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Abstract. In embarking towards Cyber-Physical Systems (CPS) with
unprecedented capabilities it becomes essential to improve our understanding of
CPS complexity and how we can deal with it. We investigate facets of CPS
complexity and the limitations of Collaborating Information Processing Systems
(CIPS) in dealing with those facets. By CIPS we refer to teams of humans and
computer-aided engineering systems that are used to develop CPS. Furthermore,
we specifically analyze characteristic differences among software and physical
parts within CPS. The analysis indicates that it will no longer be possible to rely
only on architectures and skilled people, or process and model/tool centered
approaches. The tight integration of heterogeneous physical, cyber, CPS com-
ponents, aspects and systems, results in a situation with interfaces and interre-
lations everywhere, each requiring explicit consideration. The role of model-
based and computer aided engineering will become even more essential, and
design methodologies will need to deeply consider interwoven systems and
software aspects, including the hidden costs of software.
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1 Introduction

The concept of Cyber-Physical Systems (CPS) was introduced 2006 in the US to
represent the Integration of computation, networking and physical processes where
CPS range from minuscule (pace makers) to large-scale (e.g. national power-grid),
(Cyphers 2013). Many definitions have followed, often emphasizing the large scale
nature and CPS as networks of physical and computational components, (NIST 2017).
The mainstream interpretation of the term “cyber” refers to the use of computers or
computer networks, see e.g. (M-W 2017). However, the term actually originates from
Norbert Wiener who coined cybernetics from the Greek “kybernetike”, meaning
“governance”, referring to feedback systems. Today, both interpretations are relevant
for CPS.

A key aspect of CPS is the potential for integrating information technologies,
operational technologies in terms of embedded systems and control systems, and
physical systems, to form new or improved functionalities. Common trends for CPS
also include increasing levels of automation and integration across the design-operation
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time continuum, so called DevOps. This positioning of CPS provides unprecedented
opportunities for innovation, within and across existing domains. However, at the same
time it is commonly understood that we are already stretching the limits with existing
systems in terms of development of cost-efficient and trustworthy systems. Consider,
for example, the roadmaps surveyed by the project Platforms4CPS (2017) and thrusts
towards new systems and software engineering methods to deal with future CPS,
(Jacobson and Lawson 2015). National Academies (2016) states the following: “to-
day’s practice of CPS system design and implementation is often ad hoc,… and unable
to support the level of complexity, scalability, security, safety, interoperability, and
flexible design and operation that will be required to meet future needs”.

Since future CPS are likely to be unprecedented in their complexity, it becomes
essential to understand what characterizes such systems and how we can best deal with
them. The line of argument of this paper is to investigate the nature of complexity of
CPS through the following perspectives:

• Cyber-Physical Systems and environment, i.e. including other systems with which
the CPS interacts, as well as the organizations developing the CPS.

• Limitations of Collaborating Information Processing Systems (CIPS) in dealing
with complexity in developing CPS. We use the term CIPS to refer to humans and
Computer Aided Engineering (CAE) systems that develop CPS.

• What current methodologies have to offer and what is lacking.
• Proposing ways forward to meet identified limitations and gaps.

In our work, we draw upon state of the art, discussions with industrial experts and
our own experiences. Complexity issues relating to CPS is a daunting topic. During our
work, we synthesized a CPS complexity view that brings together the above listed
perspectives. We present this view in Sect. 2, since the synthesis serves well to
introduce the topic, the concepts and the structure of the paper. The state of the art is
assessed in Sect. 3, and Sect. 4 analyzes, in more detail, some of the identified facets of
CPS complexity. Finally, in Sect. 5, we discuss our findings and draw conclusions.

Of the many types of CPS, see e.g. (Schätz et al. 2015) and (CPS 2016), we focus
mainly on mechatronics and robotics applications, i.e. where the physical systems are
synergistic configurations of mechanical, electrical and electronics technologies. We
include humans as an integral part of developing CPS but do not, in detail, treat the role
of humans as part of an operational CPS.

2 A View of CPS Complexity and Contributions

Our overall approach and view on CPS complexity is illustrated in Fig. 1. CPS are
designed and realized by Collaborative Information Processing Systems (CIPS) – i.e.
by human developers supported by CAE systems and available information and
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knowledge. CPS operate within an environment1 which may include other CPS,
humans and other types of systems (nature made, social systems, etc., see Checkland
2000)2.

In our view, we associate various characteristics – or complexity facets - with
systems. As illustrated in Fig. 1, “system” may refer to a CPS itself, to the corre-
sponding CIPS, as well as to the environment. The complexity facets have conse-
quences (see bottom middle box in Fig. 1) for the abilities of humans and projects to
deal with the CPS; that is to say, the facets will closely relate to the limitations of CIPS.
To deal with these consequences, we thus need to provide adequate methods, theory
and tools that address CPS complexity, aiming to bridge the gap with respect to
limitations of CIPS; we refer to these as bridging measures (see middle box in Fig. 1).

Accordingly, a first contribution of the paper is to structure the various state of the
art perspectives. A second contribution concerns a more detailed analysis of (i) rela-
tionships between various parts and aspects of a CPS and with its environment, and
(ii) characteristic differences among software and physical systems in order to better
understand barriers to their integration and some of the origins of complexity. As a final
contribution, we identify key bridging measures. The paper structure as outlined in
Sect. 1 relates closely to Fig. 1, with corresponding sections indicated.

CPS 
complexity

facets

CIPS 
limitations

Heterogeneity/diversity
Size and computability
Uncertainty and change
Dynamics and/or Structure
Incidental/essential
Unintended/accidental

Consequences of complexity
(on humans and projects):
Difficulty to understand
Difficulty to predict and trade-off 
Emergence
Project overruns (cost and time)
Requirements not met
Resources & competences needed

Bridging measures:
- Process & 

organizational
- MBE incl. CAE
- Design & 

architectingFacets causing humans to
perceive complexity

Human memory capacity
Bounded rationality&biases
Communication barriers
Information capture OH
Information management
Interoperability barriers

Environment

characteristics characteristics

CPS CIPS

- Software as enabler
- Interface & Inter-

relations management
- Education and life-

long learning

(3.3) (3.1)(3.2 & 4)

(3.4 & 5)

Fig. 1. A view of CPS complexity. The corresponding paper sections are shown in parenthesis.

1 Other terms for “environment” include, for example, “wider system of interest”, see e.g. Lawson
(2015), or domain specific terms such as operational design domain, J3016 (2016).

