
Chapter 3

Evaluation of Complexity in Product

Development

The term “complexity” stems from the Latin word “complexitas,” which means

comprehensive or inclusive. In current usage, it is the opposite of simplicity, though

this interpretation does not appear to be underpinned by any explicit concept that

could be directly used for the development of scientifically rigorous models or

metrics. Various disciplines have studied the concepts and principles of complexity

in basic and applied scientific research. Several frameworks, theories and measures

have been developed, reflecting the differing views of complexity between disci-

plines. An objective evaluation of structural and dynamic complexity in PD would

benefit project managers, developers and customers alike, because it would enable

them to compare and optimize different systems in analytical and experimental

studies. To obtain a comprehensive view of organizational, process and product

elements and their interactions in the product development environment, a thorough

review of the notion of complexity has to start from organizational theory (Section

3.1). The literature on organizational theory shows that the complexity of PD

projects results from different “sources” and the consideration of the underlying

organizational factors and their interrelationships is essential to successful project

management (Kim and Wilemon 2009). However, our analyses have shown that

static factor-based approaches are not sufficient to evaluate emergent complexity in

open organizational systems and therefore the complexity theories and measures of

basic scientific research must also be taken into account to capture the inherently

complex nature of the product development flow (cf. Amaral and Uzzi 2007). These

theories and measures can provide deeper insights into emergent phenomena of

complex sociotechnical systems and dynamic mechanisms of cooperation (Section

3.2). Selected measures can also be used to optimize the project organization

(Schlick et al. 2009, see Sections 5.2 and 5.3). The measures build upon our

intuitive assessment that a system is complex if it is difficult to describe. The

description can focus on structure, processes or both. In the description not only

the length and the format are relevant but also the expressive power of the

“description language.” Furthermore, in a process-centered view, for many

nontrivial systems the difficulty of prediction and retrodiction have to be
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simultaneously taken into account to obtain valid results. Comprehensive over-

views of this and related concepts including detailed mathematical analyses and

illustrations can be found in Shalizi (2006), Prokopenko et al. (2009) and Nicolis

and Nicolis (2007). We will describe the main concepts and methods of basic

scientific research in Section 3.2 based on the material from Shalizi (2006). For

effective complexity management in PD, the product-oriented measures from

theories of systematic engineering design are also relevant (Section 3.3). Seminal

work in this field has been done by Suh (2005) on the basis of information-theoretic

quantities. These quantities are also the foundation of statistical complexity mea-

sures from basic scientific research, which means that Suh’s complexity theory and

recent extensions of it (see Summers and Shah 2010) must be discussed in the light

of the latest theoretical developments. Moreover, the literature that has been

published concerning the design structure matrix (Steward 1981) as a universal

dependency modeling technique has to be considered (see e.g. Lindemann

et al. 2009; Eppinger and Browning 2012). This literature also provides a firm

foundation for quantitative modeling of cooperative work in PD projects by means

of either time- or task-based design structure matrices (see e.g. Gebala and

Eppinger 1991; Smith and Eppinger 1997; Schlick et al. 2007). In general, we

have sought to restrict our analyses to mature scientific theories because of their

universality, objectivity and validity.

3.1 Approaches from Organizational Theory

According to Murmann (1994) and Griffin (1997), complexity in the product

development environment is determined by the number of (different) parts in the

product and the number of embodied product functions. This basic approach can be

used to assess complexity in different types of PD projects, for instance the five

classic types defined by Wheelwright and Clark (1992): research and development,

breakthrough, platform, derivative, and alliances and partnership projects. To make

this approach fully operational, Kim and Wilemon (2003) developed a complexity

assessment template covering these and other important “sources.” The first source

in their assessment template is “technological complexity,” which can be divided

into “component integration” and “technological newness.” The second source is

the “market (environmental) complexity” that results from the sensitivity of the

project’s attributes to market changes. “Development complexity” is the third

source and is generated when different design decisions and components have to

be integrated, qualified suppliers have to be found and supply chain relationships

have to be managed. The fourth source is “marketing complexity,” which results

from the challenges of bringing the product to market. “Organizational complexity”

is the fifth source, because projects usually require intensive cooperation and

involve many areas of the firm. Their coordination leads to “intraorganizational

complexity,” the sixth source. When in large-scale engineering projects many other

companies such as highly specialized engineering service providers are involved
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and must be coordinated in a continuous integration rhythm, this source should be

extended and cover both inter- and intraorganizational complexity. In order to

validate and prioritize sources of complexity, Kim and Wilemon (2009) conducted

an extensive empirical investigation. An analysis of exploratory field interviews

with 32 project leaders and team members showed that technological challenges,

product concept/customer requirement ambiguities and organizational complexity

are major issues that generate complexity in PD. The perceived dominant source

was technological challenges, since roughly half of the respondents noted techno-

logical difficulties encountered in attempting to develop a product using an

unproven technique or process. With regard to complexity in the management of

projects of different types—not necessarily focusing on (new) product development

projects—Mulenburg (2008) distinguishes between the following six sources:

(1) Details: number of variables and interfaces, (2) Ambiguity: lack of awareness

of events and causality, (3) Uncertainty: inability to pre-evaluate actions,

(4) Unpredictability: inability to know what will happen, (5) Dynamics: rapid rate

of change, and (6) Social structure: number and types of interactions between

actors.

H€olttä-Otto and Magee (2006) developed a project complexity framework based

on the seminal work of Summers and Shah (2003). They identified three dimen-

sions: the product itself (artifact), the project mission (design problem), and the

tasks required to develop the product (process). The key indicators for each of these

dimensions are size, interactions and stretch (solvability). H€olttä-Otto and Magee

conducted interviews in five divisions of large corporations competing in different

industries on the North American market. Their findings show that the effort

estimation is primarily based on the scale and the stretch of the project. Surpris-

ingly, they found no utilization of the level of either component or task interactions

in estimating project complexity. Further, they found no empirical evidence for

interactions being a determinant of project difficulty (H€olttä-Otto and Magee 2006).

Tatikonda and Rosenthal (2000) focus on the task dimension and relate project

complexity to the nature, quantity and magnitude of the organizational subtasks and

subtask interactions required by a project.

A recent work combining a literature review and their own empirical work on the

elements that contribute to complexity in large engineering projects was published

by Bosch-Rekveldt et al. (2011). The analysis of the literature sources and 18 semi-

structured interviews in which six completed projects were studied in depth led to

the development of the TOE framework. The framework covers 50 different ele-

ments, which are grouped into three main categories: “technical complexity” (T),

“organizational complexity” (O) and “environmental complexity” (E). Additional

subcategories of TOE are defined on a lower level: “goals,” “scope,” tasks,”

“experience,” “size,” “resources,” “project team,” “trust,” “stakeholders,” “loca-

tion,” “market conditions,” and “risks,” showing that organizational and environ-

mental complexity are more often linked with softer, qualitative aspects.

Interestingly, Bosch-Rekveldt et al. (2011) distinguish between project complexity

and project management (or managerial) complexity. Project management com-

plexity is seen as a subset of project complexity. Various normative organizing
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principles for coping with managerial complexity can be found in the standard

literature on project management (e.g. Shtub et al. 2004; Kerzner 2009). If, for

instance, the level of managerial complexity is low, project management within the

classic functional organizational units of the company is usually most efficient and

cross-functional types of project organization can create unnecessary overhead.

However, if coordination needs between functional, spatial and temporal bound-

aries are high, a matrix organization is often the better choice, as it allows devel-

opment projects to be staffed with specialists from across the organization (Shtub

et al. 2004). The preferred organizational structure for large-scale, long-term

engineering projects is pure project organization. The inherent advantage of this

type of structure is that responsibilities for the project lie with one team, which

works full-time on the project tasks throughout the entire project life cycle. Specific

sources of managerial complexity and their impact on performance were also

examined in the literature, e.g. communication across functional boundaries

(Carlile 2002), cross-boundary coordination (Kellogg et al. 2006), spatial and

temporal boundaries in globally distributed projects (Cummings et al. 2009), and

the effects of a misalignment in the geographic configuration of globally distributed

teams (O’Leary and Mortensen 2010). Maylor et al. (2008) developed an integra-

tive model of perceived managerial complexity in project-based operations. Based

on a multistage empirical study elements of complexity were identified and classi-

fied under the dimensions of “mission,” “organization,” “delivery,” “stakeholder,”

and “team.”

The literature review shows that there are a large variety of nomenclatures and

definitions for the sources of complexity in PD projects. However, the underlying

factors have not yet been integrated into a single objective and valid framework.

According to Lebcir (2011) there is an urgent need for a new, non-confusing, and

comprehensive framework that is derived from the extensive body of available

knowledge. He suggests a framework in which “project complexity” is decomposed

into “product complexity” and “innovation.” Product complexity refers to structural

complexity (see Section 3.3) and is determined by “product size” in terms of the

number of elements (components, parts, subsystems, functions) in the product and

by “product interconnectivity,” which represents the level of linkages between

elements. On the other hand, innovation refers to “product newness” and “project

uncertainty.” Product newness represents the degree of redesign of the product

compared to previous generations of the same or similar products. Project uncer-

tainty represents the fact that methods and capabilities are often not clearly defined

at the start of a project. The results of a dynamic simulation indicate that an increase

in uncertainty has a significant impact on the development time. The other factors

also tend to increase development time as they increase, but their impact is not

significantly different in projects involving medium or high levels of these factors.

In reviews of the more practice-oriented project management literature, two

complexity models have received considerable attention, especially at large-scale

development organizations: (1) the UCP (uncertainty, complexity and pace) model

and the (2) NTCP (novelty, technology, complexity and pace) model. Both models

were developed by Shenhar and colleagues (Shenhar and Dvir 1996, 2007; Shenhar

162 3 Evaluation of Complexity in Product Development

http://dx.doi.org/10.1007/978-3-319-21717-8_3


1998). In principle, these models can be applied to all types of projects. The UCP

model is based on a conceptual two-dimensional taxonomy which classifies a

project according to four levels of technological uncertainty and three levels of

system scope. The four levels of technological uncertainty (low-tech, medium-tech,

high-tech and super-high-tech) mainly refer to the uncertainty as perceived by the

organization at the time of the project’s initiation and thereby indicate how soon the

product functions can be concretized. Moreover, they characterize the extent of new

and therefore possibly premature technologies that are needed to reach the project

goals. In the UCP model, the second dimension of system scope is based on the

complexity of the system as expressed by the different hierarchies inside the

product (assembly, system and array). Since systems are composed of subsystems

and subsystems of components, hierarchies usually involve many levels. Hierar-

chies apply to systems as well as to tasks, which together determine the overall

complexity of the project. The element of time in terms of “pace” was added to the

model to account for the urgency and criticality of reaching milestones, as mile-

stones with different time constraints call for different managerial strategies (Dvir

et al. 2006). When complexity, uncertainty or pace increase, project planning

becomes more difficult and the risk of project failure increases. Consequently, the

formality of project management must also increase. The UCP model is based on

quantitative and qualitative analyses of more than 250 projects within the US and

Israeli defense and industry sectors. However, since it is usually used in retrospect

rather than at the outset of new projects, the UCP model has a descriptive character.

In contrast, the NTCP model, also called the “Diamond Framework,” was devel-

oped as a prescriptive model in order to analyze projects and provide a better

understanding of what needs to be done in order to ensure their success. The

Diamond Framework is based on four pillars. The first pillar, “novelty,” refers to

the degree of newness (derivate vs. platform vs. breakthrough) of project results or

crucial aspects of the project. With varying degrees of novelty, different require-

ments must be satisfied and corresponding action plans have to be developed. The

second pillar represents the level of “technological uncertainty” in a project.

Technological uncertainty is primarily determined by the level of new and mature

technology required (low vs. medium vs. high vs. super-high technology). As the

level of technological uncertainty rises, the risk of failure and efficiency loss

increases. “Complexity,” the third pillar, describes the types of arrangement

between elements within the system, especially their hierarchical structure (assem-

bly vs. system vs. array). Higher degrees of complexity entail more interaction

between elements, which in turn demands higher project management formality.

The fourth and final pillar of the NTCP model is “pace.” As within the UCP model,

pace refers to the urgency of reaching time goals and milestones. It chiefly depends

on the available time for project completion and is divided into four types: regular,

fast/competitive, time-critical and blitz. By considering all four pillars of the NTCP

model at the beginning of the project and revisiting them as it progresses, project

managers are provided with a methodology for assessing the uniqueness of their

project and selecting appropriate management methods and techniques for coping

with complexity.
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Like the UCP and NCTP models, the Project Complexity Model developed by

Hass (2009) has received a great deal of attention in the practice-oriented project

management community. This model offers a broad framework for identifying and

diagnosing the aspects of complexity within a project so that the project team can

make appropriate management decisions. The model captures a number of sources

of project complexity, including project duration and value; team size and compo-

sition; urgency; schedule, cost, and scope flexibility; clarity of the problem and

solution; stability of requirements; strategic importance; stakeholder influence;

level of organizational and commercial change; external constraints and dependen-

cies; political sensitivity; and unproven technology (Hass 2009). The detailed

complexity dimensions are shown in Table 3.1. The Project Complexity Model

can also be used to evaluate the complexity of a particular project in an enterprise.

To carry out the evaluation, Hass (2009) developed a corresponding “Project

Complexity Formula,” which is summarized in Table 3.2.

The complexity templates and frameworks that have been developed in organi-

zation theory and neighboring disciplines are especially beneficial for the manage-

ment of product development projects because they help to focus managerial

intervention on empirically validated performance-shaping factors and key ele-

ments of complexity. It must be criticized, though, that without a quantitative

theory of emergent complexity it is almost impossible to identify the essential

variables and their interrelationships. Furthermore, it is very difficult to consolidate

them into one consistent complexity metric. In the literature very few authors, such

as Mihm et al. (2003, 2010), Rivkin and Siggelkow (2003, 2007), and Braha and

Bar-Yam (2007) build upon quantitative scientific concepts for the analysis of

complex sociotechnical systems. Mihm et al. (2003) present analytical results

from random matrix theory predicting that the larger the project, as measured by

components or interdependencies, the more likely are problem-solving oscillations

are and the more severe they become—failure rates grow exponentially. In the work

of Rivkin and Siggelkow (2003, 2007), Kaufman’s the famous biological evolution

theory and the NK model are used to study organizations as systems of interacting

decisions. Different interaction patterns such as block diagonal, hierarchical, scale-

free, and so on are integrated into a simulation model to identify local optima. The

results show that, by keeping the total number of interactions between decisions

fixed, a shift in the pattern can alter the number of local optima by more than one

order of magnitude. In a similar fashion Mihm et al. (2010) use a statistical model

and Monte Carlo experiments to explore the effect of an organizational hierarchy

on search solution stability, quality and speed. Their results show that assigning a

lead function to “anchor” a solution speeds up problem-solving, that the choice of

local solutions should be delegated to the lowest hierarchical level, and that

organizational structure is comparatively unimportant at the middle management

level, but does indeed matter at the “front line,” where groups should be kept small.

