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Problem of Growing Complexity of Engineering Systems

In the past several decades, engineering systems have seen a sig-
nificant growth in complexity due to improved performance and 
capabilities. For instance, F-35, a fifth generation aircraft, offers 

roughly three to eight times the operational capability compared 
to F-16 (fourth generation aircraft). This additional operational 
capability stems from an increase in subsystems (increase from 15 
to 130), and number of interfaces (from 103 to 105) (Arena 2008). 
This growth in complexity has been poorly managed, leading to 
substantial cost and schedule overruns. According to the US Gov-
ernment Accountability Office (GAO), 42% of defense acquisition 
programs are expecting 25% or more increase in unit acquisition 
cost. Further, only 28% of major programs are on schedule and the 
average delay in delivering initial capability is around 22 months 
(Sullivan 2009). Thus to assure the affordability of these complex 
engineering systems, it is increasingly important to develop tools 
and capabilities for managing their complexity.

Model-based systems engineering aims to address some of 
the deficiencies of the document-centric systems engineering 
approaches by using models to drive specification, design, integra-
tion, and validation. This enables efficient communication between 
various system elements through automatic propagation of design 
changes, detection of specification inconsistencies, which may 
lead to faster verification and validation. Model-based conceptual 
design proposes using models for conceptual design activities. 
One of the approaches here is to transform a design problem into a 
problem of identifying an acceptable configuration of components 
that meets the requirements by using a library of pre-verified com-
ponent and flow models. This can facilitate identification of better 
designs by enabling a more exhaustive search of the design space. 
However, the benefits may be reduced when the size of the com-
ponent-flow library is too small (not enough good design options) 
or too big (large search space). For complex engineering systems 
containing thousands of components, the problem of identifying 
an acceptable design may prove to be intractable.

Another approach for managing complexity of engineering 

systems is to explicitly measure complexity and use it in design 
space exploration to identify designs on the performance-complexity 
Pareto frontier. Before learning about how complexity is measured 
and incorporated into design space exploration, we first discuss 
the trade-off between performance and complexity. This trade-off 
is the result of architectural and design decisions. For instance, the 
designers incorporate coupling between the systems components 
to get high performance, which results in increase in complexity. 
Thus the goal of the design process is to identify the designs on the 
performance-complexity Pareto frontier, that is to find the simplest 
design, which gives the acceptable performance. Figure 1 shows 
this trade-off for a hypothetical system and highlights the potential 
designs along the performance-complexity frontier in green. In the 
next section we outline an approach for incorporating complexity 
in the model-based conceptual design and the ways in which it can 
improve the quality of designs obtained.

Po = Customer’s
perf. requirements

Co  Complexity

Pe
rfo

rm
an

ce

Po

Best Design

Figure 1. Performance-complexity tradespace

Measuring Complexity of Engineering Systems
Complexity is manifest in the design and development of com-

plex engineering systems in several ways. More components and 
greater coupling between them increases the effort required for 
analysis, exploring the design space, and verification. Challenges 
from tighter coupling are accentuated by the presence of feed-
back loops within the connections, and the interplay between the 

Designers must strive 

for an optimum balance 

between performance 

and complexity and 

identify the designs that 

lie on the performance-

complexity Pareto 

frontier.
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hardware and software domains. Highly complex systems may require additional 
redundancy to maintain the desired level of reliability in operation. This additional 
redundancy, in turn, introduces more complexity and increases the cost of the 
system. Thus, increasingly complex systems exhibit the phenomenon of cost-com-
plexity spiral. As described by Carlson (2002), complexity added to achieve reli-
able operation in the presence of expected disturbances can make a system highly 
vulnerable to small but unexpected disturbance modes. These vulnerabilities 
may be revealed during the verification and validation phase resulting in cost and 
schedule overruns. Thus apart from increasing the cost of the system, an increase 
in system complexity reduces our ability to accurately predict the development cost 
and time of the system. Although these relationships might portray complexity 
in a negative light, it is important to understand that complexity is a symptom of 
coupling and lack of modularity in the system and not the cause. Designers must 
strive for an optimum balance between performance and complexity and identify 
the designs that lie on the performance-complexity Pareto frontier.

The concept of complexity has been studied in a variety of disciplines such as 
computer science, design, information theory, and physics. While each discipline 
has adopted a unique approach for representing and studying these complex 
systems, some fundamental characteristics can still be extracted. The US Defense 
Advanced Research Projects Agency’s Meta program led to several developments 
towards developing a holistic complexity measure, which would correlate with cost 
and schedule. While there exist different opinions in the literature about what con-
stitutes as holistic measure, some of the common aspects to consider in a complex-
ity metric are shown in Figure 2.

mation-based methods are good for measuring the size, heterogeneity, and uncer-
tainty aspects of system complexity, they do not capture the effect of topology of 
interactions and dynamical behavior of the system. Murray et al (2011) propose the 
concept of dynamic complexity that combines information entropy and topology of 
interactions in a single measure. This marks an important step in moving towards a 
comprehensive system complexity measure.