2 The context further includes other organizations and stakeholders, e.g. related to insurances,
certification, legislation and standards; this context is only indirectly considered in the paper.
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3 Engineering Practices Related to CPS Complexity

Related to Fig. 1, we provide perspectives from state of the art including CIPS limi-
tations (Sect. 3.1), engineering views on complexity (Sect. 3.2), consequences of
complexity (Sect. 3.3) and finally CPS engineering approaches to deal with complexity
(Sect. 3.4).

3.1 CIPS Limitations in Dealing with Complexity

In this section, we study first humans and teams of humans, and then turn to CAE
systems – all through the lens of limitations.

Limitations of CIPS Focusing on Humans: Examples of human limitations in
dealing with information and (complex) systems can be found in studies in psychology
and economy, see e.g. Simon (1996) and Kahneman (2012):

• Capacity of the short term memory; the short term memory is limited to holding and
processing in the order of 7–10 “chunks” of information, where a chunk refers to
one concept, which may be at different levels of abstraction and may refer to a more
elaborate structure held in long term memory.

• Capacity of the long term memory; while having impressive storage capability with
elaborate association mechanisms, the long term memory takes time to train and is
not altogether reliable (see next point). As CPS requires deep knowledge in many
areas, and as it takes substantial time for a person to become a deep domain expert, it
follows that CPS development will have to involve many people. From our expe-
rience we note that it is very rare for a single person to be skilled in physics, logic and
spatial concepts, all of which required for a holistic understanding of a CPS.

• Bounded rationality and biases; we humans are not as rational as we commonly
think. There is, for example, a difference in what we experience and what we
remember. Our brains, while mostly operating well, are prone to biases including
overconfidence and a tendency to ignore or overemphasize the importance of small
risks. Remembering is subject to neglect of duration and the “peak-end” rule,
meaning that we give more weight to recent events. Furthermore, we are prone to
search for, and to remember, pieces of information that confirm our current belief,
which has a significant filtering and thus biasing effect.

• Span of attention of the “slow” system; the activation of what Kahneman refers to
as the “slow system” of the brain, corresponds to what we could consider as “active
thinking efforts”. There is a resistance in activating the slow system since it requires
considerable energy. Activating the slow system is beneficial when humans have to
deal with novel considerations beyond their previous experience, where the “fast
system” may not be able to come up with reasonable answers.

Organizations can overcome many of the limitations of a single brain by imposing
processes involving, for example, reviews, checklists, detailed system analysis, and by
supporting appropriate organizational cultures in the line of continuous improvement
and constant quality control, (Kahneman 2012). These measures are closely in line with
the best practices of systems engineering (INCOSE 2015).
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However, additional challenges arise when dealing with advanced CPS, either in
the form of very complex machines, such as a modern car, or in terms of a dynamically
forming system of systems (SoS), for example in terms of a swarm of drones that
together with infrastructure and other machines perform collaborative tasks.

A key aspect of these challenges refers to how to appropriately arrange commu-
nication among people, teams, organizations and CAE-systems, and how to organize
them as well as the associated information. The design of an advanced CPS such as an
aircraft or a car will require the collaboration of thousands of engineers. Communi-
cation among engineers in such settings is often seen as the key system development
challenge, see e.g. (Andersson 2017). Organizing development will have to take into
account the multitude of aspects and engineering phases of a CPS, while still facili-
tating proper interactions. Disciplinary experts are moreover schooled into various
communities, theories and traditions, which introduces gaps in understanding among
the experts, see e.g. Horváth et al. (2017) and Törngren et al. (2014).

For Cyber-Physical Systems of Systems (CPSoS), the challenge further relates to
defining goals, policies and mechanisms for interactions among constituent CPS. As a
key characteristic, a CPSoS involves CPS developed by multiple organizations where
there is no clear responsibility for systems integration, see e.g. CPSoS agenda (2015).
The intentions of the interactions within a CPSoS may be incompletely defined,
misunderstood or interpreted differently by the involved organizations and experts.

Limitations of CIPS Focusing on CAE Systems: We now turn to limitations of CAE
systems as part of CIPS. These include the following:

• Dealing with tacit and implicit information, including context and meaning of
concepts. CAE systems require explicit formalization of information to be able to
reason about CPS. For this time and resources have to be spent - when systems
evolve, the information/models also have to be updated and kept consistent In the
absence of fully collaborative CAE tools, development engineers use a large
number of social communications tools, such as email and messaging. At present,
there are very limited possibilities with current CAE tools to record communication
interactions and histories into the CAE applications and then associate decision
histories (and decisions) with the current design model (s) (Red et al. 2013).

• Challenges in formalizing, managing and evolving the huge amounts of information
and relationships required for CPS engineering. Information management becomes
difficult when considering different versions of components and assumptions and
decisions made in developing artefacts such as models. Extra information is
required to describe this context, further growing the amount of information. This is
a significant challenge in multi-user development, see e.g. Red et al. (2013).

• Limitations in interoperability and exchange among existing CAE systems. CAE
systems already hold a lot of useful information and models, albeit fragmented into
different aspects or parts of a CPS, e.g. into software, electronics, and mechanics.
Improved support for interoperability and exchange across CAE systems has the
potential to drastically improve CPS management. While there are promising
standards available, such as STEP and linked data, overall these have limited
adoption so far, see e.g. Törngren et al. (2014), and El-khoury et al. (2016).
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For the CAE system, the amount of information is, in itself, not a problem, but that
information has to be made explicit. To support humans in development this extends to
knowledge management, requiring access to appropriate up-to-date meta-data, clari-
fying the limitations and validity of the information. Such support will also require
efficient interoperability among systems.

3.2 Engineering Views on Facets of Complexity

There are many interpretations and studies of “complexity” encompassing technical
systems and humans, extending all the way to socio-political systems. There are also
many propositions for metrics, definitions and facets of complexity. However, few
metrics appear to be adopted into actual engineering practice. Definitions tend to focus
on certain facets (see e.g. Sheard 2015). Frequently discussed facets of complexity
include:

• heterogeneity of parts and interactions: CPS are strongly characterized by hetero-
geneity in several dimensions, with artefacts all the way from requirements, func-
tions and technology to stakeholders. CPS represent hybrid, distributed, closed-loop
as well as real-time systems, thus requiring developers to deal with a multitude of
properties, behaviors and performance targets, see e.g. Derler et al. (2012) and
Horváth (2017). As a result of their heterogeneity, CPS will typically be represented
using multiple interdependent views, captured with different formalisms and tools,
see e.g. Törngren et al. (2014).