Braha and Bar-Yam (2007) examine the statistical properties of networks of people

engaged in distributed development and discuss their significance. The

autoregression models of cooperative work that were introduced in Chapter 2

(Eq. 8 and 39) are quite closely related to their dynamical model. However, there
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Table 3.1 Complexity dimensions and project complexity profiles of the Project Complexity

Model developed by Hass (2009)

Complexity

dimensions

Project complexity profile

Independent Moderately complex Highly complex

Time/Cost <3 months

< $250K

3–6 months

$250K–$750K

>6 months

> $750K

Team Size 3–4 team members 5–10 team members >10 team members

Team Composi-
tion and
Performance

• Strong project leader-

ship

• Team staffed inter-

nally, has worked

together in the past, and

has a track record of

reliable estimates

• Formal, proven PM,

BA and SE methodol-

ogy with QA and QC

processes defined and

operational

• Competent project

leadership

• Team staffed with

internal and external

resources; internal staff

has worked together in

the past and has track

record of reliable esti-

mates

• Contract for external

resources is straightfor-

ward; contractor perfor-

mance is known

• Semi-formal method-

ology with QA/QC pro-

cesses defined

• Project manager

inexperienced in

leading complex pro-

jects

• Complex team

structure of varying

competencies (e.g.,

contractor, virtual,

culturally diverse,

outsourced)

• Complex contracts;

contractor perfor-

mance unknown

• Diverse

methodologies

Urgency and
Flexibility of
Cost, Time and
Scope

• Minimized scope

• Small milestones

• Flexible schedule,

budget and scope

• Schedule, budget and

scope can undergo

minor variations, but

deadlines are firm

• Achievable scope and

milestones

• Over-ambitious

schedule and scope

• Deadline is aggres-

sive, fixed, and cannot

be changed

• Budget, scope and

quality leave no room

for flexibility

Clarity of Prob-
lem, Opportunity
and Solution

• Clear business objec-

tives

• Easily understood

problem, opportunity

or solution

• Defined business

objectives

• Problem or opportunity

is partially defined

• Solution is partially

defined

• Unclear business

objectives

• Problem or opportu-

nity is ambiguous and

undefined

• Solution is difficult

to define

Requirements
Volatility and
Risk

• Strong customer/user

support

• Basic requirements

are understood,

straightforward and

stable

• Adequate customer/

user support

• Basic requirements are

understood but are

expected to change

• Moderately complex

functionality

• Inadequate cus-

tomer/user support

• Requirements are

poorly understood,

volatile and largely

undefined

• Highly complex

functionality

Strategic Impor-
tance, Political
Implications,
Multiple
Stakeholders

• Strong executive sup-

port

• No political implica-

tions

• Straightforward

communications

• Adequate executive

support

• Some direct impact on

mission

• Minor political

implications

• Mixed/inadequate

executive support

• Impact on core mis-

sion

• Major political

implications

(continued)
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Table 3.1 (continued)

Complexity

dimensions

Project complexity profile

Independent Moderately complex Highly complex

• 2–3 stakeholder groups

• Challenging communi-

cation and coordination

effort

• Visible at highest

levels of the organi-

zation

• Multiple stakeholder

groups with

conflicting

expectations

Level of Organi-
zational Change

• Impacts a single busi-

ness unit, one familiar

business process and

one IT system

• Impacts 2–3 somewhat

familiar business units,

processes and IT

systems

• Large-scale organi-

zational change that

impacts the enterprise

• Spans functional

groups or agencies

• Shifts or transforms

the organization

• Impacts many busi-

ness processes and IT

systems

Level of Com-
mercial Change

• Minor changes to

existing commercial

practices

• Enhancements to

existing commercial

practices

• Groundbreaking

commercial practices

Risks, Depen-
dencies, and
External
Constraints

• Considered low risk

• Some external influ-

ences

• No challenging inte-

gration issues

• No new or unfamiliar

regulatory require-

ments

• No punitive exposure

• Considered moderate

risk

• Some project objec-

tives are dependent on

external factors

• Challenging integra-

tion effort

• Some new regulatory

requirements

• Acceptable exposure

• Considered high risk

• Overall project suc-

cess largely depends

on external factors

• Significant integra-

tion required

• Highly regulated or

novel sector

• Significant exposure

Level of IT
Complexity

• Solution is readily

achievable using

existing, well-

understood technolo-

gies

• IT complexity is low

• Solution is difficult to

achieve or technology is

proven but new to the

organization

• IT complexity and leg-

acy integration are

moderate

• Solution requires

groundbreaking inno-

vation

• Solution is likely to

use immature,

unproven or complex

technologies provided

by outside vendors

• IT complexity and

legacy integration are

high
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are important differences: the VAR(1) models are defined over a continuous range

of state values and can therefore represent different kinds of cooperative relation-

ships as well as precedence relations (e.g. overlapping); each task is unequally

influenced by other tasks; and finally, correlations ρij between performance fluctu-

ations among tasks i and j can be captured.

3.2 Approaches from Basic Scientific Research

3.2.1 Algorithmic Complexity

Historically, the most important measure from basic scientific research is algorith-

mic complexity, which dates back to the great mathematicians Kolmogorov,

Solomonoff and Chaitin. They independently developed a measure known today

as the “Kolmogorov�Chaitin complexity” (Chaitin 1987; Li and Vitányi 1997). In

terms of information processing, the complexity of the intricate mechanisms of a

nontrivial system can be evaluated using output signals, signs and symbols that are

communicated to an intelligent observer. In this sense, complexity is manifested to

an observer through the complicated way in which events unfold in time and are

organized in state space. According to Nicolis and Nicolis (2007), the characteristic

hallmarks of such spatiotemporal complexity are nonrepetitiveness, a pronounced

variability extending over many scales of place and time, and sensitivity to initial

conditions and to the other parameters. Furthermore, a given system can generate a

variety of dependencies of this kind associated with the different states simulta-

neously available. If the transmitted output of a complex system is symbolic, it can

be concatenated in the form of a data string x and may be sequentially stored in a

computer file for post-hoc analysis. The symbols are typically chosen from a

Table 3.2 Decision table of the Project Complexity Formula developed by Hass (2009)

Highly Complex Moderately Complex Independent

Level of change ¼ large-scale

enterprise impacts

or
Both the problem and the solution

are difficult to define or under-

stand, and the solution is difficult

to achieve. The solution is likely

to use unproven technologies.

or
Four or more categories in the

“highly complex” column

Two or more categories in the

“moderately complex” column

or
One category in the “highly

complex” column and three or

more in the “moderately com-

plex” column

No more than one

category in the

“moderately

complex” column

and
No categories in the

“highly complex”

column

To evaluate the complexity of a particular project, the boxes in the Project Complexity Model from

Table 3.1 that best describe the project must be shaded out. Then, the complexity formula can be

applied by following the decision rules above

3.2 Approaches from Basic Scientific Research 167



predefined alphabet X . If the output is a time- or space-continuous signal, it can be

effectively encoded with methods of symbolic dynamics (Lind and Marcus 1995;

Nicolis and Nicolis 2007). The central idea put forward by Kolmogorov,

Solomonoff and Chaitin is that a generated string is “complex” if it is difficult for

the observer to describe. The observer can describe the string by writing a computer

program that reproduces it. The difficulty of description is measured by the length

of the computer program on a Universal Turing Machine U. If x is transformed into

binary form, the algorithmic complexity of x, termed KU(x), is the length of the

shortest program with respect to U that will print x and then halt. According to

Chaitin (1987), an additional requirement is that the string x has to be encoded by a
prefix code d(x). A prefix code is a type of code system that has no valid code word

that is a prefix (start substring) of any other valid code word in the set. The

corresponding universal prefix computer U has the property that if it is defined

for a string s, then U(st) is undefined for every string t that is not the empty string ε
(Li and Vitányi 1997). The complete definition of the Kolmogorov�Chaitin com-

plexity is:

KU xð Þ ¼ min d pð Þj j : U pð Þ ¼ xf g: ð200Þ

In this sense, KU(x) is a measure of the computational resources needed to specify

the data string x in the language of U. We can directly apply this algorithmic

complexity concept to project management by breaking down the total amount of

work involved in the project into fine-grained activities ai and labeling the activities
unambiguously by using discrete events ei from a predefined setX i ¼ 1, . . . , Xj jð Þ.
During project execution it is recorded when activity ai is successfully completed

and this is indicated by scheduling the corresponding event ei. The sequence of

scheduled events x ¼ ej oð Þ, ej 1ð Þ . . .
� �

ej ið Þ 2 X , j τð Þ 2 1; . . . ; Xj jf g, τ ¼ 0, 1, . . .
� �

encodes how the events unfold in time and are organized in a goal-directed

workflow. The index j(τ) can be interpreted as a pointer to the event e that occurred
at position τ in the data sequence x. It is evident that a simple periodic work process

whose activities are processed in strict cycles, like in an assembly line, is not

complex because we can store a sample of the period and write a program that

repeatedly outputs it. At the opposite end of the complexity range in the algorithmic

sense, a completely unpredictable work process without purposeful internal orga-

nization cannot be described in any meaningful way except by storing every feature

of task processing, because we cannot identify any persisting structure that could

offer a shorter description. This example quite clearly shows that the algorithmic

complexity is not a good measure for emergent complexity in PD projects, because

it is maximal in the case of purely random task processing. Intuitively, such a state

of “amnesia,” in which no piece of information from the project history is valuable

for improving the forecasts of the project manager and the team members, is not

truly complex. Nor can the algorithmic complexity reveal the important long-range

interactions between tasks or evaluate multilayer interactions in the hierarchy of an

organization either. An additional conceptual weakness of the algorithmic com-

plexity measure and its later refinements is that it aims for an exact description of
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patterns. Many of the details of any configuration are simply random fluctuations

from different sources such as human performance variability. Clearly, it is impos-

sible to identify regularities from random fluctuations that generalize to other

datasets from the same complex system; to assess complexity, the focus must be

on the underlying regularities and rules shaping system dynamics. These regular-

ities and rules must be distinguished from noise by employing specific selection

principles. Therefore, a statistical representation is necessary that refers not to

individual patterns but to a joint ensemble generated by a complex system in

terms of an information source. In complex systems, the deterministic and proba-

bilistic dimensions become two facets of the same reality: the limited predictability

of complex systems (in the sense of the traditional description of phenomena)

necessitates adopting an alternative view, and the probabilistic description allows

us to sort out regularities of a new kind. On the other hand, far from being applied in

a heuristic manner, in which observations have to fit certain preexisting laws

imported from classical statistics, the probabilistic description we are dealing

with here is “intrinsic” (Nicolis and Nicolis 2007), meaning that it is self-generated

by the underlying system dynamics. Depending on the scale of the phenomenon, a

complex system may have to develop mechanisms for controlling randomness to

sustain a global behavioral pattern or, in contrast, to thrive on randomness and to

acquire in a transient manner the variability and flexibility needed for its evolution

between two such configurations. In addition to these significant conceptual weak-

nesses, a fundamental computational problem is that KU(x) cannot be calculated

exactly. We can only approximate it “from above,” which is the subject of the

famous Chaitin theorem (Chaitin 1987). Later extensions of the classic concept of

algorithmic complexity focus on complementary computational resources. In

Bennett’s (1988) logical depth the number of computing steps is counted that the

minimum length program on a Universal Turing MachineU requires to generate the

data string x. In Koppel and Atlan’s (1991) theory of “sophistication” only the

length of the part of the program on U is evaluated that captures all regularities of

the data string. This means that, as with effective complexity (Gell-Mann 1995;

Gell-Mann and Lloyd 1996; Gell-Mann and Lloyd 2004, see Section 3.2.3), irre-

ducible random fluctuations that do not generalize to other datasets are sorted out.

As with the Kolmogorov�Chaitin complexity, logical depth and sophistication are

not computable, even with a generative model (Crutchfield and Marzen 2015).

3.2.2 Stochastic Complexity

The most prominent statistical complexity measure is Rissanen’s (1989, 2007)

stochastic complexity. It is rooted in the construction of complexity penalties for

model selection (see procedure for VAR(n) model in Section 2.4), where a good

trade-off between the prediction accuracy gained by increasing the number of free

parameters and the danger of overfitting the model to random fluctuations and not

regularities that generalize to other datasets has to be found. In an early paper,
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Wallace and Boulton (1968) hypothesized that this trade-off could best be achieved

by selecting the model with “the briefest recording of all attribute information.”

Akaike (1973, 1974) developed an important quantitative step along this line of

thought by formulating a simple relationship between the expected Kullback-

Leibler information and Fisher’s maximized log-likelihood function (see deLeeuw

1992). He created his model selection criterion—which is today known as the

Akaike Information Criterion (AIC, see Section 2.4)—without explicit links to

complexity theory. Yet even from a complexity-theoretical perspective the AIC is

not arbitrary, as it represents the asymptotic bias correction term of the maximized

log-likelihood from each approximating model to full reality and can therefore be

interpreted as a “complexity penalty” for increasing the number of free parameters

beyond a point that is justified by the data (Burnham and Anderson 2002).

Mathematically speaking, the AIC is defined as (Burnham and Anderson 2002)

AIC ¼ �2 ln L bθ xj
� �

þ 2k; ð201Þ

where the expression ln L bθ xj
� �

denotes the numerical value of the log-likelihood at

its maximum point, and k denotes the effective number of parameters (see Section

2.4). The maximum point of the log-likelihood function corresponds to the values

of the maximum likelihood estimates bθ of the free parameters of the approximating

model given data x. In terms of a heuristic complexity-theoretic interpretation, the

first term in AIC,�2 ln L bθ xj
� �

can be considered as a measure of lack of model fit,

while the second term 2k represents the cited complexity penalty for increasing the

freely estimated parameters beyond a point that is compatible with the data-

generating mechanisms. In the above definition, the dependency of the criterion

on the number of data points is only implicit through the likelihood function.

According to Section 2.4, for VAR(n) models assuming normally distributed errors

with a constant covariance, the dependency can easily be made explicit from least

square regression statistics (Eq. 67) as

AIC nð Þ ¼ ln Det bΣ nð Þ

h i
þ 2

T
k;

where bΣ nð Þ ¼
bΔ nð Þ
T

ð202Þ

is the maximum likelihood estimate of the one-step prediction error of order n and

k ¼ n p2 þ p pþ 1ð Þ
2

denotes according to Eq. 68 the effective number of parameters related to the

coefficient matrices A0, . . . ,An�1 and the covariance matrix C of the inherent

one-step prediction error (sensu Akaike 1973).
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Akaike’s fundamental ideas were systematically developed by Rissanen in a

series of papers and books starting from 1978. Rissanen (1989, 2007) emphasizes

that fitting a statistical model to data is equivalent to finding an efficient encoding of

that data, and that in searching for an efficient code we need to measure not only the

number of bits required to describe the deviations of the data from the model’s
predictions, but also the number of bits required to specify the independent param-

eters of the model (Bialek et al. 2001). This specification has to be made with a level

of precision that is supported by the data.

