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Abstract This paper presents a theoretical analysis of project dynamics and emer-
gent complexity in new product development (NPD) projects subjected to the man-
agement concept of concurrent engineering. To provide a comprehensive study, the
complexity frameworks, theories and measures that have been developed in organi-
zational theory, systematic engineering design and basic scientific research are re-
viewed. For the evaluation of emergent complexity in NPD projects, an information-
theory quantity—termed “‘effective measure complexity” (EMC)—is selected from a
variety of measures, because it can be derived from first principles and therefore has
high construct validity. Furthermore, it can be calculated efficiently from dynamic
generative models or purely from historical data, without intervening models. The
EMC measures the mutual information between the infinite past and future histories
of a stochastic process. According to this principle, it is particularly interesting to
evaluate the time-dependent complexity in NPD and to uncover the relevant interac-
tions. To obtain analytical results, a model-driven approach is taken and a vector au-
toregression (VAR) model of cooperative work is formulated. The formulated VAR
model provided the foundation for the calculation of a closed-form solution of the
EMC in the original state space. This solution can be used to analyze and optimize
complexity based on the model’s independent parameters. Moreover, a transforma-
tion into the spectral basis is carried out to obtain more expressive solutions in matrix
form. The matrix form allows identification of the surprisingly few essential param-
eters and calculation of two lower complexity bounds. The essential parameters in-
clude the eigenvalues of the work transformation matrix of the VAR model and the
correlations between components of performance fluctuations.
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1 Introduction

In times of economic instability, successful development of innovative products and
effective management of new product development (NPD) projects are particularly
important for gaining competitive advantage. To shorten time-to-market and lower
development/production costs, NPD projects are often subjected to concurrent engi-
neering (CE). In their landmark report, Winner et al. (1988) define CE as the system-
atic approach to the integrated, concurrent design of products and work processes,
including manufacture and support. This organizational concept is intended to cause
the developers, from the outset, to consider all elements of the product life cycle
from concept design to disposal, including quality, cost, schedule, and end user re-
quirements. A good example is a vehicle development project in the automotive in-
dustry. In the late development stage, such a project involves dozens of CE teams.
The CE teams are usually structured according to the subsystems of the product to
be developed (e.g. car body, powertrain, chassis frame, etc.) and are coordinated by
system-integration and management teams. The needs, functional requirements and
concepts are discussed and “orchestrated” by the subject-matter experts in regular
CE team meetings and mapped onto design parameters in a highly cooperative work
process.

NPD projects can show very informative but also complex and difficult-to-manage
patterns of organizational dynamics. The patterns emerge from cooperative work that
is not only fundamentally iterative, with analysis, synthesis and decision-making
stages, but also tightly coupled through the product structure with many interfaces
between modules. Iterations occur frequently because of the availability of new or
updated information about geometric entities, topological entities etc. As a conse-
quence, the development tasks are both highly variable and strongly dependent on
each other and on elements of “surprise” in the form of seemingly erratic evolution-
ary events that occur. These phenomena are typical of complex systems, as stressed
by Shalizi (2006) and Nicolis and Nicolis (2007). In that sense, NPD projects with
long-range spatiotemporal coordination structures can be regarded as one of the most
authentic prototypes of complex organizational systems. They serve as inspiration for
raising new issues and stimulate applied and basic scientific research. One important
source of variability is the human factor. The manifold project states usually create
a demand for mental resources that exceeds the deliberative capacity of any devel-
oper, and many assumptions about design ranges or physical functions have to be
made. This inevitable level of “ignorance” leads to unpredictable performance fluc-
tuations. The performance fluctuations in conjunction with tight coordination struc-
tures often render the project difficult to anticipate, because the evolution toward a
stable development solution can differ significantly from the expected (unperturbed)
process (Huberman and Wilkinson 2005). Depending on the kind and intensity of co-
operative relationships, some of the CE teams can enter multiple cycles of revisions,
which demand unplanned effort as well as long delays. Moreover, the simultane-
ous revision cycles can be reinforced, and a fatal pattern of organizational dynam-
ics termed “design churns” (Yassine et al. 2003) or “problem-solving oscillations”
(Mihm et al. 2003; Mihm and Loch 2006) can emerge. In this case, the progress
of the project irregularly oscillates between being on, ahead of, or behind schedule.
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This phenomenon was analyzed in detail by Terwiesch et al. (2002) and Yassine et al.
(2003) for the automotive industry. According to the literature review of Mihm and
Loch (2006), the design churn effect occurs across different domains.