• size and computability related: Large scale CPS will involve many things in terms
of e.g. number of units, connectors, logical interactions, lines-of-code, requirements
and stakeholders. Size related facets can also be seen to encompass the amount of
information needed to describe an object (Shannon and Weaver 1949), the amount
of resources needed to manufacture a product, (Suh 1990), or the computational
complexity. The latter refers to the number of operations for solving an algorithm
and how they relate to the size of the problem. Several CPS related design topics,
such as assignment in space and time, belong to the class of NP-complete problems
for which no polynomial time algorithms are known, see e.g. Blondel and Tsitsiklis
(2000),

• uncertainty and change: Uncertainty can be used to refer to all kinds of unknowns
in the context of system development. Uncertainty relates to complexity and risk by
increasing the design space and potential for wrong decisions, and by complicating
change management, Axelsson (2011). Typical examples include changing and
conflicting requirements, unknown properties of technologies and impacts of design
decisions. It can also refer to uncertainty of environment perception of a CPS see
e.g. ESD (2003) and Sheard (2015),

• dynamics or structure: These complexity facets refer to either aspects of behavior that
are difficult to predict, e.g. due to highly non-linear and coupled dynamics, or
structural aspects such as dependencies among parts and properties. CPS typically
represent tightly integrated and coupled systems where the change of one parameter
in the design is likely to influence many other parameters. The behaviors and struc-
tures may also change dynamically such as in self-learning systems and in CPSoS.
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A CPS typically also requires consideration of dynamics and structure at multiple
levels or scales, e.g. from unit and subsystem to system level, and with different time
horizons, see e.g. Sheard (2015) and Horváth (2017). Parallelism in terms of con-
current cyber and physical parts, and resource sharing in the computer systems further
contribute to complexity, see e.g. Derler et al. (2012).

• incidental vs. essential: This facet refers to whether complexity arises from a par-
ticular way in which a system is designed (for example, due to the use of legacy
components), as opposed to being inherent in the problem to be solved, (Brooks
1987). A key example of incidental complexity is that of improper design, or
improper design assumptions that leave certain aspects of CPS design undefined,
implying that side-effects may occur and/or that behaviors will emerge from the
implementation rather than being designed. Examples of this include the lack of
time abstractions and practices of hardware design, implying that timing behavior
will emerge, see e.g. Lee (2009),

• unintended and accidental behavior: These behaviors refer to (known) side-effects
or design faults, Qian and Gero (1996). For physical systems, unintended behavior
represents a side-effect that may require additional sub-functions for dealing with
(e.g. reducing) the undesired side-effect. The side effects are often of the same order
of magnitude as the intended behavior and are typically caused by component
interactions through their interfaces, e.g., friction-induced thermal effects between
surfaces in contact (Whitney 1996). An accidental behavior is an unintended
behavior that is caused by an accidental relationship or interaction between product
features (e.g., a cable placed too close to a hot engine block). An accidental
behavior is likely caused by a design error, Qian and Gero (1996). For cyber-
systems, an example of a class of accidental behaviors is given by undesirable
feature interactions not considered during design, see e.g. Broy (2010).

• goals and socio-technical context. This facet refers to the essential complexity of
the goals in terms of their feasibility, see e.g. (Suh 1999; Maier 2007), and
human/organizational aspects such as competition, conflicts, policies and man-
agement (Sheard 2015).

As noted by several authors, various facets of complexity can relate to different
types of systems, including the CPS, the environment, and the organizations devel-
oping it (compare with Fig. 1), see e.g. Kaushik (2014) and Sheard (2015).

Some of the proposed facets can, at least in principle, be formulated in terms of
absolute metrics (e.g. size related). Another type of metric is instead relative, for
example in relation to what we try to accomplish or want to know, i.e. as a measure of
the uncertainty of fulfilling the specified functional requirements (Suh 1999).

The evolution of CPS, towards more advanced functionality and operation in more
open environments has implications for the complexity facets simply by providing
“more of everything” including in terms of new or changed risks. As one key aspect,
the increasing openness and large scale provide new attack surfaces that need attention
to avoid increasing security risks. It will no longer be possible to a priori foresee all
scenarios and what might go wrong so dynamic risk management may be necessary
(see e.g. Boyes 2013). However, adding more protection mechanisms may further
increase system complexity. Uncertainty needs to be considered, for example in
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sensing, see e.g. Sadigh and Kapoor 2016. While the introduction of AI in terms of
machine learning into CPS provides new capabilities, it also increases complexity. The
robustness aspects of machine learning systems are currently not well understood, with
implications for robustness and safety, see, for example, Wagner and Koopman (2015).

The design space of CPS illustrates several of the complexity facets (including e.g.
heterogeneity, size and computability, and uncertainty), with a potentially very large
number of design choices and dependencies among desired properties related to design
decisions, which, in turn, requires trade-offs to be made (see e.g. Maier and Rechtin
2002). In early development stages, designers have considerable freedom with respect
to design decisions, but no full insight into the implications of those decisions. Later in
the development process, when they have acquired more knowledge, by experimenting
with various models and physical prototypes, they will have less degrees of freedom,
because of the decisions made upstream in the process. This dilemma is sometimes
referred to as “the cone of uncertainty”, e.g. (McConnell 1997) as represented in the
right portion of Fig. 2. The cone of uncertainty also emphasizes the view that com-
plexity, as a measure of uncertainty (Suh 1999), is reduced as we learn when we
proceed with the development.

We conclude that the interaction and co-existence of the cyber- and physical parts,
as well as their development context, give rise to all of the described facets of com-
plexity. This will be further highlighted in Sect. 4.

3.3 Consequences of Complexity

Complexity can be viewed in terms of what Sillitto (2009) referred to as “objective
complexity”, referring to technical or engineering characteristics, or in terms of
“subjective complexity”, relating to how humans perceive the systems, see e.g. Sheard
(2015). An example of the former would be metrics of the inherent problem size and
algorithmic complexity involved in optimizing a CPS. Perceived difficulty of under-
standing the behavior of a CPS would be an example of the latter. Sheard (2015) makes

100%

0% Lifecycle
(time)

Design knowledge

Design degrees
of freedom

Fig. 2. The cone of uncertainty
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the interesting observation that while objective complexity is always growing (we build
more and more sophisticated systems), the subjective complexity may, in fact, reduce
over time once new systems become accepted and better understood.

As depicted in Fig. 1, in this paper we take the approach to try to make these ends
meet by contrasting limitations of CIPS (including humans) with various characteri-
zations – facets - of complexity. We believe this is one fruitful way forward since the
CIPS will have to deal with the CPS.