To clarify this theoretically convincing concept, it is assumed that we carried out

a work sampling study in a complex PD project involving many and intensive

cooperative relationships between the development teams. Based on a large number

of observations the proportion of time spent by the developers in predefined

categories of activity X ¼ x1; . . . ; xmf g (e.g. sketching, drawing, calculating,

communicating etc.) was estimated with high statistical accuracy. In addition to

the observations made at random times, a comprehensive longitudinal observation

of the workflows of different development teams was carried out in a specific

project phase at regular intervals. The observations were made in R independent

trials and encoded by the same categories of activityX . We define the r-th workflow

in the specific project phase in formal terms as a data string xTr ¼ xjr 0ð Þ; . . . ; xjr Tð Þ
� �

of length T þ 1ð Þ xjr τð Þ 2 X , jr τð Þ 2 1; . . . ; Xj jf g,
�

τ ¼ 0, 1, . . . , T , r ¼ 1, . . . ,RÞ.
In a similar manner as in the previous section the index jr(τ) can be interpreted as a

pointer to activity xjr τð Þ 2 X observed at time instant τ in the r-th workflow encoded

by xTr . All empirically acquired data strings are stored in a database of ordered

sequences DB ¼ xT1 ; . . . ; x
T
R

� �
. We aim at developing an integrative workflow

model that can be used for the prediction and evaluation of development activities

in the project phase based on the theory of discrete random processes. Therefore,

we start by defining a finite one-dimensional random process X0; . . . ;XTð Þ of

discrete state variables. In terms of information theory the process communicates

to an observer how the development activities unfold and are organized in time. In

formal terms, X0; . . . ;XTð Þ is a joint ensemble , in which each outcome is an

ordered sequence xj 0ð Þ; . . . ; xj Tð Þ
� �

with xj 0ð Þ 2 X ¼ x1; . . . ; xmf g, xj 1ð Þ 2 X , . . . ,

xj τð Þ 2 X , . . . , xj Tð Þ 2 X (see, e.g. MacKay 2003). Each component Xτ of the joint

ensemble  ¼ X0, . . . ,Xτ, . . . ,XT is an ensemble. An ensemble Xτ is a triple

xj τð Þ;AXτ ;PXτ

� �
, where the outcome xj(τ) is the value of a random variable that can

take on one of a set of possible values AX ¼ a1; a2; . . . ; a Xj j
� �

, having probabilities

PX ¼ p1; p2; . . . ; a Xj j
� �

, withP Xτ ¼ aið Þ ¼ pi (MacKay 2003). It holds that pi � 0

and Σai2AX
P X ¼ aið Þ ¼ 1. We call the term

P X0 ¼ xj 0ð Þ, . . . ,XT ¼ xj Tð Þ
� �

j τð Þ 2 1; . . . ; Xj jf g

the joint probability of xj 0ð Þ; . . . ; xj Tð Þ
� �

. The joint probability describes the statis-

tical properties of the joint ensemble in the sense that, when evaluated at a given

data point xj oð Þ; . . . ; xj Tð Þ
� �

, we get the probability that the realization of the random
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sequence will be equal to that data point. A joint ensemble is therefore a probability

distribution on x1; . . . ; xmf gT . Similar to the definition of the probability density

function of a continuous-type random variable from Section 2.2, we can make the

functional relationship between the values and their joint probability explicit and

use a joint probability mass function p X0;...;XTð Þ:

p X0;...;XTð Þ xj 0ð Þ; . . . ; xj Tð Þ
� �

¼ P X0 ¼ xj 0ð Þ, . . . ,XT ¼ xj Tð Þ
� �

j τð Þ 2 1; . . . ; Xj jf g :

The joint probability mass function completely characterizes the probability

distribution of a joint ensemble. Without limiting the generality of the approach,

the joint probability P X0 ¼ xj 0ð Þ, . . . ,XT ¼ xj Tð Þ
� �

of xj oð Þ; . . . ; xj Tð Þ
� �

as an inte-

grative workflow model of the specific phase of the PD project can be factorized

over all T time steps using, iteratively, the definition for the conditional probability

P X Yjð Þ ¼ P X;Yð Þ=P Yð Þ as:

P X0 ¼ xj 0ð Þ, . . . ,XT ¼ xj Tð Þ
� �
¼ P X0 ¼ xj 0ð Þ

� �YT
τ¼1

P Xτ ¼ xj τð Þ
��Xτ�1 ¼ xj τ�1ð Þ, . . . ,X0 ¼ xj 0ð Þ

� �
:

The above decomposition of the joint probability into conditional distributions

P Xτ ¼ xj τð Þ
��Xτ�1 ¼ xj τ�1ð Þ, . . . ,X0 ¼ xj 0ð Þ

� �
with correlations of increasing length

τ can theoretically capture interactions between activities of long range and

therefore holds true under any circumstances of cooperative relationships in the

given phase. It is assumed that there are persistent workflow patterns in the

project phase and we can express them by means of a reduced dependency

structure capturing only short correlations, e.g. by using a Markov chain of

order n � T or an equivalent dynamic Bayesian network (see Gharahmani

2001). As such, the reduced dependency structure reflects only the essential

signature of spatiotemporal coordination in the project phase on a specific time

scale. In the simplest case, only transitions between two consecutive development

activities must be taken into account and a Markov chain of first order is an

adequate candidate model for capturing these direct dynamic dependencies. In

this model the conditional probability distribution of development activities at the

next time step—and in fact all future steps—depends only on the current activity

and not on past instances of the process when the current activity is known.

Accordingly, the current activity shields the future from past histories, and the

joint probability can be expressed as:

P X0 ¼ xj 0ð Þ, . . . ,XT ¼ xj Tð Þ
� �

¼ P X0 ¼ xj 0ð Þ
� �YT

τ¼1

P Xτ ¼ xj τð Þ
��Xτ�1 ¼ xj τ�1ð Þ

� �
:

After the model structure of the Markov chain of first order has been defined by the

above factorization of the joint probability, we have to specify the free parameters.
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Continuing the notation of the previous chapters we denote the parameter vector by

θ 2 ℝk. Due to the intrinsic “memorylessness” of the chain, only the initial

distribution

π0 ¼ P X0 ¼ x1ð Þ . . . P X0 ¼ x Xj j
� �� �

2 0; 1½ � Xj j

of the probability mass over the state space X and the transition probabilities

P ¼ pij
� �

¼
P Xτ ¼ x1

��Xτ�1 ¼ x1
� �

P Xτ ¼ x2
��Xτ�1 ¼ x1

� �
. . .

P Xτ ¼ x1
��Xτ�1 ¼ x2

� �
P Xτ ¼ x2

��Xτ�1 ¼ x2
� �

⋮ ⋱

0@ 1A 2 0; 1½ � Xj j2

between consecutive activities are relevant for making good predictions. Hence, we

have the ordered pair of parameters:

θ1 ¼ π0 P½ � :

Note that only Xj j � 1ð Þparameters of the initial distribution π0 and Xj j Xj j � 1ð Þof
the transition matrix P are freely estimated parameters, because a legitimate

probability distribution has to be formed and the constraints

XXj j

i¼1

π ið Þ
0 ¼ 1 and 8i :

XXj j

j¼1

pij ¼ 1

have to be satisfied.

We can use Maximum Likelihood Estimation (MLE, see Section 2.4) to mini-

mize the deviations of the empirically acquired data sequences from the model’s
predictions (see e.g. Papoulis and Pillai 2002; Shalizi 2006). In other words, the

goodness of fit is maximized. The maximum likelihood estimate of the parameter

pair θ1 is denoted by bθ1,T . MLE was pioneered by R. A. Fisher (cf. Edwards 1972)

under a repeated-sampling paradigm and is the most prominent estimation tech-

nique. As an estimation principle, maximum likelihood is supported by bθ1,T ’s
asymptotic efficiency in a repeated sampling setting under mild regularity condi-

tions and its attainment of the Cramér-Rao lower bound in many exponential family

examples in the finite-sample case (Hansen and Yu 2001). For a first-order Markov

chain, the estimate bθ1,T can be determined by solving the objective function:

bθ1,T ¼ arg maxθ1

YR
r¼1

P X0 ¼ xjr 0ð Þ θ1j
� �YT

τ¼1

P Xτ ¼ xjr τð Þ
��Xτ�1 ¼ xjr τ�1ð Þ, θ1

� �
¼ arg max π0;Pð Þ

YR
r¼1

P X0 ¼ xjr 0ð Þ π0j
� �YT

τ¼1

P Xτ ¼ xjr τð Þ
��Xτ�1 ¼ xjr τ�1ð Þ,P

� �
:

Note that the objective function is only valid if all R data sequences had been

acquired in independent trials.
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Due to the inherent memorylessness of the first-order Markov chain, this model

is usually not expressive enough to capture the complicated dynamic dependencies

between activities in a project phase. Consequently, a second-order Markov chain is

considered as a second approximating model with extended memory capacity. For

this model, the joint probability can be expressed as:

P X0 ¼ xj 0ð Þ, . . . ,XT ¼ xj Tð Þ
� �

¼ P X0 ¼ xj 0ð Þ
� �

P X1 ¼ xj 1ð Þ
��X0 ¼ xj 0ð Þ

� �
�
YT
τ¼2

P Xτ ¼ xj τð Þ
��Xτ�1 ¼ xj τ�1ð Þ,Xτ�2 ¼ xj τ�2ð Þ

� �
:

It is evident that the conditional distribution P Xτ ¼ xj τð Þ
��Xτ�1 ¼

�
xj τ�1ð Þ,Xτ�2 ¼

xj τ�2ð ÞÞ cannot only be used to predict direct transitions between current and future

activities but can also model transitions between activities of the process that are

conditioned on two time steps in the past. To parameterize this extended chain,

three quantities are required: The initial distribution

π0 ¼ P X0 ¼ x1ð Þ . . . P X0 ¼ x Xj j
� �� �

2 0; 1½ � Xj j;

the transition probabilities between consecutive activities at the first two time steps

P0 ¼ p0, ij
� �

¼
P X1 ¼ x1

��X0 ¼ x1
� �

P X1 ¼ x2
��X0 ¼ x1

� �
. . .

P X1 ¼ x1
��X0 ¼ x2

� �
P X1 ¼ x2

��X0 ¼ x2
� �

⋮ ⋱

0@ 1A 2 0; 1½ � Xj j2

and the transition probabilities for the next activity given both preceding activities

at arbitrary time steps

P ¼ pij
� �

¼

p x1
��x1, x1� �

p x1
��x1, x2� �

� � � p x1
��x1, x Xj j

� �
p x1

��x2, x1� �
p x1

��x2, x2� �
� � � p x1

��x2, x Xj j
� �

⋮ ⋮ ⋮
p x1

��x Xj j, x1
� �

p x1
��x Xj j, x2

� �
p x1

��x Xj j, x Xj j
� �

p x2
��x1, x1� �

p x2
��x1, x2� �

p x2
��x1, x Xj j

� �
p x2

��x2, x1� �
p x2

��x2, x2� �
p x2

��x2, x Xj j
� �

⋮ ⋮ ⋮
⋮ ⋮ ⋮

p x Xj j
��x Xj j, x1

� �
p x Xj j

��x Xj j, x2
� �

p x Xj j
��x Xj j, x Xj j

� �

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
2 0; 1½ � Xj j3 :

In the above matrix the shorthand notation p xi
��xj, xk� �

¼ P Xτ ¼ xi
��Xτ�1 ¼

�
xj,Xτ�2

¼ xkÞ was used. Hence, we have the parameter triple

θ2 ¼ π0 P0 P½ �:

In this triple Xj j � 1ð Þ parameters of the initial distribution π0, Xj j Xj j � 1ð Þ,
parameters of the initial transition matrix P0 and Xj j2 Xj j � 1ð Þ of the general

transition matrix P are freely estimated parameters, because a legitimate probability
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distribution has to be formed. The ordered pair π0 P0½ � can be regarded as the

initial state of the chain. We denote the maximum likelihood estimate for the

parameterized model by bθ2,T . The corresponding objective function is:

bθ2,T ¼ arg maxθ2

YR
r¼1

P X0 ¼ xjr 0ð Þ θ2j
� �

P X1 ¼ xjr 1ð Þ
��X0 ¼ xjr 0ð Þ, θ2

� �
�
YT
τ¼2

P Xτ ¼ xjr τð Þ
��Xτ�1 ¼ xjr τ�1ð Þ,Xτ�2 ¼ xjr τ�2ð Þ, θ2

� �
¼ arg max π0;P0;Pð Þ

YR
r¼1

P X0 ¼ xjr 0ð Þ π0j
� �

P X1 ¼ xjr 1ð Þ
��X0 ¼ xjr 0ð Þ,P0

� �
�
YT
τ¼2

P Xτ ¼ xjr τð Þ
��Xτ�1 ¼ xjr τ�1ð Þ,Xτ�2 ¼ xjr τ�2ð Þ,P

� �
:

It is not difficult to prove that the solutions of the objective functions for Markov

chains of first and second order (as well as all higher orders) are equivalent to the

relative frequencies of observed subsequences of activity in the database DB
(Papoulis and Pillai 2002). In other words, the MLE results can be obtained by

simple frequency counting of data substrings of interest. Let the #-operator be a

unary counting operator that counts the number of times the data string (xj(o)xj(1) . . .)

in the argument occurred in DB ¼ xT1 ; . . . ; x
T
R

� �
. Then the MLE yields

bπ0 ¼
1

R

	 

� # x1ð Þτ¼0 . . . # x Xj j

� �
τ¼0

� �
bP ¼ 1

RT

	 

�

# x1x1ð Þ # x1x2ð Þ . . .
# x2x1ð Þ # x2x2ð Þ
⋮ ⋱

0@ 1A
for the first-order Markov chain and

bπ0 ¼
1

R

	 

� # x1ð Þτ¼0 . . . # x Xj j

� �
τ¼0

� �
bP0 ¼

1

R

	 

�

# x1x1ð Þτ¼0 # x1x2ð Þτ¼0 . . .
# x2x1ð Þτ¼0 # x2x2ð Þτ¼0

⋮ ⋱

0@ 1A

bP ¼ 1

R T � 1ð Þ

	 

�

# x1x1x1ð Þ # x2x1x1ð Þ � � � # x Xj jx1x1
� �

# x1x2x1ð Þ # x2x2x1ð Þ � � � # x Xj jx2x1
� �

⋮ ⋮ ⋮
# x1x Xj jx1
� �

# x2x Xj jx1
� �

# x Xj jx Xj jx1
� �

# x1x1x2ð Þ # x2x1x2ð Þ # x Xj jx1x2
� �

# x1x2x2ð Þ # x2x2x2ð Þ # x Xj jx2x2
� �

⋮ ⋮ ⋮
⋮ ⋮ ⋮

# x1x Xj jx Xj j
� �

# x2x Xj jx Xj j
� �

# x Xj jx Xj jx Xj j
� �

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
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for the second-order chain. To estimate the initial state probabilities bπ0 only the

observations # x1ð Þτ¼0 . . . # x Xj j
� �

τ¼0

� �
in the first time step τ ¼ 0 must be

counted. To calculate the initial transition matrix P0 of the Markov chain of second

order, only the data points in the first two time steps have to be considered, and we

therefore use # x:x:ð Þτ¼0 to indicate the number of all leading substrings of length

two. The estimate of the initial state distribution can be refined by using the data

from the cited work sampling study that was carried out prior to the longitudinal

observation of workflows.

The above solutions show that in a complex PD project that already manifests its

intrinsic complexity in a single project phase by a rich body of data sequences with

higher-order correlations, the data can usually be predicted much better with a

second-order Markov chain than with a first-order model. This is due to the simple

fact that the second-order chain has additional Xj j2 Xj j � 1ð Þ free parameters for

encoding specific activity patterns and therefore a larger memory capacity. By

inductive reasoning we can proceed with nesting Markov models of increasing

order n

P X0 ¼ xj 0ð Þ, . . . ,XT ¼ xj Tð Þ
� �

¼
P X0 ¼ xj 0ð Þ
� �

P X1 ¼ xj 1ð Þ
��X0 ¼ xj 0ð Þ

� �
. . .

P Xn�1 ¼ xj n�1ð Þ
��Xn�2 ¼ xj n�2ð Þ, . . . ,X0 ¼ xj 0ð Þ

� �
�
YT
τ¼n

P Xτ ¼ xj τð Þ
��Xτ�1 ¼ xj τ�1ð Þ, . . . ,Xτ�n ¼ xj τ�nð Þ

� �
ð203Þ

and capture more and more details of the workflows. Formally speaking, the n-
th order Markov model is the set of all n-th order Markov chains, i.e. all

statistical representations that are equipped with a starting state and satisfy the

above factorization of the joint probability. Given the order n of the chain, the

probability distribution of Xτ depends only on the n observations preceding τ.
However, beyond an order that is supported by the data, we begin to encounter

the problem of “not seeing the forest for the trees” and incrementally fitting the

model to random fluctuations that do not generalize to other datasets from the

same project phase.

In order to avoid this kind of overfitting, the maximum likelihood paradigm has

to be extended, because for an approximating model of interest, the likelihood

function only reflects the conformity of the model to the data. As the complexity of

the model is increased and more freely estimated parameters are included, the

model usually becomes more capable of adapting to specific characteristics of the

data. Therefore, selecting the parameterized model that maximizes the likelihood

often leads to choosing the most complex model in the approximating set.