Design churns are an intriguing example of emergent (self-generated) complexity
in NPD projects, which can lead to disastrous results. The emergence is strong in the
sense that patterns can only be reliably forecasted from the observation of the past
of each particular instance of task processing and with a large body of knowledge
of prior history (Chalmers 2002). A deeper understanding of the interrelationships
between performance variability and project dynamics is needed to cope with emer-
gent complexity, together with new methods for quantitative complexity evaluation.
The goal of this paper is therefore twofold: first, to introduce a complexity measure
that is underpinned by a rigorous theory of basic scientific research (Grassberger
1986) and enables quantifying strong emergence in an open organizational system
in terms of mutual information that is communicated from the infinite past to the
infinite future. Second, it aims to present a stochastic model of cooperative work in
NPD that is based on the theory of vector-autoregressive processes and to use this
generative model to obtain analytical complexity results. The challenge is that even
if the breakdown structure of the tasks, their rate of processing and the laws of in-
teraction are given, it is difficult to anticipate the performance of the whole project.
The complexity-theory approach builds on our previous work on project modeling
and simulation (Schlick et al. 2007, 2008, 2009, 2011, 2012; Tackenberg et al. 2009,
2010) and differs from the abovementioned studies in the way that closed-form so-
lutions of different strengths are formulated, which can be used for identifying and
controlling the essential complexity-driving variables.

The paper is organized as follows. In Sect. 2, frameworks, theories and mea-
sures that have been developed in organizational theory, systematic engineering de-
sign and basic scientific research to evaluate complexity in new product development
(and comparable open organizational systems) are reviewed. An information-theory
quantity—termed the “effective measure complexity” (EMC)—is analyzed in detail
because of its outstanding construct validity and computational merits for the eval-
uation of emergent complexity in NPD projects. In Sect. 3, the foundations for de-
terministic and stochastic modeling of cooperative work in NPD projects are laid,
and the corresponding state equations are formulated and explained. The stochastic
model explicitly allows calculation of the EMC. Moreover, a transformation into the
spectral basis is performed to uncover the essential mechanisms of concurrent task
processing. Closed-form complexity solutions in the original state-space coordinates
and the spectral basis are derived and discussed in detail in Sect. 4. Lower bounds are
put on the EMC at the end of this section. Section 5 covers the main conclusions of
the paper and gives an outlook for future research.

2 Evaluation of complexity in new product development
The term “complexity” stems from the Latin word “complexitas”, meaning compre-
hensive or inclusive. In current language usage, it is the opposite of simplicity, but this

interpretation does not appear to be underpinned by any explicit concept. Various dis-
ciplines have studied the concepts and principles of complexity in basic and applied
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scientific research. Several frameworks, theories and measures have been developed,
depending on differing views of complexity among disciplines. An objective eval-
uation of structural and dynamic complexity in NPD would benefit system design-
ers and managers, because it would enable them to compare and optimize different
systems in analytical and experimental studies. To obtain a comprehensive view of
organizational, product and process elements and their interactions in the product de-
velopment environment, a thorough review of the notion of complexity has to start
by organizational theory. The literature on organizational theory demonstrates that
the complexity of NPD projects results from different sources and the consideration
of the underlying organizational factors and their interrelationships is important for
successful project management (Kim and Wilemon 2009). However, we hypothesize
that factor-based approaches are not sufficient to evaluate emergent complexity in
open organizational systems with tightly coupled work processes and therefore the
complexity theories and measures of basic scientific research must also be taken into
account (cf. Amaral and Uzzi 2007). They can provide deep and consistent insights
into emergent phenomena of systems and dynamic complexity of cooperation. Se-
lected measures can also be used to optimize project organizational design (Schlick
et al. 2009). The formalized measures build upon our intuition that a system is com-
plex if it is difficult to describe and predict efficiently. A comprehensive overview of
this concept including detailed descriptions and illustrations can be found in Shalizi
(2006), Prokopenko et al. (2007) and Nicolis and Nicolis (2007). For effective com-
plexity management in NPD, the product-oriented measures from theories of system-
atic engineering design are also relevant. Seminal work in this field has been done
by Suh (2005) on the basis of information-theoretic quantities. These quantities are
also the foundation of statistical complexity measures from basic scientific research,
which means that Suh’s complexity theory and recent extensions of it (see Summers
and Shah 2010) must be discussed in the light of the latest theoretical developments.
Moreover, the literature that has been published around the Design Structure Ma-
trix (Steward 1981) as a dependency modeling technique has to be considered. This
literature also provides a firm foundation for mathematical modeling of cooperative
work in NPD projects. In general, we try to restrict our analyses to mature scientific
theories because of their objectivity and construct validity.