Recalling Sect. 3.1, it is not strange that even a moderate CPS poses challenges for
humans, who may find even the single facets of CPS complexity difficult to deal with.
Combining multiple facets of complexity implies that it becomes non-trivial to predict
the behavior of the system, and to understand the impact when making changes in the
system. This also implies that trade-offs become more challenging and potentially more
subjective.

The concept of emergence is often used when discussing complexity; it is a term
that has been given several interpretations. We here use the following one, closely
related to the difficulty in predicting system behavior: “The whole is more than the sum
of the parts, in the sense that given the properties of the parts and the laws of their
interactions, it is not a trivial matter to infer the properties of the whole“, (Simon 1996).
Emergence stems from difficulties in understanding the effects of interactions among
parts and can have positive or negative consequences (recall unintended and accidental
behaviors, described in Sect. 3.2).

It is interesting to research the impact of complexity on projects. Sheard (2015)
investigated how a number of complexity-related variables (or metrics) contributed to
project cost overrun, project schedule delay, and system performance shortfalls.
39 variables in 75 development projects were investigated through a retrospective
survey with senior system engineers and project managers. The following three com-
plexity variables were found to correlate positively with problematic outcomes in all
three aspects (cost, schedule and performance): (i) number of hard-to-meet, and fre-
quently also conflicting, requirements, (ii) degree of cognitive fog3, and (iii) stability of
stakeholder relationships.

3.4 How is Complexity Dealt with in CPS Engineering

A multitude of approaches, methods and tools have been developed over the years to
deal with CPS complexity. In this survey we focus on the following:

(i) process, (ii) model-based and computer aided engineering, (iii) design and
architecting, and (iv) people/organizational. These approaches are complementary and
partly overlapping. There is no silver bullet for dealing with complexity, as phrased by
Brooks (1987). Many of them involve ways to divide and conquer a system (in terms of
the CPS, the development teams, models etc.) into separate parts to facilitate their
management. Despite the importance of so-called front-loaded development, where
design decisions and means to improve the management of uncertainty and risk are key

3 With (ii), the question posed was as follows: “The project frequently found itself in a fog of
conflicting data and cognitive overload - Do you agree with this statement?”.
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elements, such practices are still often weak. Integration is generally identified as a
(time and cost consuming) challenge, see e.g. INCOSE (2015). Simmons (2005)
reports that only a very small amount of the total development efforts is spent on
systems architecting, despite the crucial decisions taken in that phase.

Process Approaches: Systems engineering methodologies describe a number of
recommended processes, from technical to management, see e.g. INCOSE (2015).
Figure 3 illustrates an elaborated V-model for mechatronic systems – focusing on the
technical process, where development is divided into stages and into engineering
disciplines, VDI 2206 (2004). The decomposition approach is accompanied by pro-
viding guidance for risk management (project and product risk), and for step-wise
integration of the decomposed entities. The conventional use of rapid prototyping, code
generation and various X-in-the loop simulation schemes (e.g. software- and hardware-
in the loop) provide examples of this. Software engineering methodologies emphasize
agile approaches involving close collaboration within teams, frequent releases and
close interactions with stakeholders, see e.g. INCOSE (2015), which helps to reduce
development uncertainty and risk. We note that agility is one means to deal with
uncertainty (one identified complexity facet) and risk. Nevertheless there are challenges
in reconciling agile approaches with safety critical systems development, see e.g.
Axelsson et al. (2015). Most disciplinary CPS development today involves frequent
iterations and developments in smaller steps, whilst also requiring explicit considera-
tions of the synchronization between software and hardware parts throughout the
development and production phases, see e.g. Jacobson and Lawson (2015).

Model-Based and Computer Aided Engineering Approaches (MBE): With MBE
we refer to approaches that make systematic use of abstractions and of computer
engineering tools, i.e. including CAE, to deal with CPS complexity. Abstractions
provide the means to focus work on particular aspects, while neglecting other aspects
that have less influence on the issues at hand. To deal with the “Cone of uncertainty”
(recall Fig. 2), models and their analysis e.g. through simulation offer ways to increase
problem understanding, explore uncertainty and the solution space. Synthesis based on
models help to improve efficiency of development by automating certain design steps,
thereby removing certain sources of faults, see e.g. Törngren et al. (2008).

Many CPS constitute closed loop systems, implying that MBE approaches are
necessary for efficiency; for example, without a model of a controlled system, control
development cannot start until the physical system is developed. The closed-loop
aspect has also led to a widely accepted use of models in verification; the system
behavior arises through the closed loop interactions between the cyber and physical
parts. A further key aspect of MBE is that of model verification and validation,
ensuring that models are as simple as possible yet adequate for the intended purpose.

The success and increasing use of models has led to a need to emphasize their
composition and management. Models become systems in their own right, with
assumptions, interfaces, versions and variants relying on modeling environments.
Model management is a research area with a surprisingly large number of still open
challenges. Efforts in this area stem from a variety of directions including product-life
cycle management (mechanical engineering) and application life-cycle management
(software engineering), see e.g. Törngren et al. (2008), towards CPS life-cycle
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management. Correct composition and usage of different types of models can be
supported by the use of contracts and explicit dependency models, (see e.g. Westman
2016; Qamar 2013) and references therein, and through uncertainty management, (see
e.g. Mohan et al. 2017). Correct composition of simulation models reflecting different
types of behaviors and concurrency is essential for CPS (see e.g. Derler et al. 2012).
Divide and conquer approaches are also applied to models, through multi-view models
and multi-view frameworks. An example of this the CPS architectural framework
initiated by NIST, which provides common viewpoints such as functions and inter-
faces, as well CPS specific aspects such as trustworthiness and timing (NIST 2017).

Design and Architecting Approaches: In this category we include principles,
methods, and techniques that aim to reduce the incidental complexity or better manage
the inherent complexity of a CPS. Examples of such approaches include (i) the use of
deterministic execution platforms to reduce side-effects, facilitating understanding,
integration and verification, (Kopetz 2011), and (ii) modularization techniques that use
metrics for establishing “low coupling” and well defined interactions at interfaces
between modules, see e.g. Börjesson (2014). Lee (2016) recommends the use of
deterministic design models as far as possible, since it facilitates the design of complex
systems by enabling definitive analysis. It should be noted that deterministic models
can efficiently be utilized in probabilistic analyses, e.g. based on Monte-Carlo simu-
lations, to provide knowledge on the effects from known or speculated variations in
CPS design, environment and/or operation. An important and complementary approach
to reduce incidental complexity is, of course, to reduce some of the essential com-
plexity if that is possible, by relaxing some of the requirements of a system.