Rissanen’s minimum description length (MDL) principle (1989) provides a natural

safeguard against overfitting by using the briefest encoding of not only the attribute

information related to the data sequences but also to the parameters of the approx-

imating models. In general, let θ be a parameter vector of model
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M nð Þ ¼ P X0 ¼ xj 0ð Þ, . . . ,XT ¼ xj Tð Þ
��θ� �

: θ 2 Θ � n
� �

whose support is a set  of adequate dimensionality and consider the class

M ¼
[N

n¼1
M nð Þ

consisting of all models represented by parametric probability distributions

P X0 ¼ xj 0ð Þ, . . . ,XT ¼ xj Tð Þ
��θ� �

from the first order up to order N (Rissanen

2012). Note that Rissanen (2012) also calls M(n) a model class that is defined by

the independent parameters. For the sake of simplicity and to remain consistent

with the previously used notation, we simply speak of an approximating model. The

sequence of discrete state variables X0, . . . ,XT
��θ� �

forms a one-dimensional

random process encoding a joint ensemble of histories that can be explained by

the structure and independent parameters of an approximating model within the

class M. By using a model with a specific structure and parameters, the joint

probability can usually be decomposed into predictive distributions whose condi-

tional part does not scale with the length of the sequence and therefore does not

need an exponentially growing number of freely estimated parameters. In the

following the number of parameters incorporated in the vector θ is the only variable
of interest that is related to a specific model representation within class M.

As previously shown, a model from class M with parameter vector θ assigns a

certain probability

pθ xT
� �

¼ P X0 ¼ xj 0ð Þ, . . . ,XT ¼ xj Tð Þ
��θ� �

ð204Þ

to a data sequence xj 0ð Þ; . . . ; xj Tð Þ
� �

of interest. If we take the definition of the

Shannon information content of an ensemble X

I x½ � :¼ log2
1

P X ¼ xð Þ; ð205Þ

then the likelihood function pθ xT
� �

can be transformed into an information-theory

loss function L

L θ; xT
� �

¼ I pθ xT
� �� �

¼ log2
1

P X0 ¼ xj 0ð Þ, . . . ,XT ¼ xj Tð Þ
��θ� �

¼ �log2P X0 ¼ xj 0ð Þ, . . . ,XT ¼ xj Tð Þ
��θ� �

: ð206Þ

According to Eq. 203 we can interpret L θ; xT
� �

in a predictive view as the loss

incurred when forecasting Xτ sequentially based on the conditional distributions

P Xτ ¼ xj τð Þ
��Xτ�1 ¼ xj τ�1ð Þ, . . . ,Xτ�n ¼ xj τ�nð Þ, θ

� �
. The loss is measured using a

logarithmic scale. In the predictive view MLE aims at minimizing the accumulated
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logarithmic loss. We denote the maximum likelihood estimate by the member bθT .
In the sense of information theory, minimizing the loss can also be thought of as

minimizing the encoded length of the data based on an adequate prefix code d(x).
Shannon’s famous source coding theorem (see e.g. Cover and Thomas 1991)

tells us that for an ensemble X there exists a prefix code d(x) with expected length

L[d(x),X] satisfying

�
X
xEX

P X ¼ xð Þ log2P X ¼ xð Þ � L d xð Þ,X½ �

< �
X
xEX

P X ¼ xð Þ log2P X ¼ xð Þ þ 1: ð207Þ

The term on the left of the inequality is the “information entropy” (see Eq. 210). It

measures in [bits] the amount of freedom of choice in the coding process. This

fundamental quantity will be explained in detail in the next chapter. A beautifully

simple algorithm for finding a prefix code with minimal expected length is the

Huffman coding algorithm (see e.g. Cover and Thomas 1991). In this algorithm the

two least probable data points in X are taken and assigned the longest codewords.

The longest codewords are of equal length and differ only in the last digit. In the

next step, these two symbols are combined into a new single symbol and the

procedure is repeated. Since each recursion reduces the size of the alphabet by

one, the algorithm will have assigned strings to all symbols after Xj j � 1 steps.

Following the predictive view, we can obtain an intuitive interpretation of the

logarithmic loss in terms of coding: the code length needed to encode the data

points xj 0ð Þ; . . . ; xj Tð Þ
� �

with prefix code d(x) based on the joint distribution P(.) is

simply the accumulated logarithmic loss incurred when the corresponding condi-

tional distributions P(. |.) are used to sequentially predict the τ-th outcome on the

basis of the previous τ � 1ð Þ observations (Grünwald 2007).

It is evident that this interpretation is incomplete; we have an encoded version of

the data, but we have still not said what the encoding scheme for the member bθT
is. Thus, the total description length DL must be divided into two parts,

DL xT ; θ;Θ
� �

¼ L θ; xT
� �

þ D θ;Θ½ �;

where D[θ,Θ] denotes the code length in terms of the number of bits needed to

specify the member within classM. The two parts of description length are usually

obtained in a sequential two-stage encoding process (see Hansen and Yu 2001). In

the first stage, the description length D bθT ;Θh i
for the best-fitting member bθT is

calculated. The bθT ’s maximizing the goodness-of-fit can be obtained both by MLE

and Bayesian estimation. In the second stage, the description length of data LbθT ; xTh i
is determined on the basis of the parameterized probability mass function

pθ̂ T
xT
� �

.
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Clearly, the model related to D[θ,Θ] represents the part of the description that

can be generalized, whileL θ; xT
� �

includes the noisy part that does not generalize to

other datasets. If D[θ,Θ] assigns short code words to simple models, we have the

desired tradeoff: we can reduce the part of the data that looks like noise only by

using a more elaborate approximating model. Such an assignment provides an

effective safeguard against overfitting. The minimum description length (MDL)

principle supplied by Rissanen (1989, 2007) allow us to select the model that

minimizes the total description length:

θMDL :¼ arg minθDL xT ; θ;Θ
� �

:

The only requirement for the code length of the optimizing parametersD bθT ;Θh i
of

this general MDL principle is that they be decodable (Rissanen 2012). The defini-

tion of a prior probability as in Bayesian estimation is therefore not required.

Minimizing the total description length is apparently a consistent principle in

connection with maximum likelihood estimation, because if we want to maximize

the joint probability DL xT ; θ;Θ
� �

we need to calculate the probability of the

coincidence of the observed data and the different approximating models and

choose the maximizing model. It is important to point out that in MDL, one

is never concerned with actual encodings but only with code length functions,

e.g. L[d(x),X] for an ensemble X encoded by a prefix code d(x) (Grünwald 2007).

The stochastic complexity CSC of the joint ensembleXT with reference to the model

class M is simply the MDL:

CSC xT ;Θ
� �

:¼ minθ DL xT ; θ;Θ
� �

: ð208Þ

Under mild conditions for the underlying data-generating process in the model

class, as we provide more data, θMDL will converge to the model that minimizes the

generalization error.

Returning to our previous example of workflow modeling with Markov chains,

we can follow the considerations of Hansen and Yu (2001) and, for didactic

purposes, construct a simple but reasonable two-part code for the n-th order Markov

chain M(n) within the class M of finite-order Markov chains up to order N. The
parameter vector of the n-th order Markov chain is denoted by θn 2 Θn. Firstly, the

order has to be described. We can start with a straightforward, explicit description

for n that is based on a binary prefix code with dlog2ne zeros followed by a one. The
encoding of n can be done by using a simple uniform code for 1; . . . ; 2 log2nd e� �

.

Therefore, we need approximately2 log2nd e þ 1bits to describe the model order. By

applying Huffman’s algorithm here, we can also obtain a more efficient uniform

code with a length function that is not greater than b log2nc for all values of

{1, 2, . . ., n} but is equal to b log2nc for at least two values in this set. The function

b.c provides the integer part of the argument. Whereas we know from Shannon’s
source coding theorem (Eq. 207) that an expected length of such a code is optimal
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only for a true uniform distribution of the order of the model, this code is a

reasonable choice when little is known about how the data was generated. Sec-

ondly, the Σn
i¼0 Xj ji Xj j � 1ð Þ ¼ Xj jnþ1

best-fitting free parameters bθ n,T have to be

described. We start by discretizing the range [0; 1] of a single ensemble into equal

cells of size δ and then apply Huffman’s algorithm. If we discretize the Cartesian

productΘn ¼ 0; 1½ � Xj jnþ1

associated with the joint ensemble XT in the same fashion,

the quantity �log2 p 0; 1½ � Xj jnþ1
� �

� δ Xj jnþ1
� �

¼ �log2 p 0; 1½ � Xj jnþ1
� �

� Xj jnþ1
log2δ

can be viewed as the code length of a prefix code for bθn,T (Hansen and Yu 2001).

Here, the probability density p can be regarded as an auxiliary density. It is used

instead of the unknown true parameter-generating density f. Assuming a continuous

uniform distribution with density p xð Þ ¼ 1 for x 2 0; 1½ � Xj jnþ1

(and q xð Þ ¼ 0

otherwise), an additional Xj jnþ1
log2δ bits are needed to describe the free parame-

ters. In a compact parameter space, we can refine the description and choose for the

precision δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= T þ 1ð Þ

p
for each effective dimension. Rissanen (1989) showed

that this choice of precision is optimal in regular parametric families. The intuitive

explanation is that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= T þ 1ð Þ

p
represents the magnitude of the estimation error inbθn,T and therefore there is no need to encode the estimator with greater precision

(Hansen and Yu 2001). When the uniform encoder is used, one needs a total of

Xj jnþ1=2
� �

log2 T þ 1ð Þ bits to communicate an estimated parameter bθn,T of

dimension Xj jnþ1
. Putting both partial descriptions together leads to

D θn;Θn½ � ¼ log2nþ
Xj jnþ1

2
log2 T þ 1ð Þ:

Interestingly, the formalized total description length of the n-th order Markov chain

is similar to the Schwarz-Bayes Criterion (BIC) for the VAR(n) (Eq. 71) and LDS

(Eq. 189) models of cooperative work in the sense that model complexity is

penalized with a factor that increases linearly in the number of free parameters

and logarithmically in the number of observations in the joint ensemble. This is a

clear and unambiguous indication that there are deep theoretical connections

between different approaches to model selection. The predictive view of Markovian

models provides us with a refined interpretation of model selection based on the

MDL principle: given two approximating modelsM(1) andM(2), we should prefer

the model that minimizes the accumulated prediction error resulting from a sequen-

tial prediction of future outcomes given all past histories (Grünwald 2007).

Regarded as a principle of model selection, MDL has proven very successful in

many areas of application (see e.g. Grünwald 2007; Rissanen 2007). Nevertheless, a

part of this success comes from carefully tuning the model-coding term D[θ,Θ] in
such a manner that those models that do not generalize well turn out to have long

encodings. Though not illegitimate, this approach relies on the intuition and

knowledge of the human model builder. Motivated in part by this kind of theoretical
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incompleteness, Rissanen (2012) refined the above general MDL principle in his

latest textbook on optimal estimation of parameters, formulating a “complete MDL

principle.” The complete MDL principle differs from the previously formulated

principle in the requirement that the code length for the parameters defining the

model M(k) is the negative logarithm of the probability defined by the joint

distribution

p̂k xT
� �

¼
pθ̂ xTð Þ xT

� �
Ĉ k

;

where Ĉk is a normalizing coefficient. bθ xT
� �

represents the ML estimator and

k denotes the number of parameters incorporated in the parameter vector θ
(Rissanen 2012). The requirement for the code length can also be generalized to

the case where even the number of parameters is estimated, see Rissanen (2012).

Since p̂k xT
� �

is determined by the model M(k), its code length is common for all

data sequences. The code of p̂ k xT
� �

for fixed k is complete. The logarithm of the

normalizing coefficient is given by the maximum capacity for the model M(k)

within class M:

log2Ĉ k ¼ log2

ð
Θ

X
xT :θ̂ xTð Þ¼θ

pθ̂ xTð Þ xT
� �

dθ > 0:

The range Θ of the integration is selected to make the integral finite. Rissanen

(2012) also calls the term log2Ĉk, representing the maximum capacity for model

M(k), the maximum estimation information, and interprets it as a measure of the

maximum amount of information an estimator can obtain about the corresponding

distribution. The estimator maximizing the estimation information agrees with the

standard ML estimator. The model related to p̂ k xT
� �

was introduced earlier by

Shtarkov (1987) as a universal information-theoretic model for data compression.

In spite of these recent refinements, the complete MDL principle has limitations

in terms of selecting an adequate family of model classes. An additional shortcom-

ing is non-optimality if the model class cannot be well defined (Rissanen 2007,

2012). Whatever its merits as a model selection method, stochastic complexity is

not a good metric of emergent complexity in open organizational systems for three

reasons (sensu Shalizi 2006). (1) The dependence on the model-encoding scheme is

very difficult to formulate in a valid form for project-based organizations. (2) The

log-likelihood term, L θ; xT
� �

, can be decomposed into additional parts, one of

which is related to the entropy rate of the information-generating work processes

(hμ, Eq. 223) and which therefore reflects their intrinsic unpredictability, not their

complexity. Other parts indicate the degree to which even the most accurate model

in M is misspecified, for instance, through an improper choice of the coordinate

system. Thus, it largely reflects our unconscious incompetence as modelers, rather

than a fundamental characteristic of the process. (3) The stochastic complexity
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reflects the need to specify some particular organizational model and to formally

represent this specification. This is necessarily part of the process of model devel-

opment but seems to have no significance from a theoretical point of view. For

instance, a sociotechnical system being studied does not need to represent its

organization; it simply has it (Shalizi 2006).

3.2.3 Effective Complexity

Effective complexity (EC) was developed by Seth Lloyd and the Nobel laureate

Murray Gell-Mann. The fact that random strings without any purposeful informa-

tional structure display maximal Kolmogorov�Chaitin complexity (see Section

3.2.1) was one of the main reasons for Gell-Mann and Lloyd’s criticism of the

algorithmic complexity concept from Section 3.2.1 and for their attempt to define

effective complexity as a more intuitive measure for scientific discourse. The

concept of EC and its mathematical treatment were the subject of a series of papers

that gained a great deal of attention in the scientific community (Gell-Mann 1995;

Gell-Mann and Lloyd 1996, 2004). As with previous approaches for evaluating the

complexity of an entity with inherent regularities in terms of its structure and

behavior, it is assumed that its complexity is manifested to an observer in the

form of a data string x, typically encoded in binary form. However, Gell-Mann and

Lloyd do not consider the minimum description length of the string itself, which is

what Wallace and Boulton (1968) and Rissanen (1989, 2007) did to evaluate

stochastic complexity. Instead, they consider the joint ensemble  in which the

string is embedded as a typical member (Ladyman et al. 2013). “Typicality” is

defined using the theory of types (see e.g. Cover and Thomas 1991), which means

that the negative binary logarithm of the joint probability distribution of  x½ � on
x1; . . . ; xmf gT is approximately equal to the information entropy H ½ � (see below

and next chapter). To evaluate the minimum description length of the ensemble ,
the (prefix) Kolmogorov�Chaitin complexity from Eq. 200 is used. This approach

assumes that one can find a meaningful way to estimate what the ensemble is. The

resulting informal definition of the EC[x] of an entity is the Kolmogorov�Chaitin

complexity of the ensemble , in which the string x manifesting the object’s
complexity to an observer is embedded as a δ-typical member. Instead of

Kolmogorov�Chaitin complexity, Gell-Mann and Lloyd use the equivalent term

“algorithmic information content” (Gell-Mann and Lloyd 1996, 2004). The main

idea of EC is therefore to split the algorithmic information content of the string

x into two parts, where the first contains all regularities and the second contains all

random features. The EC of x is defined as the algorithmic information content of

the regularities alone (Ay et al. 2010). In contrast to previous approaches, the EC is

therefore not a metric for evaluating the difficulty of describing all the attribute

information of an entity, but rather the degree of organization (Ladyman

et al. 2013). By degree of organization, we mean the internal structural and
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behavioral regularities that can be identified by using ensembles as models of the

string. Following this concept of ensemble-based complexity measurement, in

order to compute the ensemble  a computer program on a universal computer

U takes as input the target string x and a precision parameter n and simply outputs

 x½ � to precision n. This approach can resolve the paradox from Section 3.2.1,

whereby random strings without any internal structure display high Kolmogor-

ov�Chaitin complexity because no underlying regularities or rules exist that could

allow a shorter description. The ideal ensemble for modeling a random string is a

joint ensemble with a uniform distribution of the probability mass that assigns equal

probability to every string x0 of length |x|, and it holds that (Foley and Oliver 2011):

U
x x0½ � ¼ 2� xj j:

The Kolmogorov�Chaitin complexity of this ensemble is apparently very low,

because the computer program used to calculate it on U simply calculates 2� xj j to
precision n when confronted with input x0. The EC of a random string is thus low,

although it is incompressible and the Kolmogorov�Chaitin complexity is maximal

for its length |x| (Foley and Oliver 2011).