2.1 Approaches from organizational theory

According to Murmann (1994) and Griffin (1997) complexity in the product devel-
opment environment is determined by the number of (different) parts in the product
and the number of embodied product functions. Kim and Wilemon (2003) developed
a complexity assessment template covering these and other important “sources”. The
first source in their assessment template is “technological complexity”, which can
be divided into “component integration” and “technological newness”. The second
source is the “market (environmental) complexity” that results from the sensitivity
of the project’s attributes to market changes. “Development complexity” is the third
source and is generated when different design decisions and components have to
be integrated, qualified suppliers have to be found and supply chain relationships
have to be managed. The fourth source is “marketing complexity” resulting from the
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problems of bringing the product to market. “Organizational complexity” is the fifth
source because projects usually require intensive cooperation and involve many areas
of the firm. In large-scale engineering projects other companies are also involved.
Their coordination leads to “intraorganizational complexity”, the sixth source. In or-
der to validate and prioritize complexity sources, Kim and Wilemon (2009) carried
out an extensive empirical investigation. An analysis of exploratory field interviews
with 32 project leaders and team members showed that technological challenges,
product concept/customer requirement ambiguities and organizational complexity
are major issues promoting complexity in NPD. The perceived dominant source was
technological challenges, since about half of the respondents noted technological dif-
ficulties encountered in attempting to develop a product using an unproven technique
Or process.

Holttd-Otto and Magee (2006) developed a project complexity framework based
on the seminal work of Summers and Shah (2003). They identified three dimensions:
the product itself (artifact), the project mission (design problem), and the tasks re-
quired to develop the product (process). The key indicators for each of these com-
plexities are size, interactions and stretch (solvability). They conducted interviews
in five divisions of large corporations competing in different industries in the North
American market. The results show that the effort estimation is primarily based on
the scale and the stretch of the project and, surprisingly, not on subsystem interac-
tions. Tatikonda and Rosenthal (2000) focus on the task-dimension and relate project
complexity to the nature, quantity and magnitude of the organizational subtasks and
subtasks interactions required by a project.

A recent literature review and own empirical work about elements contributing
to complexity in large engineering projects was published by Bosch-Rekveldt et al.
(2011). The analysis of the literature sources and 18 semi-structured interviews in
which six completed projects were studied in depth led to the development of the
TOE framework. The framework covers 50 different elements, which are grouped
into three main categories: “technical complexity” (T), “organizational complexity”
and “environmental complexity” (E). Additional subcategories of TOE are defined