Because of the large number of involved stakeholders (including multiple organi-
zations) it is important to realize that it will rarely be possible to optimize a large scale

Fig. 3. Design methodology for mechatronic systems development, VDI 2206 (2004).
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CPS. Rather it is important to try to find solutions which are satisfactory to the involved
stakeholders, (Simon 1996) and (Kahneman 2012).

People and Organizational Approaches: Skills of people and organizational designs
are clearly imperative in dealing with CPS complexity. Organizational integration
mechanisms including organizational structure, work procedures, training, social sys-
tems, and CAE have been shown to be important for improving organizational per-
formance, (Adamsson 2007). Coordination among CAE systems is consequently also
essential. Referring to Fig. 3, an organizational structure - such as dividing into
mechanical, electronics, software, etc. - will also often imply a division of information
and CAE systems along the same structure, leading to potential problems in managing
interactions among teams as well as between CAE systems, see e.g. Malvius (2009).

One further important aspect of organizational design is that of “intelligent infor-
mation filtering”, providing people with adequate information that suits their purposes
as part of the development whilst avoiding information overflow, (Simon 1996).

4 Analysis of CPS Complexity Facets

In this section we further investigate specific CPS facets of complexity that, to our
understanding, are important, but have not received the attention they deserve. These
facets include interrelations related to CPS (Sect. 4.1) and characteristic differences
among software and physical systems (Sect. 4.2).

4.1 CPS Component Interrelations and Their Implications

We first turn to a CPS component perspective to analyze interrelations. A first relevant
question to ask is: what constitutes a CPS component? CPS exist in the small and in the
large. Compare, for example, a modern milling machine within a production cell with a
manufacturing system that incorporates multiple production cells and their coordina-
tion, forming a distributed computer control system. In a CPS that involves humans,
e.g. as operators, humans also become “components” within the CPS. The assignment
and division of responsibilities among humans and other components is important
(although out of the scope of this paper).

Figure 4 illustrates two CPS components of a mechatronics machine: the compo-
nents are interconnected physically (illustrated in the middle of the figure), and through
a communication network (illustrated through the horizontal line labelled “Commu-
nication network”, connecting the communication subsystem of each component). This
illustration would be relevant for vehicles (e.g. cars and airplanes) and production
machines, where each component (e.g. brake, engine, transmission, etc.) incorporates
mechanical parts and computing. As apparent from Fig. 4, there will be many inter-
actions between the various parts, including between the cyber and physical parts. The
direct interfaces between the computer system and the mechanical parts, through
sensors and actuators, are of course crucial. However, beyond this, the mechatronic
components interact physically with each-other and with the mechanical frame on
which they are mounted. The components further interact through information
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exchange and through the energy subsystem, and they will also have interactions with
the environment, e.g. through heat, noise and electromagnetic radiation.

This increasing connectivity enables direct collaboration among machines with
external resources such as edge or cloud computing resources. Considering a larger
scale CPS, its subsystems and components may thus also include machine external
computing and communication resources. We note that such computing and commu-
nication resources, while normally considered to be part of the cyber-side of a CPS,
indeed also constitute cyber-physical systems in their own right, since they are com-
posed of software, analog and digital electronics, power supplies, cooling and
mechanical parts. Design of such CPS will necessarily have to consider and thoroughly
manage interactions and integration among these cyber and physical parts.

Now consider again mechatronic components and the example of interactions
between the major components of a car. Figure 5 provides a Design Structure Matrix
(DSM) representation of a pre-1970 car (left), vs. an early 21st century car (right).

Informational, mechanical, electrical, chemical, … other direct interactions

Mechanical
parts

Embedded
computer/
Software

Actuator

Com. 
Filter Sensors

Driver

Power

Mechanical
parts

Embedded
computer/
Software

FilterSensor

Driver

Power

Com. 

ActuatorForce/torque interactions

Mechanical
frame

Wider system of interest and environment

Ext.
com.

Power bus (energy provision and interaction) Energy 
sources

Sensor
Sensor

Sensor

Sensor

Communication network

Fig. 4. Illustration of (two) mechatronic components and their various interactions with other
components and the environment. Each component may have internal and external sensors. Note
that “driver” refers to electronics for the actuators.
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Fig. 5. DSM representation of a pre-1970 (left) vs. a modern car (right), illustrated through two
types of interactions between major car components: X – physical connection and force
interaction; P – Programmable relations.

490 M. Törngren and U. Sellgren



A component-DSM may be used to illustrate different relationships (such as energy,
mass, information flow and spatial interactions) between components in a system, e.g.
(Steward 1981; Eppinger and Browning 2012). In the left part of Fig. 5, this is illus-
trated with mainly mechanical interactions, without distinction of the type(s). We note
that the DSM-model displays symmetry that is typical for a mechanical system with
bidirectional Newtonian interactions. In a modern vehicle, all major components will
also have integrated embedded systems, and there is thus an opportunity for infor-
mation interaction and additional collaboration between components. As an example of
this, consider the connections between the steering and the wheels of the car. Apart
from a traditional mechanical connection, the steering of a modern car may today also
be controlled by a “vehicle stability controller”, able to apply individual wheel braking
in order to deal with unintended car yaw. This explains the “X” connecting “Steer”
with “Brake” in Fig. 5. The control system is able to act much faster than a human
driver, and can thus avoid many accidents (subject to key constraints such as the
condition of the tires and the road surface condition).

The DSM to the right in Fig. 5 illustrates the large potential in introducing novel
functionalities to improve performance. These interactions also clearly illustrate the
growing complexity, in terms of heterogeneous components and multiple interactions,
with difficulty in predicting and verifying the final behavior. This setting also clearly
leads to organizational challenges in setting up clear responsibilities to deal with the
interactions/relationships among functions, components, properties, teams and activi-
ties. Considering versions of software and variants (e.g. in terms of features in a car due
to customer choices or market requirements) further complicates the scene. The car
example concerns a tightly coupled dynamical system that strongly incentivizes adding
additional cyber-connections (thus increasing complexity). We believe that such
interactions will similarly be driven also for less tightly coupled systems as cost-
efficiency improves and opportunities for new services arise.

For large scale CPS, e.g. in terms of cloud connected and collaborating vehicles
forming a CPSoS, we can clearly envision a DSM representation that expands with
more components and interactions.

Beyond direct interactions as so far discussed - for example, between software
components, and between sensors and the vehicle environment - a CPS will also
importantly feature several types of indirect relations, see Fig. 6.