Ay et al. (2010) introduced a more formal approach to defining EC and proving

some of its basic properties. In the following, we summarize their main definitions

and interpretations. First, we have to define the Kolmogorov�Chaitin complexity

KU ½ � of a joint ensemble . As previously stated, a program to compute the

ensemble  on a universal prefix computer U expects two inputs: the target string

x and a precision parameter nEℕ. It outputs the binary digits of the approximationU
x

of x½ �with an accuracy of at least2�n. The Kolmogorov�Chaitin complexityKU ½ �
of is then the length of the shortest program for the universal prefix computerU that

computeson the basis of the approximationU
x (Ay et al. 2010). Unfortunately, not

every ensemble is computable, as there is a continuum of string ensembles but only a

finite number of algorithms computing ensembles. Another subtlety is that the

information entropy H ½ � ¼ ΣxEXT  xð Þlog2 xð Þ (cf. Eq. 210) as a measure of the

“ignorance” of the probability distribution of a computable ensemble xð Þ for string
x does not necessarily need to be computable. All that is known is that it can be

enumerated from “below.” Thus, it must be assumed in the following that all

ensembles are computable and have computable and finite entropy. Even when we

restrict the analysis to the set of ensembles that are computable and have computable

and finite entropy, the map �H ½ � is not necessarily a computable function.

Hence, the approximate equality KU ,H ½ �½ �þ¼ KU ½ � is not necessarily uniformly

true in  (the operator þ¼ denotes an equality to within a constant). Therefore, the

definition of KU ð Þ has to be refined (Ay et al. 2010):

KU ½ � :¼ KU ,H ½ �½ �:

We therefore assume that the programs on the universal prefix computer

U computing  when confronted with input x carry an additional subroutine
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to compute the information entropy H ½ �. The Kolmogorov�Chaitin complexity

KU ½ � is integer-valued. Second, we have to define the “total information” Σ ½ � of
an ensemble  (Gell-Mann and Lloyd 1996, 2004). To explain the role of the total

information within the theory, Gell-Mann and Lloyd (2004) consider a typical

situation in which a theoretical scientist is trying to construct a theory to explain

a large body of data. The theory is represented by a probability distribution over a

set of bodies of data. One body consists of the real data, while the rest of the bodies

are imagined. In this setting, the Kolmogorov�Chaitin complexity KU ½ � corre-
sponds to the complexity of the theory, and the information entropy H ½ �measures

the extent to which the predictions of the theory are distributed widely over

different possible bodies of data. Ideally, the theorist would like both quantities

to be small: the Kolmogorov�Chaitin complexity KU ½ � so as to make the theory

simple, and the information entropyH ½ � so as to make it focus narrowly on the real

data points. However, there can be a trade-off. By adding more details to the theory

and more arbitrary parameters, the theoretical scientist might be able to focus on the

real data, but only at the expense of complicating the theory. Similarly, by allowing

appreciable probabilities for many possible bodies of data, the scientist might be

able to develop a simple theory. In any case, it makes good sense to minimize the

sum of the two quantities that is defined as the total information Σ ½ �:

Σ ½ � :¼ KU ½ � þ H ½ �:

This allows the scientist to deal with the possible trade-off: a good estimate of

the ensemble that generated the string x should not only have a small

Kolmogorov�Chaitin complexity and therefore provide a simple explanation in

the language of U; it should also have a small information entropy, as the explana-

tion should have a low level of arbitrariness and prefer outcomes that include the

string x. The total information is a real number larger than or equal to one. Third, we

have to explain what is meant by an ensemble in which the string is embedded as a

typical member. As previously stated, typicality is defined according to the theory

of types (see, e.g. Cover and Thomas 1991). To briefly explain the concept of

typicality, suppose that we toss a biased coin with probability p that it lands on

heads and q ¼ 1� p that it lands on tails n times. We call the resulting probability

distribution the ensemble 0. It is well known from theoretical and empirical

considerations that typical outcomes x have a probability 0 x½ � that is close to

2�nH (Cover and Thomas 1991). In this case the information entropy is defined as

H :¼ � p log2 p� q log2q. We can prove that the probability that0 x½ � lies between
2�n Hþεð Þ and 2�n H�εð Þ for ε > 0 tends to one as the number of tosses n grows. This

property is a simple consequence of the weak law of large numbers and is the

subject of the “asymptotic equipartition theorem” (Cover and Thomas 1991).

Generalizing this property, we consider a string x as typical for a joint ensemble

 if its probability is not much smaller than 2�nH ½ �. We say x is δ–typical for  for

some small constant δ � 0 if

184 3 Evaluation of Complexity in Product Development



 x½ � � 2�H ½ � 1þδð Þ:

Fourth, we have to define how small the total information Σ ½ � should be for an

ensemble  that explains the string x well but is not unnecessarily complex in the

language of U. This lemma by Ay et al. (2010) shows that the total information

should not be too small: it uniformly holds for xEX * and δ � 0 that

KU xð Þ
1þ δ

<þInf Σ ½ � : x is typical for f g<þKU xð Þ:

The symbol <þ denotes an inequality to within a constant. KU(x) is the (algorith-
mic) Kolmogorov�Chaitin complexity of x according to Eq. 200. The function

Inf{.} denotes the infimum of the generated set of total information values. Put

simply, the lemma tells us that the total information Σ ½ � should not be much larger

than the Kolmogorov�Chaitin complexity of the string of interest. Fifth, the

ultimate question is, of all the “good” ensembles according to the previously

defined criteria, which ensemble  is the best for evaluating an entity’s degree of

organization? In their simple yet convincing answer, Gell-Mann and Lloyd (1996,

2004) claim it is the ensemble with minimum Kolmogorov�Chaitin complexity.

The exact definition (Ay et al. 2010) is that, given small constants δ � 0 andΔ � 0,

the effective complexity EC[x] of any string xEX * is defined as:

EC x½ � :¼ Inf K ½ � : x is typical for  and Σ ½ � � K xð Þ þ Δf g; ð209Þ

or as 1 if this set is the empty set. The right-hand side of the above definition

defines the minimization domain of the string x for effective complexity. Ensem-

bles  of the minimization domain of xEX* satisfy

KU xð Þ
1þ δ

<þΣ ½ � � K xð Þ þ Δ:

As Gell-Mann and Lloyd (2004) point out, it is often necessary to extend this

definition of effective complexity by imposing additional constraints on the ensem-

bles allowed in the minimization domain. These additional constraints can refer to

certain properties of the string x that are judged important from the standpoint of a

general scientific theory, or they can involve additional information about the

processes that generated x (Ay et al. 2010). Ay et al. (2010) prove several properties
of EC[x], such as its finiteness, and they show that incompressible strings are

effectively simple, which is desirable given the criticism of the algorithmic com-

plexity concept from Section 3.2.1. They also show that strings exist that have

effective complexity close to their length |x|. Finally, one can show that EC[x] is
related to Bennett’s logical depth (1988, see Section 3.2.1). If the effective com-

plexity of a string x exceeds a certain threshold, then the string must have an

extremely large depth (Ay et al. 2010).
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Moreover, Duncan Foley recently presented an interesting re-phrased formalism

based on Bayesian inference. The Bayesian formulation allows us to interpret

effective complexity in terms of the minimum description length principle of

Wallace and Boulton (1968) and Rissanen (1989, 2007) as a two-part code (see

notes on facticity and effective complexity by Foley and Oliver, 2011). To apply the

method of Bayesian inference, Foley regards the problem of assigning probabilities

to joint ensembles  as hypotheses, and the target string x as data. In this case,

Bayes’ theorem can be written as

P 
��x� �

¼ P ð Þ
P x
��� �

P xð Þ ;

where P ð Þ is the prior probability assigned to the joint ensemble , P x
��� �

is the

probability of the data given the ensemble (“likelihood”), and P(x) is a normalizing

constant. P 
��x� �

is the posterior probability of the joint ensemble given the data

string x. Given the prior probability distribution P ð Þ ¼ 2�KU ½ �, the posterior

distribution will be

P 
��x� �

/ 2�KU ½ �P x
��� �

/ 2�KU ½ �E x½ �:

The term E[x] denotes the expected value of the corresponding discrete sequence.

When we take the logarithm to base 2 to express information content in bits, we

have

log2P 
��x� �

/ �KU ½ � þ log2E x½ �:

From Shannon’s source coding theorem (Eq. 207), we know that the quantity

�log2E x½ � is the prefix code d(x) with expected length L[d(x),X] assigned to the

data string x as a message to minimize average code length when the probabil-

ities of messages are given by the joint ensemble . The negative logarithm of

the posterior probability of a joint ensemble can therefore be regarded as the

sum of the number of bits required to encode the ensemble as a program on

U and as the length of code required to identify the string x given the

distribution corresponding to . The logarithm of the posterior probability can

also be interpreted in terms of the minimum description length principle from

Sect 3.2.2 as the negative of the length of the two-part code transmitting the

string x given the joint ensemble  as a generative model. Hence, we have the

intuitive definition (Foley and Oliver 2011):

EC½x� :¼ KU
bx ¼ arg min KU ½ � � log2E x½ �f g
h i

:

It is important to note that this direct definition is a limited concept of effective

complexity, as the information entropy H ½ � of the ensemble is not evaluated.
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In spite of its convincing concept and its conformity with the aforementioned

expectations for a consistent complexity measure, in the following we will not

consider the effective complexity in evaluating the emergent complexity of PD

projects, as it is not computable. As Gell-Mann says: “There can exist no procedure

for finding the set of all regularities of an entity” (Gell-Mann 1995, p. 2). This

severe practical limitation leaves us with information-theoretic quantities based on

dynamic entropies of joint ensembles that possess many (though not all) of the

theoretically desired properties and can be efficiently and robustly estimated from

data in a product development environment. These quantities will be discussed in

the next chapter.

3.2.4 Effective Measure Complexity and Forecasting
Complexity

Motivated in part by the theoretical weaknesses of the concept of stochastic

complexity that were cited in Section 3.2.2 and by the uncomputability of algorith-

mic measures, the German physicist Peter Grassberger (1986) developed a simple

but highly satisfactory complexity theory. He posits that complexity is the amount

of information required for optimal prediction. We will begin by analyzing why this

concept is plausible, and then go on to look at how to develop measuring concepts

and make them fully operational. In general, there is a limit to the accuracy of any

prediction of a given sociotechnical system set by the characteristics of the system

itself, e.g. the free will of the decision makers, spontaneous human error, limited

precision of measurement, sensitive dependence on initial conditions, etc. Suppose

we have a model that is maximally predictive, i.e. its predictions are at the

theoretical limit of accuracy. Prediction is always a matter of mapping inputs to

outputs. In our application context, the inputs are the encoded observations of single

instances of task processing (encoding, for instance, the labor units required to

finalize a specific component, open design issues that need to be addressed before

design release, etc.) and the outputs are the expectations about the work remaining,

as well as macroscopic key performance indicators such as the finishing time of the

project phase. However, usually not all aspects of the entire past are relevant for

making good predictions. In fact, if the task processing is strictly periodic with a

predefined cycle time, one only needs to know which of the φ phases the work

process is in. For a completely randomized work process with independent and

identically distributed (iid) state variables, the past is completely irrelevant for

predicting the future. Because of this “memorylessness,” the clever, evidence-based

estimates of an experienced project manager on average do not outperform naı̈ve

guesses of the outcome based on means. If we ask how much information about the

past is relevant in these two extreme cases, the correct answers are log2(φ) and
0, respectively. It is intuitive that these cases are of low complexity, and more

informative dynamics “somewhere in between” must be assigned high complexity
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values. In terms of Shannon’s famous information entropyH :½ � the “randomness” of

the output either is simply a constant (low-period deterministic process with small

algorithmic complexity) or grows precisely linearly with the length (completely

randomized process with large algorithmic complexity). Hence, it can be concluded

that both cases share the feature that corrections to the asymptotic behavior do not

grow with the size of the dataset (Prokopenko et al. 2009). Grassberger considered

the slow approach of the entropy to its extensive limit as an indicator of complexity.

In other words, the subextensive components growing less rapidly with time than a

linear function are of special interest for complexity evaluation.

When dealing with a Markovian model, such as the VAR model of cooperative

task processing formulated in Section 2.2, only the present state of work remaining

is relevant for predicting the future (see Eq. 8), so the amount of information needed

for optimal prediction is simply equal to the amount of information needed to

specify the current state. More formally, any predictor g will translate the

one-dimensional infinite past X�1
�1 ¼ X�1;X�1þ1; . . . ;X�1ð Þ into an effective

state S ¼ g X�1
�1

� �
and then make its prediction on the basis of S. This is true

whether or not g �½ � is formally a state-space model as we have formulated. The

amount of information required to specify the effective state in the case of discrete-

type random variables (or discretized continuous-type random variables) can be

expressed by Shannon’s information entropy H[S] (Cover and Thomas 1991). We

will return to this point later in the chapter and take H[S] to be the statistical

complexity CGCY of g �½ � under the assumption of a minimal maximally predictive

model of the stationary stochastic process {Xt} (t 2 ℤ, see Eq. 228).
Shannon’s information entropy represents the average information content of an

outcome. Formally, it is defined for a discrete-type random variable X with values

in the alphabet X and probability distribution P :ð Þ as

H X½ � :¼ �
X
xEX

P X ¼ xð Þlog2P X ¼ xð Þ: ð210Þ

The information entropy H :½ � is non-negative and measures in [bits] the amount of

freedom of choice in the associated decision process or, in other words, the degree

of randomness. If we focus on the set M of maximally predictive models, we can

define what Grassberger called “the true measure complexity Cμ of the process” as

the minimal amount of information needed for optimal prediction:

Cμ :¼ min
g2M

H g X�1
�1

� �� �
: ð211Þ

The true measure complexity is also termed “forecasting complexity” (Zambella

and Grassberger 1988), because it is defined on the basis of maximally predictive

models requiring the least average information content of the memory variable. We

will use the term “forecasting complexity” in the following, as it is well-established

and more intuitive. Unfortunately, Grassberger provided no procedure for finding

the maximally predictive models or for minimizing the information content. How-

ever, he did draw the following conclusion. A basic result of information theory,
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called “the data-processing inequality” (Cover and Thomas 1991), states that for

any pair of random variables X and Y (or pair of sequences of random variables) the

mutual information I[.;.] follows the rule

I X; Y½ � � I g X½ �; Y½ �:

It is therefore impossible to extract more information from observations by

processing than was in the sample to begin with. Since the state S of the predictor

is a function of the past, it follows that

I X�1
�1;X1

0

� �
� I g X�1

�1
� �

;X1
0

� �
;

whereX1
0 ¼ X0;X1; . . . ;X1ð Þ represents the infinite future of the stochastic process

including the “present” that is encoded in the observation X0.

The mutual information I[.;.] is another key quantity of information theory

(Cover and Thomas 1991). It can be equivalently expressed on the basis of the

joint P(.,.) and marginal probability mass functions P(.) as

I X; Y½ � :¼
X
xEX

X
yEY

P X ¼ x,Y ¼ yð Þlog2
P X ¼ x,Y ¼ yð Þ
P X ¼ xð ÞP Y ¼ yð Þ ð212Þ

or in terms of the information entropy H[.] as

I X; Y½ � ¼ H X½ � � H X
��Y� �

¼ H Y½ � � H Y
��X� �

¼ H X½ � þ H Y½ � � H X; Y½ �
¼ H X; Y½ � � H X

��Y� �
� H Y

��X� �
:

In the above equations, with the conditional entropy (also called equivocation,

Cover and Thomas 1991) we have used another important information-theoretic

quantity which measures the amount of information for the random variable X given

the value of another random variable Y. It can be explicitly written as

H X
��Y� �

¼ H X; Y½ � � H Y½ �: ð213Þ

The mutual information I[.;.] is non-negative and measures the amount of informa-

tion that can be obtained about one random variable by observing another. It is

symmetric in terms of these variables. System designers often maximize the amount

of information I[A;B] shared by transmitted and received signals by choosing the

best transmission technique. Channel coding guarantees that reliable communica-

tion is possible over noisy communication channels, if the rate of information

transmission is below a certain threshold that is termed “the channel capacity,”

defined as the maximum mutual information for the channel over all possible

3.2 Approaches from Basic Scientific Research 189



probability distributions of the signal (see Cover and Thomas 1991). According to

Polani et al. (2006) mutual information should not be regarded as something that is

transported from a transmitter to a receiver as a “bulk” quantity. Instead, the mutual

information makes it possible to evaluate the intrinsic dynamics that can provide

deeper insights into the inner structure of information; maximization of information

transfer through selected channels appears to be one of the main evolutionary

processes (Bialek et al. 2001; Polani et al. 2006).