ELIT3 9 < 99 ¢ LLIT3 ELIT3

on a lower level: “goals”, “scope”, tasks”, “experience”, “size”, “resources”, “project
team”, “trust”, “stakeholders”, “location”, “market conditions”, and “risks”, show-
ing that organizational and environmental complexity are more often linked with
softer, qualitative aspects. Interestingly, Bosch-Rekveldt et al. (2011) distinguish
between project complexity and project management (or managerial) complexity.
Project management complexity is seen as a subset of project complexity. Various
normative organizing principles to cope with managerial complexity can be found
in the standard literature on project management (e.g. Shtub et al. 2006; Kerzner
2009). If, for instance, managerial complexity is low, project management within the
classic functional organizational units of the company is usually most efficient and
cross-functional project organization types can create unnecessary overhead. How-
ever, if coordination needs between functional, spatial and temporal boundaries are
high, a matrix organization is often a better practice allowing development projects to
be staffed with specialists from throughout the organization (Shtub et al. 2006). For
large engineering projects with a long duration a pure project organization is often the
preferred type in industry as the project is cared for full-temporally by a team that is
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fully responsible for the entire extent. Specific sources of managerial complexity and
their impact on performance were also examined in the literature, e.g. communication
across functional boundaries (Carlile 2002), cross-boundary coordination (Kellogg
et al. 20006), spatial and temporal boundaries in globally distributed projects (Cum-
mings et al. 2009) and the effects of a misalignment in the geographic configuration
of globally distributed teams (O’Leary and Mortensen 2010). Maylor et al. (2008)
developed an integrative model of perceived managerial complexity in project-based
operations. Based on a multistage empirical study elements of complexity were iden-
tified and classified under the dimensions of “mission”, “organization”, “delivery”,
“stakeholder”, and “team”.

The literature review shows that there is a large variety of nomenclatures and def-
initions for the sources of complexity in NPD projects. However, the underlying fac-
tors have not yet been integrated into a single objective and valid framework. Accord-
ing to Lebcir (2011) there is an urgent need for a new, non-confusing, and comprehen-
sive framework that is derived from the extensive body of knowledge. He suggests a
framework in which “project complexity” is decomposed into “product complexity”
and “innovation”. Product complexity refers to structural complexity (see Sect. 2.3)
and is determined by “product size” in terms of the number of elements (compo-
nents, parts, sub-systems, functions) in the product and “product interconnectivity”,
representing the level of linkages between elements. On the other hand, innovation
refers to “product newness” and “project uncertainty”. Product newness represents
the degree of redesign of the product compared to previous generations of the same
or similar product. Project uncertainty represents the fact that methods and capabil-
ities are often not clearly defined at the starting point of a project. The results of a
dynamic simulation indicate that an increase in uncertainty has a significant impact
on the development time. The other factors tend to increase development time as they
increase, but their impact is not significantly different in projects involving medium
or high levels of these factors.

The complexity templates and frameworks from organization theory are especially
beneficial for project management because they help to focus managerial intervention
on empirically validated performance-shaping factors. It must be criticized, though,
that without a quantitative theory of emergent complexity it is almost impossible to
identify the essential variables and their interrelationships. Furthermore, it is very dif-
ficult to consolidate them into one consistent complexity metric. In the literature very
few authors, such as Mihm et al. (2003, 2010), Rivkin and Siggelkow (2003, 2007),
Braha and Bar-Yam (2007) build upon quantitative scientific concepts for the analysis
of complex organizational systems. Mihm et al. (2003) present analytical results from
random matrix theory predicting that the larger the project, as measured by compo-
nents or interdependencies, the more likely are problem-solving oscillations and the
more severe they become—failure rates grow exponentially. In the work of Rivkin
and Siggelkow (2003, 2007) the famous biological evolution theory of Kauffman and
the NK model are used for studying organizations as systems of interacting decisions.
Different interaction patterns such as block diagonal, hierarchical, scale-free, and so
on are integrated into a simulation model to identify local optima. The results show
that by holding the total number of interactions among decisions fixed, a shift in the
pattern can alter the number of local optima by more than an order of magnitude. In
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a similar fashion Mihm et al. (2010) use a statistical model and Monte-Carlo exper-
iments to explore the effect of an organizational hierarchy on search solution stabil-
ity, quality and speed. Their results show that assigning a lead function “anchoring”
a solution speeds up problem solving, local solution choice should be delegated to
the lowest hierarchical level and organizational structure matters little at the middle
management level, but it matters at the “front line”—front-line groups should be kept
small. Braha and Bar-Yam (2007) examine the statistical properties of networks of
people engaged in distributed development and discuss their significance. The au-
toregression models of cooperative work in NPD that will be introduced in the next
section (Egs. (17) and (24)) are quite closely related to their dynamical model. How-
ever, there are important differences: the autoregression models are defined over a
continuous range of state values and can therefore represent different kinds of co-
operation relationships as well as precedence relations (e.g. overlapping); each task
is nonequally influenced by other tasks; and finally, correlations p;; between perfor-
mance fluctuations among tasks i and j can be captured.