In particular, most components will be inter-related through assumptions made
during design. For example, the software and the algorithms it embodies (e.g. for
control and signal processing) are developed based on assumptions of the properties of
the mechanical system. Similarly, the software components may incorporate assump-
tions about the electronics hardware, and the mechanical components may have
assumptions w.r.t. the electronics hardware (e.g. size and weight). We note that the case
of assumptions is generally valid for both cyber and physical parts, and that these
assumptions create dependencies that need to be understood and managed.

To conclude this analysis, we would like to tie the discussion back to Fig. 1, which
at the top illustrates relationships between the CPS, the environment and the CIPS. As
stated by Simon (1996), a system will be “molded” by purposes related to its envi-
ronment. In other words, it can be expected that a CPS will have an essential complexity
that somehow corresponds to the complexity of the environment with which it interacts.
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Consider, for example, the design of a highly automated vehicle (our CPS of
concern). To develop this CPS we have to consider its operational context in terms of a
multitude of relevant driving scenarios including static and dynamic objects that we
may encounter; this emphasizes a number of complexity facets such as heterogeneity,
size, dynamics and uncertainty. The complexity of the environment and the required
functionality thus requires a lot from the CPS, driving its complexity. Similarly, in
designing an organization to develop CPS, the complexity of the CPS will require a lot
from the CIPS, thus driving their complexity. The relationships as shown in Fig. 1 are
bidirectional in the sense that the systems (CPS, environment, CIPS) are influencing
each other.

Finally, for organizations to be effective, investigations have indicated that the
DSM product structure should be closely mirrored by corresponding organizational
DSMs (i.e. relationships among teams) and processes (relationships among
activities/steps)4, Eppinger and Salminen (2001). In times of technology change it
becomes especially important to keep these various “architectures” in sync. CPS
embraces a paradigm shift with drastically new functionalities and components con-
tinuously being added to the technical architectures, which themselves must evolve.
Thus the organizations and the processes need a corresponding evolution.

Application
Software 
component

Software platform

Application
Software 
component

Application
Software 
component

Mechanical 
system part 
of vehicle

Environment —
i.e. the vehicle 
surrounding 
(roads, other 
vehicles, 
pedestrians)

Legend: 

Hardware platform

Direct interaction Indirect interaction (e.g. relation in the form of assumptions)

Power

Fig. 6. Direct and indirect relations among CPS parts. Direct information and force interactions
take place between parts. Indirect interactions refer to assumptions made in designing a part (the
direction of the arrow indicates for which part the assumptions were made).

4 Such DSMs are often referred to as team-based and activity-based, e.g. (Eppinger and Browning
2012).
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4.2 Analysis of Distinguishing Characteristics: Physical vs. Software
Systems

Dealing with the physical vs. cyber side represents specific challenges, since each side
comes with very different traditions and expected properties, for example, from very
fast turn-around, open and security aware systems to safety-critical real-time closed
systems. We will here focus on software within the cyber-part, since we believe this
pinpoints the essential differences. Table 1 summarizes distinguishing characteristics
among physical and software systems, elaborated as follows.

Phenomena and Dependencies: A key concern of physical systems is their multitude
of aspects encompassing structure, material properties and various types of dynamics in
terms of e.g. stresses, heat, motion, vibrations and wear. As discussed in Sect. 3, side
effects are often of the same order of magnitude as the intended behavior. Wear, tear
and imperfect production imply that parameters will differ from nominal specifications
(albeit within tolerances), i.e. they have distributions, and that they will change over
time. The natural variation of the physical parameters, such as dimensions and material
properties, make the behavior - and thus performance - probabilistic, requiring prob-
abilistic analyses.

In contrast to physical systems, there is an apparent ease with which functions are
realized in software systems. This ease relies upon abstraction hierarchies, a multitude
of tools and existing software components that enable a direct path from software
programs to their execution by microprocessors. Software is an abstraction notion that
provides powerful and flexible constructs for describing information, logic and algo-
rithms, without direct physical constraints. This enables us to build systems of
unprecedented size, to the point where an incredible state-space complexity is created.
This evolution has led to modern cars being fitted with tens of millions of lines of code
and large parameter sets, see e.g. Broy et al. (2007).

Table 1. Contrasting characteristics of physical vs. software systems.

Physical systems Software

Phenomena &
dependencies

Multiple coupled physical
phenomena (materials, wear, fatigue,
heat, …) Local direct effect

State space size; bugs;
connectivity; variability Local and
global direct effects

Dev. Time &
iterations

Long (manufacturing)/few iterations Short/long; large amount of
iterations

Abstractions,
synthesis, and
platforms

Approximations; continuous time
and value; No single platform -
multiple realization technologies;
Behavioral model sim.; Geometry
based synthesis (CAD/CAM/); Form
as a component or structure property

Digital abstractions; discrete time
and value/strong platform
foundations; Property preserving
model transformations (code
synthesis)

Extra-functional
(EF) properties
including cost

Trade-offs among EF properties;
Established cost models

Dependencies create additional
relations between EF properties;
Difficult to estimate life-cycle cost
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A direct consequence of the abstract nature of software is that it only has design
faults. Physical systems are, on the other hand, characterized by design faults, random
hardware failures and wear-out faults, i.e. faults caused by frequent operations/usage.
A consequence of the inherent complexity of software systems, in particular at large
scale (see e.g. Brooks 1987), is that design faults are much more predominant in the
cyber-side. 10 bugs per 1000 lines of code is commonly estimated for commercial
software, with in the order of one bug per 1000 lines for safety critical code, McDermid
and Kelly (2006)5.

Further distinguishing characteristics w.r.t. phenomena and dependencies are that
physical systems have strong interactions locally, with weaker remote effects (Simon
1996). These effects can, in many cases, be seen as piece-wise linear. In software and
digital systems, potentially any bit-flip or bug may break the system. Cyber-systems
are, in this sense, highly non-linear, (Henzinger and Sifakis 2006). Since software
systems (executing on hardware) in principle can be provided with very high con-
nectivity, any change or fault or just nominal communication has the potential to have a
large impact globally, unless the design explicitly takes this into account. The resulting
systems may then come to violate the natural “architecture of complexity” (Simon
1996). Such systems - without barriers, where everything is interrelated - are likely to
be brittle and unmanageable.

Development Time and Iterations: In a CPS project of any size, there is a substantial
difference in the number of iterations used and time duration for the development of the
software, electronics vs. physical parts. As an example, the duration of a project
designing a new industrial computer could be in the order of 1-1.5 years. During this
period, 2-3 mechanical prototypes, 3 iterations of electronics, and 100 iterations of
software might be provided. For mechanical products, design and manufacturing take a
considerable amount of time and effort. For electronics, dealing with heat, isolation,
ruggedness etc. requires extra consideration and time.

