’s functional 
behavior, designing to enhance such verification is necessary. For large systems, 
this verification may be feasible only if the system is designed using functional 
decomposition, for example, isolating and modularizing potentially unsafe 
functionality. Spreading functionality that can affect safety throughout the entire 
system design makes safety verification infeasible. I know of no effective way to 
verify the safety of most object-oriented system designs at a reasonable cost. 

3   Managing Complexity in Safety Engineering 

To engineer for safety in systems exhibiting interactive, non-linear, and dynamic 
complexity, we will need to extend our standard safety engineering approaches. 
The most important step is probably the most difficult for people to implement 
and that is to limit the complexity in the systems we build and to practice restraint 
in defining the requirements for our systems. At the least, extra unnecessary 
complexity should not be added in design and designs must be reviewable and 
analyzable for safety. 

Given that most people will be unwilling to go back to the simpler systems of 
the past, any practical solution must include providing tools to stretch the basic 
human intellectual limits in understanding complexity. For safety, these tools  
need to be built on top of a model of accident causality that encompasses the 
complexities of the systems we are building. 

3.1   STAMP: A New Accident Model  

Our current safety engineering techniques assume accidents are caused by 
component failures and do not assist in preventing component interaction accidents. 
The most common accident causality model explains accidents in terms of multiple 
events, sequenced as a forward chain over time. The relationships among the events 
are assumed to be simple and direct. The events almost always involve component 
failure, human error, or energy-related events (e.g., an explosion).  

This chain-of-events model forms the basis for most safety engineering and 
reliability engineering analysis (for example, fault tree analysis, probabilistic risk 
analysis, failure modes and effects analysis, events trees, etc.) and design for 
safety (e.g., redundancy, overdesign, safety margins). 

This standard causality model and the tools and techniques built on it do not 
apply to the types of complexity described earlier. It assumes direct linearity 
between events and ignores common causes of failure events, it does not include 
component interaction accidents where no components may have failed, and it 
does not handle dynamic complexity and migration toward states of high risk. It 
also greatly oversimplifies human error by assuming it involves random failures or  
 

 



2 Complexity and Safety 33
 

“slips,” that are unrelated to the context in which the error occurs, and that 
operators are simply blindly following procedures and not making cognitively 
complex decisions. In fact, human error is better modeled as a feedback loop than 
a “failure” in a simple chain of events.  

STAMP (System-Theoretic Accident Model and Processes) was created to 
include the causes of accidents arising from these types of complexity. STAMP is 
based on systems theory rather than reliability theory and treats accidents as a 
control problem rather than a failure problem. The basic paradigm change is to 
switch from a focus of “prevent failures” to one of “enforce safety constraints on 
system behavior.” The new focus includes the old one but also includes accident 
causes not recognized in the old models. 

In STAMP, safety is treated as an emergent property that arises when the 
system components interact with each other within a larger environment. There is 
a set of constraints related to the behavior of the system components—physical, 
human, and social—that enforces the emergent safety property. Accidents occur 
when system interactions violate those constraints. 

In this model of causation, accidents are not simply an event or chain of events 
but involve a complex, dynamic process. Dynamic behavior of the system is also 
included: most accidents are assumed to arise from a slow migration of the entire 
system toward a state of high risk. Often this migration is not noticed until after an 
accident has occurred. Instead we need to control and detect this migration. 

The standard chain-of-failure-events model is included in this broader control 
model. Component failures are simply a subset of causes of an accident that need 
to be controlled. STAMP more broadly defines safety as a dynamic control 
problem rather than a component failure problem. For example, the O-ring in the 
Challenger Space Shuttle did fail, but the problem was that the failure caused the 
O-ring not to be able to control the propellant gas release by sealing a gap in the 
field joint of the Space Shuttle. The software did not adequately control the 
descent speed of the Mars Polar Lander. The public health system did not 
adequately control the contamination of the milk supply with melamine in a recent 
set of losses. Our financial system did not adequately control the use of financial 
instruments in our recent financial meltdown. 