In a similar manner, the conditional mutual information I[X; Y|Z] (Cover and
Thomas 1991) can be defined on the basis of the joint P(.,.), marginal P(.) and
conditional P(. |.) probability mass functions as

I X;YjZ½ �:¼
X
zEZ

P Z¼ zð Þ
X
xEX

X
yEY

P X¼ x,Y¼ yjZ¼ zð Þlog2
P X¼ x,Y¼ yjZ¼ zð Þ

P X¼ xjZ¼ zð ÞP Y¼ yjZ¼ zð Þ :

ð214Þ

The conditional mutual information can be interpreted in its most basic form as the

expected value of the mutual information of two random variables given the value

of a third one. Alternatively, we can write

I X; YjZ½ � ¼ H X
��Z� �

þ H Y
��Z� �

� H X,Y
��Z� �

: ð215Þ

Presumably, for optimal predictors, the amounts of information I X�1
�1;X1

0

� �
and

I g X�1
�1

� �
;X1

0

� �
are equal and the predictor’s state is just as informative as the

original data. This is the case for so-called “ε-machines,” which are analyzed

below. Otherwise, the model would be missing potential predictive power. Another

basic inequality is that H X½ � � I X; Y½ �, i.e. no variable contains more information

about another than it does about itself (Cover and Thomas 1991). Even for the

maximally predictive models it therefore holds that H X�1
�1

� �
� I X�1

�1;X1
0

� �
.

Grassberger called the latter quantity I X�1
�1;X1

0

� �
— the mutual information

between the infinite past and future histories of a stochastic process—the effective

measure complexity (EMC):

EMC :¼ I X�1
�1;X1

0

� �
: ð216Þ

Recall that EMC is defined with reference to infinite sequences of random variables

and is therefore only valid for stationary stochastic processes. The same is true for

the forecasting complexity. For the sequence . . . ;X�1;X0;X1; . . .ð Þ stationarity

implies that the joint probability distribution P(., . . .,.) associated with any finite

block of n variables Xn :¼ Xtþn
tþ1 ¼ Xtþ1; . . . ;Xtþnð Þ is independent of t and only

depends on the block length n. The independency of the joint probability distribu-

tion of t can limit the evaluation of PD projects in industry, as the dynamical

dependencies between process and product can significantly change over time.

In this case an alternative complexity measure—known as the “binding
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information”—developed by Abdallah and Plumbley (2012) should be taken into

consideration, as it can be used to evaluate non-stationary processes of different

kinds.

If optimal predictions of the stationary stochastic process are influenced by

events in the arbitrarily distant past, the mutual information diverges and the

measure EMC tends to infinity (see discussion of predictive information Ipred
below).

Shalizi and Crutchfield (2001) proved that the forecasting complexity gives an

upper bound of the EMC:

EMC � Cμ: ð217Þ

In terms of a communication channel, EMC is the effective information transmis-

sion rate of the process. The units are bits. Cμ is the memory stored in that channel.

Hence, the inequality above means that the memory needed to carry out an optimal

prediction of the future cannot be less than the information that is transmitted from

the past X�1
�1 to the future X1

0 (by storing it in the present). However, the

specification of how the memory has to be designed and managed cannot be derived

on the basis of information-theory considerations. Instead, a constructive and more

structural approach based on a theory of computation must be developed. A highly

satisfactory theory based on “causal states” was developed by Crutchfield and

Feldman (2003). These causal states lead to the cited ε-machines, as well as the

Grassberger–Crutchfield–Young statistical complexity CGCY, which will be

presented later in this chapter.

EMC can be estimated purely from historical data, without use of a generative

stochastic model of cooperative work. If the data is generated by a model in a

specific class but with unknown parameter values, we can derive closed-form

solutions for EMC, as will be shown in Sections 4.1.1, 4.1.2 and 4.1.3 for a VAR

(1) model (cf. Eq. 262). The mutual information between the infinite past and future

histories of a stochastic process has been considered in many contexts. It is termed,

for example, excess entropy E (Crutchfield and Feldman 2003; Ellison et al. 2009;

Crutchfield et al. 2010), predictive information Ipred n ! 1ð Þ (Bialek et al. 2001,

see below), stored information (Shaw 1984), past-future information Ip� f (Li and

Xie 1996, see Section 5.1) or simply complexity (Arnold 1996; Li 1991). Rissanen

(1996, 2007) also refers to the part of stochastic complexity required for coding

model parameters as model complexity. Hence, there should be a close connection

between Rissanen’s ideas of encoding a data stream based on generative models

and Grassberger’s ideas of extracting the amount of information required for

optimal prediction. In fact, if the data allows a description by a model with a finite

number of independent parameters, then mutual information between the data and

the parameters is of interest, and this is also the predictive information about all of

the future (Bialek et al. 2001). Rissanen’s approach was further strengthened by a

result put forward by Vitányi and Li (2000) showing that an estimation of param-

eters using the MDL principle is equivalent to Bayesian parameter estimations with

3.2 Approaches from Basic Scientific Research 191

http://dx.doi.org/10.1007/978-3-319-21717-8_4
http://dx.doi.org/10.1007/978-3-319-21717-8_4
http://dx.doi.org/10.1007/978-3-319-21717-8_4
http://dx.doi.org/10.1007/978-3-319-21717-8_4
http://dx.doi.org/10.1007/978-3-319-21717-8_5


a “universal” prior (Li and Vitányi 1997). Since the mutual information between the

infinite past and future histories can quantify the statistical dependency structures of

cooperative work processes, it will be used in the following to evaluate the

emergent complexity in PD projects.

In addition to Cμ and EMC, another key invariant of stochastic processes that

was discovered much earlier is Shannon’s source entropy rate (Cover and Thomas

1991):

hμ :¼ lim
η!1

H Xn¼η½ �
η

: ð218Þ

This limit exists for all stationary processes. The source entropy rate is the intrinsic

randomness that cannot be reduced, even after considering statistics over longer and

longer blocks of generating variables. The unit of hμ is bits/symbol. It is also known

as per-symbol entropy, thermodynamic entropy density, Kolmogorov–Sinai

entropy or metric entropy. The source entropy rate is zero for periodic processes.

Surprisingly, it is also zero for deterministic processes with infinite memory. The

source entropy rate is larger than zero for irreducibly unpredictable processes like

the cited iid process or Markov processes. The capacity of a communication

channel must be larger than hμ for error-free data transmission (Cover and Thomas

1991). Interestingly, the source entropy rate is related to the algorithmic complexity

(Section 3.1): hμ is equal to the average length (per variable) of the minimal

program with respect to U that, when run, will cause the Universal Turing Machine

to produce a typical configuration and then halt (Cover and Thomas 1991). In the

above definition the variable H[Xn] is the joint information entropy of length-n
blocks Xtþ1; . . . ;Xtþnð Þ. This entropy is not the entropy of a finite string xn with
length n; rather, it is the entropy of sequences with length n drawn from mainly

much longer or infinite output generated by the process in the steady state. The

variable n is the nonnegative order parameter and can be interpreted as an

expanding observation window of length n over the output. In the following, we

will use the shorthand notation H(n) to represent this kind of entropy, which is also

termed Shannon block entropy (Grassberger 1986; Bialek et al. 2001). For discrete-

type random variables the block entropy is defined as

H nð Þ :¼ H Xn½ �
¼ H Xtþ1; . . . ;Xtþn½ �
¼�

X
X

. . .
X
X

P Xtþ1 ¼ xj tþ1ð Þ, . . . ,Xtþn ¼ xj tþnð Þ
� �

� log2P Xtþ1 ¼ xj tþ1ð Þ, . . . ,Xtþn ¼ xj tþnð Þ
� � ð219Þ

with

H 0ð Þ :¼ 0: ð220Þ

The sums in Eq. 219 run over all possible blocks of length n. The corresponding

definition for continuous-type variables will be given in Eq. 233. Interestingly, the
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length-n approximation hμ(n) of the entropy rate hμ can be defined as the two-point

slope of the block entropy H(n):

hμ nð Þ :¼ H nð Þ � H n� 1ð Þ; ð221Þ

with

hμ 0ð Þ :¼ log2 Xj j: ð222Þ

Vice versa, hμ(n) is the discrete derivative of the block entropy with respect to the

block length n. In this sense, the length-n approximation is a dynamic entropy

representing the entropy gain (Crutchfield and Feldman 2003). It can be seen that

the entropy gain can also be expressed as conditional entropy

hμ nð Þ :¼ H Xn

��Xn�1
� �

:

In the limit of infinitely long blocks, it is equal to the source entropy rate

hμ ¼ lim
η!1

hμ n ¼ ηð Þ: ð223Þ

In general hμ(n) differs from the estimate H(n)/n for any given n but converges

to the same limit, namely the source entropy rate hμ. According to Crutchfield

and Feldman (2003), hμ(n) typically overestimates hμ at finite n, and each difference
hn � hμ represents the difference between the entropy rate conditioned on nmeasure-

ments and the entropy rate conditioned on an infinite number of measurements. As

such, it estimates the information-carrying capacity in blocks in which the difference

is not actually random but arises from correlations. The difference hn � hμ can

therefore be interpreted as the local predictability. These local “overestimates” can

be used to define a universal learning curve Λ(n) (Bialek et al. 2001) as

Λ nð Þ :¼ hμ nð Þ � hμ, n � 1: ð224Þ

EMC is simply the discrete integral of Λ(n) with respect to the block length n,
which controls the speed of convergence of the dynamic entropy to its limit

(Crutchfield et al. 2010):

EMC :¼
X1
n¼1

Λ nð Þ: ð225Þ

In the sense of a learning curve, EMC measures the amount of apparent randomness

at small block length n that can be “explained away” by considering correlations

between blocks with increasing lengths nþ 1, nþ 2, . . .. Grassberger (1986) ana-
lyzed the manner in which hμ(n) approaches its limit hμ, noting that for certain classes
of stochastic processes with long-range correlations, the convergence can be very
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slow and that this is an indicator of complexity. He also found that the approach of the

limit can be so slow that hμ(n) decays slower than 1/n and therefore EMC is infinite.

These processes are termed infinitary processes (Travers and Crutchfield 2014).

When EMC is infinite, then the manner of its divergence can provide additional

information of how a system’s internal state space is coarse grained (see e.g. Bialek

et al. 2001 and Crutchfield and Feldman 2003). This phenomenon has been analyzed

in greatest detail by Bialek et al. (2001). To carry out their analysis, they defined the

predictive information Ipred nð Þ n � 1ð Þ as the mutual information between a block of

length n and the infinite future following the block:

Ipred nð Þ :¼ lim
η !1

I X�1
�n;X

η
0

� �
¼ lim

η !1
H nð Þ þ H ηð Þ � H nþ ηð Þ: ð226Þ

Bialek et al. (2001) showed that even if Ipred(n) diverges as n tends to infinity, the

way in which it grows is an indicator of a process’s complexity in its own right.

They also emphasized that the predictive information is the subextensive compo-

nent of the entropy:

H nð Þ ¼ nhμ þ Ipred nð Þ: ð227Þ

From the above equation, it can be seen that the sum of the first n terms of the

discrete integral of the universal learning curve Λ(n), that is,H nð Þ � nhμ, is equal to
Ipred(n) (Abdallah and Plumbley 2012):

Ipred nð Þ ¼
Xn
i¼1

Λ ið Þ:

As expected, Ipred(n) (as well as EMC) is zero for an iid process. According to

Bialek et al. (2001), it is positive in all other cases and grows less rapidly than a

linear function (subextensive). Ipred(n) may either stay finite or grow infinitely. If it

stays finite, no matter how long we observe the past of a process, we gain only a

finite amount of information about the future. This holds true, for instance, for the

cited periodic processes after the period φ has been identified. A longer period

results in larger complexity values and Ipred n ! 1ð Þ ¼ EMC ¼ log2 φð Þ. For some

irregular processes, the best predictions may depend only on the immediate past,

e.g. in our Markovian model of task processing or generally when evaluating a

system far away from phase transitions or symmetry breaking. In these cases, Ipred
n ! 1ð Þ ¼ EMC is also small and is bound by the logarithm of the number of

accessible states. Systems with more accessible states and larger memories are

assigned larger complexity values. On the other hand, if Ipred(n) diverges and

optimal predictions are influenced by events in the arbitrarily distant past, then

the rate of growth may be slow (logarithmic) or fast (sublinear power). If the

acquired data allows us to infer a model with a finite number of independent

parameters, or to identify a set of generative rules that can be described by a finite
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number of parameters, then Ipred(n) grows logarithmically with the size of the

sample. The coefficient of this divergence counts the dimensionality of the model

space (i.e. the effective number of independent parameters). Sublinear power-law

growth can be associated with infinite parameter models or with nonparametric

models, such as continuous functions with smoothness constraints. Typically these

cases occur where predictability over long time scales is governed by a progres-

sively more detailed description as more data points are observed.

To make the previously introduced key invariant Cμ (forecasting complexity,

Eq. 211) of a stochastic process operational in terms of a theory of computation and

to clarify its relationship to the other key invariant EMC (effective measure

complexity, Eq. 225) by using a structurally rich model and not simply a purely

mathematical representation of a communication channel, in the following we refer

to the seminal work of Crutchfield and Young (1989, 1990) on computational

mechanics. They provided a procedure for finding the minimal maximally predic-

tive model and its causal states by means of an ε-machine (Ellison et al. 2009;

Crutchfield et al. 2010). The general goal of building an ε-machine is to find a

constructive representation of a nontrivial process that not only allows good pre-

dictions on the basis of the stored predictive information, but also reveals the

essential mechanisms that produce a system’s behavior. To build a minimal max-

imally predictive model of a stationary stochastic process, we can formally define

an equivalence relation x�1
�1 	 bx�1

�1 that groups all process histories that give rise to

the same prediction:

x�1
�1 	 bx�1

�1 :, P X1
0

��X�1
�1 ¼ x�1

�1
� �

¼ P X1
0

��X�1
�1 ¼ bx�1

�1
� �� �

:

Hence, for the purpose of forecasting, two different sequences of past observations

are considered equivalent if they result in the same predictive distribution. The

above equivalence relation determines the process’s causal state, which partitions

the space X�1
�1 of pasts into sets that are predictively equivalent. The causal state

ε x�1
�1

� �
of x�1

�1 is its equivalence class

ε x�1
�1

� �
:¼ bx�1

�1 : x�1
�1 	 bx�1

�1
� �

;

and the causal state function ε(.) defines a deterministic sufficient memoryMε (see

Shalizi and Crutchfield 2001; L€ohr 2012). The set of memory states of the ε-
machine is simply the set of causal states

Mε :¼ ε x�1
�1

� �
: x�1

�1 2 Xℕ� �
:

The setX represents the finite alphabet on which the stationary stochastic process is

defined. The set of causal statesMε does not need to be countable and can therefore

represent either discrete or continuous state spaces. Shalizi and Crutchfield (2001)

showed that the equivalence relation x�1
�1 	 bx�1

�1 is minimally sufficient and

unique. Hence, it allows the highest compression of the data, while containing all

the relevant information on local dynamics. For practical purposes, longer and
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longer histories are analyzed, from x�1
�L up to a predefined maximum length

L ¼ Lmax, and the partition into classes for a fixed future horizon Xt
0 is obtained.