While software does not need the same type of production effort as physical systems,
it nevertheless heavily relies on a host of previous developments – a “software infras-
tructure” - including tools, operating systems, middleware, libraries, and existing
application components. This infrastructure is growing over time, and increasingly
includes, for example, capabilities to upgrade software and to gather data from running
systems. The time to develop software will therefore be strongly dependent on the
availability of a proper software infrastructure. There is a tendency that too little emphasis
is placed on the software platform (Ericson 2017). According to industrial developers,
software development never ends, and is never ready when the product is delivered. The
software complexity also gives rise to concerns for effective verification and validation.

Abstractions, Synthesis and Platforms: Digital hardware platforms enable abstrac-
tions (programs, code) to be converted into executable/interpretable code. This relies on
abstractions of services at different levels, e.g. processor instruction sets and pro-
gramming instructions to higher-level services that define the basis for even more
services. These abstractions of services are often referred to as platforms for digital

5 The number of bugs is only used here to illustrate the complexity; not all bugs are equally important.
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systems. This notion is captured by so called Platform-based design (PBD), stemming
from the field of Electronics Design Automation. Defining and constraining the set of
platforms has the effect of reducing the design space, increasing reuse, and speeding up
development, while allowing focus on application development and its mapping (and
tailoring) of the platform, see e.g. Sangiovanni-Vincentelli (2002).

The powerful foundation of abstractions and digital platforms have proven very
successful for general computing but become a problem for cyber-physical systems,
since they do not cover physical effects such as timing and energy consumption, see
e.g. Henzinger and Sifakis (2006), and Lee (2009).

For physical systems, we first note that the term platform is used differently, to refer
to the “common necessary modules” of a product, Blackenfelt (2001). Compared to
software, physical systems have no corresponding general realization platform. Instead,
there are multiple candidate technologies, for example for actuation in terms of elec-
trical, hydraulic, or combustion engine technologies. Functional and behavioral
descriptions provide goals that will be approximated by the realization technology
(good enough) but also leading to side effects as discussed previously.

A second somewhat subtle difference between software and physical systems refers to
abstractions and their relationship to synthesis. For software systems, behavior abstrac-
tions are synthesized (refined) into executable code. Behavioral models are also common
to support physical systems design and analysis, e.g. used for evaluation by simulation.
However, synthesis in the form of manufacturing relies on geometry rather than behavior
models. Synthesis is thus based on geometrical descriptions (CAD) that can be transferred
to computer aided manufacturing systems. It is not a given that the geometrical repre-
sentation adequately represents behavioral models. As an additional aspect of relevance,
the geometrical form is an important attribute of physical systems (and thus of CPS). The
form may correspond to a structural property or be realized through specific physical
components. New manufacturing paradigms, such as additive manufacturing, expand
design freedom by removing manufacturing constraints on shape, material combination
and product structure imposed by traditional machining operations.

A third difference refers to the view on time and values, with continuous abstractions
dominating at the macro-level in the physical world, and with discrete representations in
the software (and digital world), leading to quantization and discretization concerns
when integrated into CPS.

Extra-Functional (EF) Properties Including Cost: Many physical related EF
properties, such as reliability and safety, only become concrete for software when
considered in the context of processing hardware together with software. Alternatively
properties such as reliability are considered as controversial when applied to software
only. The nature of software leads to special considerations for flexibility-related EF
properties such as upgradeability and maintainability.

A specific concern for software systems is that they will - for cost and interaction
reasons - be sharing various resources such as computing and communication elements
as well as data and algorithms. This has the implication that many extra-functional
properties will be highly dependent on shared elements and design parameters (e.g. the
speed of a network and policies of a server). Unless care is taken in design, the sharing
may contribute to complexity by introducing design faults, such as undesirable feature
interactions mentioned in Sect. 3.1.
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Cost models appear to constitute an industrial challenge especially for software.
While hardware costs are relatively well understood, software costs are more difficult to
model and predict due to the described characteristics, e.g. accounting for the costs of
the software platform, verification, and maintenance. A typical implication of this lack
of awareness is that emphasis is often placed on reducing hardware costs, while
software costs are disregarded. An example of this would be the introduction of two
hardware platforms (of different costs), suited to different customer segments, even
though this causes the software complexity (and therefore cost) to increase in order to
deal with two variants. Another example relates back to resource sharing, where the
drive to reduce hardware costs results in additional engineering effort to ensure that
algorithms, computing platforms and available memory together meet the requirements
e.g.in terms of accuracy, speed and predictability.

5 Discussion and Concluding Summary of Bridging
Measures

5.1 Discussion

Reconsidering Fig. 1, the development of CPS has to consider its physical and cyber
parts, the CIPS, and the environment. Facets of complexity appear in each of these
“systems” and can moreover be considered for different aspects of these systems,
including their behavior, structure, requirements, and relations among those and with
external system aspects.

Figure 7 provides a corresponding elaboration of complexity facets applied to
different types of systems and aspects of those systems. Fig 7 draws inspiration from
Sheard (2015) in the distinction between the top and lower level. The complexity facets
(right bottom box in Fig. 7) are the results of the analysis in this paper. The system
aspects (left bottom box in Fig. 7) roughly correspond to key systems engineering
development steps, see e.g. Oliver et al. (1996).

Individual system and SoS
aspects:
Behaviour/Dynamics
Structure (explicit/implicit)
Requirements

/constraints
Mappings and interfaces

Complexity facets:
Heterogeneity
Interrelations
Uncertainty and change
Behavior
Size and computability
Incidental/essential

Things/systems
that can be complex

System aspects and
what makes them
complex

Environment

CPS CIPS

Fig. 7. Complexity facets applied to different types of systems and aspects of those systems.
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Our review of the state of the art and our analysis reveals that all aspects of
complexity discussed in this paper are relevant for developing future CPS. The anal-
ysis, however, reveals that the facets identified in Fig. 7 are of particular importance.

In particular, the tight integration of physical and software parts, and CPS com-
ponents, results in a situation with interfaces and interrelations everywhere (compare
with Figs. 4, 5 and 6). The properties of the complete product appear as a result of the
component, software and physical system properties and their interactions. Intricate
relationships between components will contribute to a number of properties such as
functionality, performance, safety, security, flexibility and interoperability. Changes in
some component properties or interrelations may affect multiple properties, in essence
leading to tensions that will require these interrelations to be understood and that
appropriate trade-offs are made. It thus becomes central to manage both explicit and
implicit interrelations, including uncertainty in information. This is of relevance for all
the types of systems depicted in Fig. 7, i.e. the CPS, the environment and CIPS.