Constraints are enforced by socio-technical safety control structures. Figure 1 
shows an example of such a control structure. There are two hierarchical 
structures shown in Figure 1: development and operations. They are separated 
because safety is usually controlled very differently in each. A third control 
structure might also be included which involves emergency response when an 
accident does occur so that losses are minimized. 
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Fig. 1 An Example Socio-Technical Safety Control Structure 

While Figure 1 focuses on the social and managerial aspects of the problem, 
the physical process itself can be treated as a control system in the standard 
engineering way. Figure 2 shows a sample control structure for an automobile 
adaptive cruise control system.  

Each component in the safety control structure has assigned responsibilities, 
authority, and accountability for enforcing specific safety constraints. The 
components also have various types of controls that can be used to enforce the 
constraints. Each component’s behavior, in turn, is influenced both by the context 
(environment) in which the controller is operating and by the controller’s 
knowledge about the current state of the process.  
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Fig. 2 A Sample Control Structure for an Automobile Adaptive Cruise Control System [Qi 
Hommes and Arjun Srinath] 

 
Any controller needs to have a model of the process it is controlling in order to 

provide appropriate and effective control actions. That process model is in turn 
updated by feedback to the controller.  

Accidents often occur when the model of the process is inconsistent with the real 
state of the process and the controller provides unsafe control actions (Figure 3). 
For example, the spacecraft software thinks that the spacecraft has reached the 
planet surface and prematurely turns on the descent engines. Accidents occur when 
the process models do not match the process and 

• Commands required for safety (to enforce the safety constraints) are not 
provided or are not followed; 
• Unsafe commands are given that cause an accident; 
• Correct and safe commands are provided but at the wrong time (too early, too 
late) or in the wrong sequence 
• A required control action is stopped too soon or applied too long. 
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Fig. 3 Every controller contains a model of the controlled process it is controlling 

 

Fig. 4 In STAMP, accidents occur due to inadequate enforcement of safety constraints on 
system process behavior 

The STAMP model of causality does a much better job of explaining accidents 
caused by software errors, human errors, component interactions, etc. than does a 
simple failure model. Figure 4 shows the overall concept behind STAMP. There 
are, of course, many more details. These can be found in [Leveson, 2011]. 
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3.2   Using STAMP in Complex Systems 

Just as tools like fault tree analysis have been constructed on the foundation of the 
chain-of-failure events model, tools and procedures can be constructed on the 
foundation of STAMP. Because STAMP includes more causes of accidents (but 
also includes standard component failure accidents), such tools provide a 
theoretically more powerful way to In particular, we will need more powerful 
tools in the form of more comprehensive accident/incident investigation and 
causal analysis, hazard analysis techniques that work on highly complex systems, 
procedures to integrate safety into the system engineering process and design 
safety into the system from the beginning rather than trying to add it on at the end, 
organizational and cultural risk analysis (including defining safety metrics and 
leading indicators of increasing risk), and tools to improve operational and 
management control of safety. Such tools have been developed and used 
successfully on enormously complex systems. Figure 5 shows the components of 
an overall safety process based on STAMP.  
 

 

 

Fig. 5 The Overall Safety Process as Defined [Leveson, 2011]. 
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4   Summary 

This paper has described types of complexity affecting safety in our modern, high-
tech systems and argued that a new model of accident causality is needed to 
handle this complexity. One important question, of course, is whether this new 
model and the tools built on it really work. We have been applying it to a large 
number of very large and complex systems in the past ten years (aerospace, 
medical, transportation, food safety, etc.) and have been surprised by the how well 
the tools worked. In some cases, standard hazard analysis techniques were applied 
in parallel (by people other than us) and the new tools proved to be more effective 
[see for example, JAXA [Arnold, 2009; Ishimatsu, 2010; Nelson, 2008; Pereira, 
2006].  

One lesson we have learned is the need to take a system engineering view of 
safety rather than the current component reliability view when building complex 
systems. The entire socio-technique system must be considered, including the 
safety culture and organizational structure. Another lesson is that safety must be 
built into a complex system; it cannot be added to a completed design without 
enormous (and usually impractical) cost and effort and with diminished 
effectiveness. To support this system engineering process, new specification 
techniques must be developed that support human review of requirements and 
safety analysis during development and the reanalysis of safety after changes 
occur during operations. changes.  

Finally, we also need a more realistic handling of human errors and human 
decision making and to include the behavioral dynamics of the system and 
changes over time into our engineering and operational practices. We need to 
understand why controls migrate toward ineffectiveness over time and to manage 
this drift.  
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