2. Networks provide an intuitive way of representing a system and thus have 
been a popular starting point for complexity analysis as well as design in general. 
Ameri (2008) present a coupling measure based on bipartite entity-relation graph. 
Mathieson and Sumners (2010) describe a measure for interconnectivity based on 
the design structure matrix. Holtta-Otto and DeWeck (2007) present a modularity 
measure based on singular value decomposition to measure the coupling within 
the system.

3. Several empirical measures exist where complexity is qualitatively estimated 
as a measure of the coupling between performance parameters and design vari-
ables. The most notable is the work of Bearden (2003), where the measure is based 
on empirical data from small satellites developed over a period of time. A limitation 
of the approach is that it only captures the effect of final design parameters and not 
the effect of the design process, which might include the number, type, and repeat-
ability of tasks. In addition, this might not work for radically new designs.

Several improvements were made to the state-of-the-art during the Meta program, 
which have taken us closer towards a comprehensive metric for complexity. Murray 
et al. (2011) combines an information-theoretic measure with a topology measure to 
create a combined measure of system complexity. However, their topology measure 
does not account for the directivity of interactions, which is an important aspect 
for capturing the coupling between the components. In addition, by rolling up 
the different factors into a single number, the measure provides little insights 
into the relative complexity of subsystems. We believe that this is an essential 
feature, since once complex subsystems are identified, strategies can be developed 
to manage them. Another important feature, which Zeidner, Banaszuk, and 
Becz (2010) discuss, is how modularity reduces complexity. However they use a 
simplistic measure for complexity that fails to capture the topology factors such 
as the presence of feedback loops. In addition, their approach involves converting 
the directed network into undirected, which may introduce errors in the analysis. 
Tamaskar (2014) builds upon the state-of-the-art to develop a comprehensive measure 
for system complexity that captures size, coupling, and modularity for a directed, 
weighted network. Apart from characterizing the complexity of a design by a single 
number, this measure allows the designer to identify complex subsystems. It also 
explains how the presence of a hierarchical structure reduces the complexity of 

Complexity metrics can be classified into three categories:
1. Information theory measures quantify complexity in terms of the informa-

tion content of the design. El-Haik and Yang (1999) propose measures that highlight 
some of the components of complexity of the design process such as variability, 
vulnerability, and correlation, and Gell-Mann and Lloyd (1996) provide information 
measures for measuring the effective complexity of the system. While the infor-

•  Level of abstraction
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•  Uncertainty

Figure 2. Different aspects of a complexity (Tamaskar 2011)
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Figure 3. Complexity enabled design space exploration

the design. In the next section we describe how the capabilities of model-based 
design can be combined with the metrics for complexity to improve the design space 
exploration process in conceptual design.

Complexity-Enabled Design Space Exploration
The previous section described a quantitative measure for complexity. By 

incorporating this measure in the design space exploration framework the explora-
tion will gravitate towards the designs that strike a balance between complexity 
and performance. The size of the design space can also be reduced by setting a 
complexity threshold, which rejects the designs that are either too simple to pro-
vide the required performance or overly complex to be feasible. Also, by analysis 
of the performance-complexity tradespace we can identify good and bad design 
characteristics, which can be used to develop an expert system based on a design 
rulebook that leads to further improvement in the speed of design space explora-
tion. Figure 3 outlines our approach for complexity-enabled design space explora-
tion. We begin by performing a preliminary exploration and identify some high 
performance-low complexity designs. We then identify common features of good 
and bad designs and collect them in a design rulebook. We can also incorporate 
the domain knowledge about the good and bad design features in this rulebook. 
We also identify a complexity threshold in this preliminary exploration. Thus 
only the designs lying within this threshold will be analyzed. Because complexity 
calculation (based on high-level network connectivity) is significantly faster than 
calculating performance, we also increase the speed of exploration. This design 
rulebook is used to guide the design space exploration and helps in identifying 
designs on the performance-complexity Pareto frontier. A case study exemplify-
ing this approach is shown in Tamaskar (2014). Neema, Tamaskr, and DeLaurentis 
(2014) also describe a similar performance complexity trade study of fractionated 
spacecraft using a model-based design approach.

Conclusions
This article outlines our vision for how complexity metrics can be used in model-

based conceptual design for identifying designs on the performance-complexity 
Pareto frontier. We believe that this approach can be the first step towards addressing 
the problem of growing complexity. The approach is generic enough to be used along 
with a variety of complexity metrics available in the literature. We also encourage 
the systems engineers to not solely focus on a single number for complexity but to dig 
deeper into the underlying sources of complexity. This can help in identifying com-
plex subsystems so that the design team can identify strategies for managing them. 
We envision that model-based complexity management leads to better exploration 
of the performance-complexity tradespace. This will help us in identifying poten-
tial good designs which can be further improved by digging deeper into the sources 
of complexity and managing them. This combined effort between the tool and the 
designer will enable us to strike the right balance between performance and complex-
ity. 
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