In principle, we start at the most coarse-grained level, grouping together those

histories that have the same predictive distribution for the next observable X0, and

then refine the partition. The refinement is recursively carried out by further

subdividing the classes using the predictive distributions of the next two observ-

ables X1
0, the next three observables X

2
0, etc.

After all causal states have been identified, an ε-machine can be constructed. To

simplify the definition of the forecasting complexity Cμ, we start by using an

informal representation in the form of a stochastic output automaton that is

expressed by the causal state function ε, a set of transition matrices ℐ for the states
defined by ε, and the start state s0. The start state is unique. Given the current state

s 2 Mε of the automaton, a transition to the next state s0 2 Mε is determined by the

output symbol (or measurement) x 2 X . State-to-state transitions are probabilistic

and must therefore be represented for each output symbol x by a separate transition

matrix T xð Þ 2 ℐ. Each row and column of the transition matrices in the set ℐ stands
for an individual causal state. A stochastic output automaton can also be
transformed into an equivalent edge-emitting hidden Markov model (L€ohr 2012).
A hidden Markov model is a universal machine that is defined over a set of
non-observable internal states Mε. It therefore does not directly reveal its internal
mechanisms to external observers; it only expresses them indirectly through emitted
symbols. The emitted symbols are edge-labels of the hidden states. The model can be

formally represented by the tuple Mε;X ; π; T xð Þ� �� �
. The start state of the hidden

Markov model is not unique but determined by an initial probability distribution π.
Depending on the current internal state st, at each time step t a transition to the new
internal state stþ1 is made and an output symbol xtþ1 from the alphabetX is emitted.

The corresponding entry T
ðxÞ
ij of the transition matrix T(x) gives the probability P

Stþ1 ¼ stþ1,Xtþ1 ¼ xtþ1

��St ¼ st
� �

of transitioning from current state st indexed by

i to the next stþ1 indexed by j on “seeing” measurement x. This operation may also

be thought of as a weighted random walk on the associated graphical model

(Travers and Crutchfield 2011): from the current state st, the next state stþ1 is

determined by selecting an outgoing edge from current state st according to their

probabilities. After a transition has been selected, the model moves to the new state

and outputs the symbol of the current state x labeling the edge. The transition

matrices are usually non-symmetric. From the theory of Markov processes (see

e.g. Puri 2010) it is well known that in a steady state the probability distribution

over the hidden states is independent of the initial-state distribution. Edge-emitting

hidden Markov models can also be expressed by an initial probability distribution π,
by a state process {St} and by an output process {Xt}, which means that they are

theoretically similar to the continuous-type linear dynamical systems that were

analyzed in Section 2.9. However, continuous-type linear dynamical systems usu-

ally do not possess the property of “unifilarity” (see below) and therefore cannot be

used to directly calculate the entropy rate of the process.
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To obtain the transition matrices T(x), one can parse the data sequence of interest
in a sequential manner, identify all causal state transitions defined by ε over

histories xt0 and xtþ1
0 , and estimate the transition probabilities P S0,X ¼ xtþ1

��S� �
using frequency counting (MLE, see Section 2.4) or Bayesian methods. The

transition probabilities allow calculation of an invariant probability distribution P
(S) over the causal states. This probability is obtained as the normalized principal

eigenvector of the transition matrix T ¼ Σx2XT
xð Þ (Ellison et al. 2009). The matrix

T is stochastic and ΣMεj j
j¼1 Tij ¼ 1 holds for each i.

Interestingly, causal states have a Markovian property in that they render the past

and future statistically independent. In other words, they shield the future from the

past:

P X�1
�1,X1

0

��S� �
¼ P X�1

�1
��S� �

P X1
0

��S� �
:

Moreover, they are optimally predictive in the sense that knowing what causal state

a process is in is as good as having the entire past:P X1
0

��S� �
¼ P X1

0

��X�1
�1

� �
. Causal

shielding is therefore equivalent to the fact that the causal states capture all of the

information shared between past and future. Hence, I S;X1
0

� �
¼ EMC. Out of all

maximally predictive models M for which I M;X1
0

� �
¼ EMC, the ε-machine

captures the minimal amount of information that a stationary stochastic process

must store in order to communicate all excess entropy from the past to the future.

Accordingly, the ε-machine is as close to perfect determinism as any rival that has

the same predictive power (Jänicke and Scheuermann 2009). The minimal amount

of information that must be stored on a stationary stochastic process

X1
�1 ¼ . . . ;X�1;X0;X1; . . .ð Þ for optimal prediction is the Shannon information

entropy over the stationary distribution of its ε-machine’s causal states—the fore-

casting complexity—and it holds that

Cμ X1
�1

� �
¼ H S½ �:

Because of its significance in complex systems science, the forecasting complexity

is also termed Grassberger–Crutchfield–Young statistical complexity CGCY (Shalizi

2006). It should not be confused with Rissanen’s stochastic complexity CSC from

Eq. 208, because the underlying concepts are based on a theory of computation. We

have (Ellison et al. 2009)

CGCY ¼ H S½ � � H M½ �

CGCY ¼ �
X
sEMs

P Sð Þlog2P Sð Þ � H M½ �:
ð228Þ

As we have argued, the causal states are an objective property of the stochastic

process under consideration and therefore the associated statistical complexity

CGCY cannot be influenced by our ineptness as modelers or our (possibly poor)
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means of description. It is equal to the length of the shortest description of the past

that is relevant to the actual dynamics of the system. As was shown above, for iid

sequences it is exactly 0, and for periodic sequences it is log2(φ). A detailed

description of an algorithm providing an ε-machine reconstruction and calculation

of CGCY for one-dimensional and two-dimensional time series can be found in

Shalizi and Shalizi (2004, 2003).

Moreover, the entropy rate hμ can be directly calculated on the basis of a

process’s ε-machine (Ellison et al. 2009) because of unifilarity:

hμ ¼ H X
��S� �

¼ �
X
sEMs

P Sð Þ
X

xs0EXMs

T
xð Þ
ss0 log2

X
s0EMs

T
xð Þ
ss0 :

XMs denotes the set whose elements are generated by concatenating all elements

of the sets X and Ms. Unifilarity means that from the start state s0 of the process,
each generated sequence of observations corresponds to exactly one sequence of

causal states. In a hidden Markov model representation of an ε-machine this

property can easily be verified. For each hidden state, each emitted symbol appears

on at most one edge. In the above equation, we used the shorthand notation T
xð Þ
ss0 to

denote the matrix entry T
ðxÞ
ij corresponding to causal state s in row i and causal state

s0 in column j of the transition matrix associated with output symbol x. The
probability P(S) denotes the asymptotic probability of the causal states.

In a recent paper, Gu et al. (2012) extended the framework of ε-machines by

allowing the casual states to have quantum mechanical properties. This extension

also makes it possible to define the quantum complexity of a stochastic process.

Interestingly, the quantum complexity of a process is bounded below by EMC and

above by CGCY (Wiesner 2015).

An especially interesting variant of Grassberger’s classic definition of the

effective measure complexity has recently been developed by Ball et al. (2010).

These authors also quantify strong emergence within an ensemble of histories of a

complex system in terms of mutual information between past and future history, but

focus on the part of the information that persists across an interval of time τ > 0. As

such, we can specify the “persistent mutual information” as a complexity measure

in its own right that evaluates the deficit in the information entropy in the joint

history compared with that of past and future taken independently. Formally, the

persistent mutual information can be defined on the basis of the EMC (Eq. 216)

extended by the lead time τ to evaluate the persistent part as

EMC τð Þ :¼ I X�1
�1;X1

τ

� �
; ð229Þ

where X�1
�1 designates the history of the stochastic process from an infinite past

to the present, and X1
τ is the corresponding future of the system from the later time
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τ onwards. The key distinguishing feature of the definition above is that it ignores

the information captured in block Xτ�1
0 , that is, the intervening interval of observa-

tions of length τ. For continuous state variables, EMC(τ) has the merit of being

independent of continuous changes of the variable, as long as they preserve time

labeling (Ball et al. 2010). EMC(τ) is known to be a Lyapunov function for the

process, so that it decays with increasing lead time (Ay et al. 2012). For positive

lead times the persistent mutual information is nonzero if a process has a memory

mechanism to store the predictive information persistently and is therefore sensitive

to how a system’s state space is observed (Marzen and Crutchfield 2014). Li (2006)

defines an information-regular process as a process whose persistent mutual infor-

mation converges to zero as the lead time grows over all given limits and it

holds that EMC τð Þ ! 0 as τ ! 1. Otherwise, the process is information-irregular.

The differences between the effective measure complexity and the persistent

mutual information for continuous-state processes are presented in more detail in

Section 4.1.6.

It is evident that the persistent mutual information enables the specification of an

intuitive lower bound on EMC:

EMC τð Þ � EMC: ð230Þ

In fact, for zero lead time we have

EMC 0ð Þ ¼ EMC:

The recent work of James et al. (2011), Marzen and Crutchfield (2014) and others

has shown that a fine decomposition of the persistent mutual information can be

carried out, essentially breaking it down into two pieces. With respect to emergent

complexity, the most interesting piece is the so-called “elusive information” σμ(τ),
which is the mutual information between the past X�1

�1 and the future X1
τ

conditioned on the length-τ present Xτ�1
0 (cf. Eq. 214):

σμ τð Þ :¼ I X�1
�1;X1

τ Xτ�1
0

��� �
: ð231Þ

According to the analysis by James et al. (2011) the elusive information has an

especially interesting interpretation: it represents the Shannon information that is

communicated from the past to the future, but does not flow through the currently

observed length-τ sequence Xτ�1
0 . The key distinguishing feature of the persistent

mutual information is that it is nonzero for positive length τ if a process necessarily
has hidden states. In this case, all the information from the past that is relevant for

generating future behavior has to be stored by an internal configuration to arrive at a

complete description of the process. The internal configuration is necessary to keep

track of the state information, because the present sequence of observations Xτ�1
0

can only capture features of shorter term correlation and therefore does not have

enough capacity to capture all the features that are relevant for forecasting. In the
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words of James et al. (2011): “This is why we build models and cannot rely on only

collecting observation sequences.” For instance, for the n-th order Markov chains

that were introduced in Section 3.2.2, we have σμ τð Þ ¼ 0 for lead times τ that are
larger than or equal to the model order n. In this case with only fully observable

state variables, the length-nmemory of the chain model serves as the effective state,

rendering the process’s past and future independent (Marzen and Crutchfield 2014).

For infinite-order Markov chains EMC(τ) only vanishes asymptotically. Therefore,

the elusive information is sensitive to which extent a system’s internal state space is
coarse grained (Marzen and Crutchfield 2014).

3.3 Complexity Measures from Theories of Systematic

Engineering Design

The most prominent complexity theory in the field of systematic engineering design

has been developed by Suh (2005). His theory aims at providing a systematic way

of designing products and large-scale systems, as well as of determining the best

designs from those proposed. Suh’s complexity theory is based on his famous

axiomatic design theory (Suh 2001). He defines complexity in the functional

domain rather than in the physical domain of the design world. In the functional

domain, uncertainty is measured through information-theoretic quantities like the

information content that was already introduced and defined in Section 3.2.2.

Alternative approaches to characterizing complexity in engineering design that

are not based on information-theory and statistical models (see e.g. Lindemann

et al. 2009; Kreimeyer and Lindemann 2011) are only very briefly addressed in the

following, as they tend to be valid only for evaluating structural and not time-

dependent complexity.

In Suh’s axiomatic design theory, the product to be developed and the problem

of solving the design issues are coupled through functional requirements (FRs) and

design parameters (DPs). He proposes two axioms for design: the independence

axiom and the information axiom. The independence axiom states that the FRs

should be maintained by the designer or design team independent of each other.

When there are two or more FRs, the design solution must be such that each of the

FRs can be satisfied without affecting any of the other FRs. This means that a

correct set of DPs is to be chosen so as to satisfy the FRs and maintain their

independence. If the independence can be maintained for all FRs, the design is

said to be “uncoupled.” An uncoupled design is an optimal solution in the sense of

the theory. Once the FRs are established, the next step in the design process is the

conceptualization process, which occurs during the mapping process from the

functional to the physical domain.

The conceptualization process may produce several designs, all of which may be

satisfactory in terms of the independence axiom. Even for the same task defined by

a given set of FRs, it is likely that different engineers will come up with different
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designs, because there are many solutions that satisfy a given set of m FRs

(FR1, . . .,FRm). The information axiom provides a quantitative measure of the

merits of a given design, and is thus useful in selecting the best design from

among those that are acceptable. The information axiom is formulated within an

information-theory framework and states that the best design is that with the highest

probability of success. Following the definition of the Shannon information content

in Eq. 205 the information content Ii for a given functional requirement

FRi 1 � i � mð Þ is expressed as the logarithmic probability pi of satisfying this

specific FR:

Ii ¼ log2
1

pi

¼ �log2 pi:

In the general case of m specified FRs, the information content Isys for the entire

system under study is

Isys ¼ �log2P Xmð Þ;

where P(Xm) denotes the joint probability that all m FRs are satisfied. When all FRs

are statistically independent, as in an uncoupled design, the information content Isys
can be decomposed into independent summands and expressed as

Isys ¼
Xm
i¼1

Ii

¼ �
Xm
i¼1

log2 pi:

When not all FRs are statistically independent (in the so called “decoupled

design”), there holds

Isys ¼ �
Xm
i¼1

log2 pij jf g for jf g ¼ 1, . . . , i� 1f g

In the above equation pij jf g is the conditional probability of satisfying FRi given that

all other correlated FRj
� �

j¼1, ..., i�1
are also satisfied. It is assumed that the FRs are

ordered according to their number of correlations. The information axiom states

that the best design is that with the smallest Isys, because the least amount of

information in the sense of Shannon’s theory is required to achieve the design

goals. When all probabilities are one, the information content is zero and the design

is optimal in the sense of the axiom. Conversely, when one or more probabilities are

zero, the information required is infinite and the system has to be redesigned to

satisfy the information axiom.
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The probability of success pi can be determined by the intersection of the design

range defined by the designers to satisfy the FRs and the ability of the system to

produce the part within the specified range. This probability can be computed by

specifying the design range (r) for the FR and by determining the system range (sr)
that the proposed design can provide to satisfy the FR. The lower bound of the

specified design range for functional requirement FRi is denoted by r
l[FRi], and the

upper bound by ru[FRi]. The system range can be modeled in statistical terms on the

basis of a probability density function (pdf, see Section 2.1). The pdf is specified
over the theoretically feasible state space. The system pdf is denoted by

fsys[FRi]. The overlap between the design and system ranges is called “the common

range” (cr), and this is the only range where the FR is satisfied. Consequently, the

area Acr under the system pdf within the common range is the design’s probability
of achieving the specified goal. Hence, the information content Ii can be expressed

as

Ii ¼ �log2Acr

¼ �log2

ðru FRi½ �

rl FRi½ �
f sys FRi½ � dFRi:

Suh (2005) considers a design to be complex when its probability of success is low

and hence the information content Isys required to satisfy the FRs is high. Complex

designs often arise when there are many components, because as their number

increases through functional decomposition, the probability that some of them do

not meet the specified requirements also increases, such as when the interfaces

between components introduce additional errors. In order to steer the design

process toward more effective, efficient and robust large-scale systems, a dedicated

complexity axiom is defined that simply states “reduce the complexity of a system”

(Suh 2005). The quantitative measure for complexity in the sense of this axiom is

the information content, which was defined in the above equations. The rationale

behind the axiom is that complex systems may require more information to make

the system function. Therefore, Suh (2005) ties the notion of complexity to the

design range for the FRs—the tighter the design range, the more difficult it becomes

to satisfy the FRs. An uncoupled design is likely to be least complex. However, the

complexity of a decoupled design can be high because of so-called “imaginary

complexity” if we do not understand the system. It is not truly complex, but it

appears to be so because of our lack of understanding of generalized or physical

functions.