2.2 Approaches from basic scientific research
2.2.1 Algorithmic complexity

Historically, the most important approach from basic scientific research is algorithmic
complexity, dating to the great mathematicians Kolmogorov, Solomonoff and Chaitin
(Chaitin 1987; Li and Vitanyi 1997). Considering an information processing system,
the complexity of the intricate mechanisms can be evaluated using output signals and
symbols that are communicated to an intelligent observer. In that sense, complexity
is manifested to an observer through the complicated way in which events unfold in
time and organize in state space. If the output is symbolic, it can be concatenated in
the form of strings and may be sequentially stored in a computer file. The symbols
are typically chosen from a predefined alphabet X. If the output is not symbolic, it
can be encoded with methods of symbolic dynamics (Lind and Marcus 1995; Nicolis
and Nicolis 2007). The central idea of Kolmogorov, Solomonoff and Chaitin is that
a generated string is “complex” if it is difficult for the observer to describe. The
observer can describe the string by writing a computer program that reproduces it.
The difficulty of description is measured by the length of the computer program on
a Universal Turing Machine U. If x is a binary string, the algorithmic complexity of
x, termed Ky (x), is the length of the shortest program with respect to U that will
print x and then halt. According to Chaitin (1987) an additional requirement is that
the string x has to be encoded by a prefix code d(x). The complete definition is:

Ky (x) =min{|d(p)|: U(p) = x}. M

In that sense, Ky (x) is a measure of the computational resources needed to spec-
ify the string x in the language of U. According to this concept, a simple periodic
work process whose activities (labeled by discrete events) are processed in strict cy-
cles, like in an assembly line, is not complex because we can store a sample of the
period and write a program that repeatedly outputs it. At the opposite end of the com-
plexity range, a random work process without a purposefully designed organization
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cannot be described in any meaningful way except by storing every feature. This is
due to the mere fact that we cannot identify any persisting structure to utilize for a
shorter description. It is obvious that the algorithmic complexity is not a good mea-
sure for emergent complexity in NPD projects, because it is maximal in the case of
a completely randomized task processing. It usually cannot uncover the important
long-range temporal coordination structures either. An additional conceptual weak-
ness is that it aims for an exact description of observations. Many of the details of any
configuration are just random fluctuations (noise). It is impossible to identify regu-
larities from noise that generalize to other data sets from the same system; to assess
complexity, the underlying rules must be in focus and separated from noise (Shalizi
2006). Therefore, a statistical representation is necessary.

2.2.2 Stochastic complexity

The most prominent statistical complexity measure is Rissanen’s (1989, 2007)
stochastic complexity. To clarify the concept, it is assumed that we have carried
out a comprehensive longitudinal study of cooperative work in an NPD project and
have drawn a large sample of work processes. Single work process observations
in a specific project phase were labeled by discrete events and stored in a string
xd = (X0 X1y - X1) (Kjoy €X, j(@ €{l, ..., X}, T=0,1,...,T),in-
dicating the history of task processing across an interval 7. Labeling converts the rel-
evant features into discrete events such as rapidly or slowly declining work remaining
(see Sect. 3). The index j(t) can be interpreted as a pointer to event x j ;) observed
at process instant t. The analysis of all work process observations in the project
phase allows the formation of a joint probability mass function P(Xo,..., X7). It
is assumed that we can uncover the essential dynamical dependency structures and
represent the probability mass function efficiently using a discrete state model (e.g.
a first-order Markov chain). We denote the parameters of the model by the tuple 6
(probabilities of initial state, transition probabilities etc.). The model assigns a cer-
tain probability