Development of CPS, moreover, has to face the combined consideration of physical
and software facets of complexity, including those described in Table 1. One important
aspect of this is the need to enhance a mutual understanding across cyber- and physical
(related) disciplines, posing an educational challenge.

The significantly increasing system complexity for CPS, compared to traditional
systems, has the effect to increase the uncertainty that remains when a new system is
launched to the market as well as the amount of information (models, data, etc.)
required to describe the CPS. Recalling the “cone of uncertainty” in Fig. 2, this cor-
responds to a widening of the cone – see Fig. 8; the more complex a system is, the
more uncertainties will remain even after the system has been deployed.

Such a situation may require development to be extended to the usage life-cycle
phase, with diagnosis, condition monitoring and proper management of service and
maintenance information to guide a process aimed at refining the CPS with continuous
uncertainty reduction.
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Fig. 8. MBE may enable early knowledge capture and deferred decisions
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CPS development provides more options and thus more degrees of freedom
(DOF’s) in design compared to traditional systems, consequently requiring more
knowledge to manage uncertainty and risks. The role of model-based engineering
(MBE) is indicated in Fig. 8. MBE has a potential to create design knowledge at a
significantly faster pace than design by physical prototyping, and also enables decisions
to be delayed, i.e. keeping the design degrees of freedom for a longer time, see e.g.
Sellgren 1999. There is consequently a very strong need to systematically implement
methodologies that are model-based and where a reduction of the knowledge gap is
driven by model-based analysis.

5.2 Bridging Measures Concluded

In the state of the art (Sect. 3.4), we described four approaches for dealing with CPS
complexity. We believe that these approaches are very valid but will not be enough for
future CPS. Trends towards connectivity, new services, automation, smartness, etc.
imply that we are embarking towards both CPS and CPSoS of unprecedented com-
plexity. Such systems will, in turn, be developed by large-scale CIPS. These trends
unfortunately place further stress on the described limitations of CIPS. It thus becomes
even more important to emphasize bridging measures.

The analysis indicates that it will no longer be possible to rely only on a subset of
the approaches covered in Sect. 3.4. That is, approaches that we have encountered in
industry for dealing with complexity, for example, placing specific emphasis on
architectures and skilled people, or process and model/tool centered approaches, will
most likely not suffice for the CPS of tomorrow. Instead, there will be a need for a
broader set of tools – “bridging measures” to deal with future complexity. In the
following we briefly summarize such bridging measures. These include the four
approaches from Sect. 3.4, here grouped into three “reinforced” measures. To these we
add measures to deal with software, including its hidden costs and as part of integrated
design methodologies for CPS, interrelation management (drawing upon Sect. 4.1),
and finally, education, ending up with the following six measures:

• Processes and organizations for CPS. Processes and organizations for CPS need to
be able to explicitly address synchronization and integration among the diverse
aspects and parts of a CPS, and consider integrated life-cycle engineering. The
difference in speed of development of software and hardware needs explicit
attention (synchronized processes, version and variant management, agile vs. safety
practices), supported by architectures, and verification and validation methods. Key
aspects for the successful development of CPS include insightful leadership and the
use of integration mechanisms among teams for large scale CIPS.

• MBE including CAE systems and frameworks for data management as design
assistants. Humans and organizations will need much better support for dealing
with future CPS. Considering large scale CIPS (and CPS), means to support effi-
cient and effective communication among people/teams will become even more
important. Examples of areas with strong potential for dealing with the conse-
quences of complexity (recall Fig. 1) include visualization, augmented/virtual
reality, traceability and change management (e.g. managing interrelations), data
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analytics, automation, and improved support for large-scale concurrent engineering.
Advances in CAE capabilities with respect to semantic and contextual under-
standing and in dealing with large amounts of data will be necessary. Progress in AI
is likely to provide entirely new capabilities to deal with many of those issues,
including data analytics, model synthesis, and in providing decision support.
Considering DevOps, CAE systems and underlying theories, concepts and strate-
gies need to be developed for information and knowledge management that
encompasses the entire life-cycle. A better understanding is also needed for how to
balance static analysis, simulation, and physical tests, and how they can comple-
ment each-other.

• Design and architecting. New architectures and architectural representations are
needed to support safety, security and availability, while managing evolution
including software upgrades. Principles, interaction protocols, and architectures are
also needed to support scalability, robustness and avoidance of side effects among
interacting CPS parts of a CPSoS. Further, new methods and models are needed that
explicitly manage relationships between extra-functional properties, incorporate
uncertainty and concepts of dynamic risk management, attempting to mitigate risk
even in the face of the unknown.

• Software as enabler: Software comes along with hidden costs and relies on
extensive software assets that deserve attention because of their critical impact on
end system properties. Better insights and cost models are needed to improve
awareness. Software systems form an essential and growing part of CPS. Devel-
opment methodologies need to incorporate core aspects of both systems and soft-
ware engineering. The software communities need to embrace and explicitly
consider the various direct and indirect physical effects of software.

• Interfaces and interrelations management. CPS will have interfaces and interrela-
tions everywhere, across systems, components, data, models, tools and people.
System level methodologies need to deal much more explicitly with these, including
their design, analysis and management.

• Education and life-long learning. There is also an urgent need to address these new
challenges with a reshaped undergraduate education, and to implement a system for
continuous professional competence training. Foundations and the T-shaping of
engineers are becoming more important. Engineers increasingly need to be able to
work efficiently in teams and to obtain a broader understanding than what is pro-
vided by a traditional disciplinary education (e.g. in computer science or mechanical
engineering). Establishing such a broader level of understanding corresponds to the
horizontal upper part of the T, see e.g. Törngren et al. (2016). Considering the speed
of technology evolution, there are also strong needs to develop and adopt
approaches for life-long learning, see e.g. Törngren et al. (2015), i.e. to continu-
ously deepen and broaden the domain expert knowledge.

We emphasize that these bridging measures need to be considered in conjunction.
In this sense, individual bridging measures can be seen to provide specific viewpoints
for CPS development.

Complexity Challenges in Development of Cyber-Physical Systems 499



Relating these measures to a number of roadmaps/agendas in the area, see e.g.
Platforms4CPS (2017), we find that design and architecting and MBE receive a lot of
attention, while the others sometimes are not covered or covered indirectly.

This work has been motivated by the increasing complexity of CPS, and also by the
desire to bridge the gap between the cyber and physical dimensions. One direction of
future work is to fully expand the role of humans as part of CPS. We hope that this
review of various facets of complexity of CPS will contribute to invigorate a multi-
disciplinary debate on how to deal with the CPS of tomorrow!
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