According to Suh (2005) complexity can also be a function of time if the system

range changes as a function of time. In this case, we must differentiate between two

types of time-dependent complexity: time-dependent combinatorial complexity and

time-dependent periodic complexity. Time-dependent combinatorial complexity is

defined as the complexity that increases as a function of time because of a continued

expansion in the number of possible combinations of FRs and DPs in time, which

may lead to chaotic behavior or system failure. It occurs because future events
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occur randomly in time and only have a limited predictability, even though they

depend on the current state. Conversely, periodic complexity is defined as the

complexity that only exists in a finite time period, resulting in a finite and limited

number of probable configurations. Concerning a system subjected to combinato-

rial complexity, Suh (2005) concludes that the uncertainty of future outcomes

continues to grow over time, and as a result, the system cannot have long-term

stability and reliability. In the case of systems with periodic complexity, it is

assumed that the system is deterministic and can renew itself over each period.

Therefore, he concludes that a stable and reliable system must be periodic. It is

readily apparent that a system with time-dependent combinatorial complexity can

be changed to one with time-dependent periodic complexity by defining a set of

functions that repeat periodically. This can be achieved temporally, geometrically,

thermally, electrically and by other constructive means. In conclusion, engineered

systems in PD should have small time-independent real and imaginary complexities

and no time-dependent combinatorial complexity. If the system range must change

as a function of time, the developer should be able to introduce time-dependent

periodic complexity. These criteria need to be satisfied regardless of the size of the

system or the number of FRs and DPs specified for the system.

Although Suh’s complexity theory is grounded in axiomatic design theory and

has been successfully applied in different domains, our criticism is that product and

design problems are evaluated irrespective of the work processes, which are needed

to decompose the FRs and DPs. The decomposition is a highly cooperative process

that must be taken into account to satisfy all specified FRs on time and to avoid

cycles of continual revision. Furthermore, the fact that Suh uses the information

content Isys directly as a complexity measure can be a point of criticism. Isys is a
simple additive measure that only represents the encoded length of the design in

terms of binary design decisions; it does not take into account the encoding scheme.

However, both parts of the description of a design are important because the

description can always be simplified by formulating more complicated design

rules, more complex standard components or interfaces (cf. Section 3.2.2). Lastly,

Suh (2005) does not define specific measures for time-dependent complexity.

El-Haik and Yang (1999) have extended Suh’s theory by representing the

imaginary part of complexity through the differential entropy (Chapter 4) associ-

ated with the joint pdf of FRs with three components of variability, vulnerability

and correlation. These components evaluate the product design according to the

vector of DPs (see Summers and Shah 2010). Although this approach can be used to

assess the mapping from the FRs to the DPs through an analysis of the topological

structure of the design structure matrix (Browning 2001, see discussion below) and

the variability of the design parameters (measured by the differential entropy of the

joint pdf of DPs), the dynamics of the development processes in terms of a work

transformation matrix (WTM, Section 2.2) are not taken into account. An alterna-

tive view introduced by Braha and Maimon (1998) suggests that complexity is a

fundamental characteristic of the information content within either the product or

the process. They introduce two measures that quantify either the structural repre-

sentation of the information or the functional probability of achieving the specified
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requirements. The measures can be applied to compare products and processes at

different levels of abstraction. The process is nominally defined as mapping

between the product and problem, where the coupling determines process com-

plexity. The size of the process is defined as the summation over the number of

instances of operators (relationships) and operands (entities). A process instance is

a sequence of the instances of operands and operators. The average information

content of sequences can be evaluated on the basis of the block entropy (Eq. 219).

As the design takes on different types of representations through the development

stages, the average information contained changes. Braha and Maimon (1998)

suggest that the ratio of the amount of average information content between the

initial and current states is a measure of the current abstraction level. The effort

required to move between abstraction levels is inversely proportional to this ratio.

The proportionality constant is the information content of the current state. Sum-

mers and Shah (2010) follow these lines of reasoning and propose a process size

complexity measure that includes the vocabulary of the specific representation for

the problem, the product, the development process and the four operators available

for sequencing the states of the design evolution. The measure is defined as

Cxsize process :¼ Mo þ Co þ Pop
� �

ln idvþ ddvþ dr þmgþ aop þ eop þ sop þ rop
� �

:

In the above definition the size of the vocabulary is represented by the total number

of possible primitive modules (Mo), possible relations between these modules (Co)

and possible operators and operands (Pop). The additional parameters denote the

variables whose values are controlled by the designer (idv), are derived from the

independent design parameters, other dependent variables and design relations

(ddv), are constraints that dictate the association between the other design variables
(dr), or are used to determine how well the current design configuration meets the

goals (mg), plus the four operators available for sequencing the states. Although the
extended concepts based on information content within either the product or the

process are appealing, the fact that the development process is only analyzed on

stage-dependent hierarchical description levels, not on the basis of an explicit state-

space model of cooperative work, opens it to criticism. Moreover, dynamic entro-

pies in the sense of Grassberger’s theory are not taken into account to evaluate time-

dependent combinatorial complexity in an open organizational system. Last but not

least, in real design problems, it is difficult to identify all operators and operands in

advance and to specify valid sequences leading from one level of abstraction to

the next.

In addition to methods for measuring characteristics of the design based on

information-theoretic quantities, a large body of literature has been published on

the design structure matrix (Steward 1981) as a dependency modeling technique

supporting complexity management by focusing attention on the elements of a

system and the dependencies through which they are related. Recent surveys can be

found in the textbooks of Lindemann et al. (2009) or Eppinger and Browning

(2012). Browning (2001) distinguishes between two basic types of DSMs: static

and time-based. Static DSMs represent either product components or teams in an
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organization that exist simultaneously. Time-based DSMs either represent dynamic

activities indicating precedence relationships or design parameters that change as a

function of time. Generated static DSMs are usually analyzed for structural char-

acteristics or by clustering algorithms (e.g. Rogers et al. 2006), whereas time-based

DSMs are typically used to optimize workflows based on sequencing, tearing and

banding algorithms (e.g. Gebala and Eppinger 1991; Maurer 2007). Kreimeyer and

Lindemann (2011) review and discuss a comprehensive set of metrics that can be

applied to assess the structure of engineering design processes encoded by DSMs

(and other forms). According to Browning’s taxonomy, the WTM as dynamical

operator of state equation 8 is a static task-based DSM, because the development

tasks are processed concurrently and persistent feedback/feed forward loops are

modeled through the off-diagonal elements. The majority of work on complexity

management with static DSMs focuses on the concept of modularity in identifying

cluster structures (see Baldwin and Clark 2000). This work has been very influential

in academia and industry. An important limitation, however, is its purely static view

of the product structure and, consequently, of the task structure and the interactions

between them. A task processing on different time scales corresponding to different

autonomous task processing rates cannot be represented. Recent publications indi-

cate that technical dependencies in product families tend to be volatile and therefore

coordination needs among development tasks can evolve over time (e.g. Cataldo

et al. 2006, 2008; Sosa 2008). When these evolving coordination needs are not

adequately managed, significant misalignments of organizational structure and

product architecture can occur that have a negative effect on product quality

(Gokpinar et al. 2010). An effective method for dealing with volatility of depen-

dencies is to use different WTMs for different phases of the project in which no task

is theoretically processed independently of the others. Furthermore, additional task-

mapping matrices can be specified at the transition points between phases. By doing

so, the number of tasks as well as the kind and intensity of coordination needs can

be adapted. It is also possible to specify phase-dependent covariances of perfor-

mance fluctuations. In many PD projects the performance fluctuations tend to be

larger for late development stages that are close to the desired start of production.

Another limitation of the concept of product modularity is that the organizational

patterns of a development project (e.g. communication links, team co-membership)

do not necessarily mirror the technical dependency structures (Sosa et al. 2004).

The literature review by Colfer and Baldwin (2010) shows that the “mirroring

hypothesis” was supported in only 69% of the cases. Support for the hypothesis was

strongest in the within-firm sample, less strong in the across-firm sample, and

relatively weak in the open collaborative sample. As such, WTMs and covariance

matrices represent dynamic dependency structures in their own right. They must be

related to product components or organizational elements through additional mul-

tiple domain mapping matrices (Danilovic and Browning 2007) and cannot be

substituted by the traditional modeling elements.

An approach to measuring structural complexity based on static component-

based DSMs that is formally similar to our own analysis in the spectral basis

(see Sections 2.3 and 4.2) has recently been developed by Sinha and de Weck
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(2011; 2012). The three terms of their metric CSW are related to the complexities of

each of the n components in the system (local effect, represented by the αi’s), the
number and complexity of each pairwise interaction (local effect, represented by

the βij’s and aij’s) and the arrangement of the m interfaces (global, system level

effect, represented by E(A)). Moreover, a normalization factor γ is introduced. The
definition is (Denman et al. 2011; Sinha and de Weck 2012; Sinha 2014):

CSW :¼
Xn
i¼1

αi þ
Xn
i¼1

Xn
j¼1

βijaij

 !
γE Að Þ:

The normalization factor γ is taken as 1/n and used to map the n different compo-

nents in the system onto a comparable scale. The matrix A is an adjacency matrix

that corresponds to the component-based DSM of the product as follows:

A ¼ aij
� �

¼ 1 8 i; jð Þ : i 6¼ jð Þ ^ i; jð Þ 2 Υ
0 otherwise:

	
The exogenous variable ϒ represents the set of connected nodes in the system.

Accordingly, the adjacency matrix is simply a binary form of the component-based

DSM, in which ones are placed in the cells with marks and zeros elsewhere. The

diagonal elements of A are zero. The underlying concept of the metric CSW is that in

order to develop the individual components, a non-zero complexity is involved.

This complexity can vary across components and is represented by the αi’s, the
so-called component complexity estimate (Sinha and de Weck 2012; Sinha 2014).

Similar arguments hold true for the complexity βij of each interface, the so-called

final interface complexity (Sinha and de Weck 2012; Sinha 2014). If there are

multiple types of interface between two components (energy flow, material flow,

control action flow etc.), large beta coefficients are assigned, since it would require

more effort to implement them compared to a simpler (univariate) connection. An

important aspect is that the correlation between the component complexity estimate

and the final interface complexity can vary depending on the kind of product. For

large-scale mechanical systems, the βij’s are often much smaller than the αi’s and
αj’s. However, in micro or nanoscale systems it can be the opposite, because it is

often much more difficult to develop the interfaces (Sinha 2014). The different

interface complexities can be captured using a multiplicative model

βij ¼ f ijαiαj;

where fij stands for the interface complexity factor (Eppinger and Browning 2012;

Sinha and de Weck 2012; Sinha 2014). Finally, the term E(A) represents the graph
energy of the adjacency matrix A. The graph energy is defined as the sum of the

singular values σi of the orthogonal vectors:
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E Að Þ :¼
Xn
i¼1

σi;

where the singular values are computed by the decomposition

A ¼ U � ΣA � VT

ΣA ¼ Diag σi½ �:

The graph energy is invariant under isomorphic transformations (Weyuker 1988)

and therefore highly objective.

Ameri and Summers (Ameri et al. 2008; Summers and Ameri 2008) developed a

complementary connectedness measure and an algorithm for assessing design

connectivity complexity based on graphical models. In the graphical models, the

development tasks are nodes of a graph and connected through variable depen-

dency. The algorithm manipulates the graph in terms of connectivity. This manip-

ulation starts by eliminating all unary relations, as they do not contribute to the

connectivity complexity of the graph. Once the unary relations have been removed,

the score keeping variables are initialized. From this point forward, the graph

connectivity algorithm is a recursive algorithm that is applied against all subgraphs

that are generated in the process. A cumulative score is maintained to quantify the

connectedness of the whole structure (see Summers and Shah 2010). This approach

also seems to have certain limitations for assessing emergent complexity in PD

projects. The graph of development tasks is recursively decomposed into sub-

graphs, which tears apart potentially important indirect connections that can lead

to higher-order interactions between activities. Furthermore, due to the determin-

istic approach to modeling the work processes it is impossible to analyze or

evaluate the “problem-solving oscillations” (Mihm et al. 2003; Mihm and Loch

2006) emerging from cooperative task processing in conjunction with performance

variability. Consequently, we will not consider the design connectivity complexity

in the following.

The interested reader can find additional approaches to measuring and evaluat-

ing complexity in engineering design with a specific focus on structural character-

istics in the excellent textbook by Kreimeyer and Lindemann (2011). The authors

present a total of 52 complexity metrics from different disciplines and show in three

case studies from process management in the automotive industry how different

facets of complexity can materialize in real design processes. They also introduce

the Structural Goal Question Metric framework for selecting metrics in a goal-

oriented manner and guiding their application.

The information-theory and dependency-structure-based complexity metrics

from theories of systematic engineering design are undoubtedly beneficial in

facilitating studies that require the use of equivalent but different design problems

and in comparing computer-aided design automation tools. Nevertheless, in the

following analytical Chapter 4 we will shift our focus to the EMC metric first put

forward in Grassberger’s seminal theoretical work (1986), as it can both effectively
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measure self-generated complexity and provide a foundation for deriving closed-

form solutions of different strengths from first principles. Furthermore, EMC

stresses the dynamic nature of cooperative work in PD projects and can be calcu-

lated efficiently from generative models or from historical data.

Also very interesting for applications in project management is the later-

formulated persistent mutual information EMC(τ) (Section 3.2.4). This is partly

because of its intimate relationship with the famous Lyapunov function (Nicolis

and Nicolis 2007) of a process, and partly because the generated complexity

“landscape” often becomes more and more informative as the lead time increases.

However, this phenomenon goes beyond the scope of this book and will be

analyzed in detail in future work. To lay the analytical foundations for future

studies of emergent complexity we will present closed-form solutions of the

persistent mutual information for the developed vector autoregression models in

the corresponding chapters. These solutions are generalized from the expressions

for EMC ¼ EMC τ ¼ 0ð Þ, which will be presented in the beginning of Sections

4.1.1, 4.1.2 and 4.1.3 (see Eqs. 247, 253, 262 and 265). Due to the limited space in

this book, the closed-form solutions of the persistent mutual information that is

generated by a linear dynamical system (Section 2.9) will not be presented. The

interested reader can develop them by applying the solution principles that will be

introduced in Section 4.2.

The purely information-theoretic view on emergent complexity also opens EMC

and the corresponding persistent mutual information EMC(τ) to criticism. In their

latest paper on effective complexity (see also Section 3.2.4) Gell-Mann and Lloyd

(2004) point out that, without modification, EMC assigns two identical and very

long bit strings consisting entirely of 1’s with high complexity values because the

mutual information between them is very large, yet each process representation is

obviously very simple. This is in stark contrast to the fundamental ideas of their EC

metric (Eq. 209), which evaluates the algorithmic information content of the

strings. The ideal ensemble for modeling an identical very long bit string x is the

Dirac measure δx, i.e. the ensemble with δx xð Þ ¼ 1 and δx x0ð Þ ¼ 0 for x 6¼ x0. This
ensemble has Kolmogorov�Chaitin complexity KU δx xð Þ½ � ¼ KU xð Þ and informa-

tion entropy H ½ � ¼ 0 (Ay et al. 2010). Its total information Σ ½ � is therefore

minimal. The algorithmic complexity KU(x) is apparently very low because the

computer program used to calculate x on U simply outputs |x| 1’s in a simple pre- or

post-test loop. Shiner et al. (2000) also criticize the fact that EMC is not uniquely

defined for higher dimensional systems, e.g. spins in two dimensions. In spite of

these apparent conceptual weaknesses, the ability of both measures to quantify the

degree of informational structure between past and future histories of cooperative

task processing and the value of that information in helping to make predictions

mean that they are especially interesting and valuable for analyzing, evaluating and

optimizing PD projects.

More details on complexity measures from statistical physics, information

theory and computer science are presented in Shalizi (2006), Prokopenko

et al. (2009), Nicolis and Nicolis (2007), Ellison et al. (2009) and Crutchfield

et al. (2010). A focused review of complexity measures for the evaluation of
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human�computer interaction including two empirical validation studies can be

found in Schlick et al. (2006, 2010).
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