P(Xo=xj0),---» XT =Xj(110), 2)

to the data. The discrete state variables (Xo, ..., X7]6) form a one-dimensional ran-
dom process representing an ensemble of histories that can be explained in light of
the model. The above likelihood function can be transformed into a loss function L
representing the information content:

1
P(Xo=xj©)s---> szxj(7)|0)
= —log, P(Xo=x;),-..,» XT =Xj(1)|0). 3)

L[G, xg] :=log,

According to information theory, minimizing the loss can also be thought of as min-
imizing the encoded length of the sequence. However, we do not have a complete
description; we have an encoded version of the data, but we have not specified what
the encoding scheme, i.e. the model itself, is (Shalizi 2006). Thus, the total descrip-
tion length DL can be divided into two parts,

pL[xI,6,0]=L[6,x] ]+ DIb, O],
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where D[6, ©] is the number of bits needed to specify 6 from among the set of all
feasible models in class ® (e.g. class of Markov chains of order n). The model repre-
sents the part of the description, which can be generalized, whilst L[6, xOT ] includes
the noisy part that does not generalize to other data sets. If D[6, @] assigns short
code words to simple models, we have the desired tradeoff: we can reduce the part of
the data that looks like noise only by using a more elaborate model. The minimum
description length (MDL) principle of Rissanen (1989, 2007) allows the selection of
the model that minimizes the total description length:

OympL = argm@inDL[xOT,@, @].

The stochastic complexity Cgc of xg given the model class © is simply the MDL:
Csc[xd .0]:= meinDL[xOT,G,@]. @)

Under mild conditions for the process in the class ®, as we provide more data,
Oy pr, will converge to the model in @ that minimizes the generalization error. Re-
garded as a principle of model selection, MDL has proved very successful (Griin-
wald 2007). Nevertheless, a part of this success comes from tuning the model-coding
term D[6, @] so that models that do not generalize well turn out to have long de-
scriptions. This is not illegitimate, but it relies on the intuition and knowledge of the
model builder. Whatever its merits as a model selection method, stochastic complex-
ity is not a good metric of emergent complexity in NPD projects for three reasons
(sensu Shalizi 2006): (1) The dependence on the model-encoding scheme, which is
difficult to formulate in a valid form. (2) The log-likelihood term, L[, xg ], can be
decomposed into additional parts, one of which is related to the entropy rate of the
information-generating work processes (1, Eq. (13)) and so it reflects their intrinsic
unpredictability, not their complexity. (3) The need to specify some particular dy-
namic model and to formally represent this specification. This is necessarily part of
the model development process but seems to have no significance from a theoretical
point of view. For instance, an NPD project does not need to represent its organiza-
tion; it just has it.

2.2.3 Effective measure complexity and forecast complexity

Motivated by weaknesses such as these, the physicist Peter Grassberger (1986) de-
veloped a highly satisfactory complexity theory whereby complexity is the amount
of information required for optimal prediction. In general, there is a limit to the ac-
curacy of any prediction of a given system set by the characteristics of itself, e.g.
free will of decision makers, limited precision of measurement etc. Suppose we have
a model that is maximally predictive, i.e. its predictions are at the theoretical limit
of accuracy. Prediction is always a matter of mapping inputs to outputs. In our ap-
plication context, the inputs might be work process observations labeled by discrete
events, and the output could be the future course of the project. However, the entire
past is usually not relevant for making good predictions. In fact, if the task processing
is strictly periodic, one only needs to know which of the ¢ phases the work process is
in. For a completely randomized work process with independent and identically dis-
tributed (iid) state variables, the past is completely irrelevant for predicting the future.
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Because of this “memorylessness”, the clever, evidence-based estimates of an expe-
rienced project manager on average do not outperform naive guesses of the outcome
based on means. If we ask how much information about the past is relevant in these
two extreme cases, the correct answers are log, (¢) and 0, respectively. It is intuitive
that these cases are of low complexity, and more informative dynamics “somewhere
in between” must be assigned high complexity values.

When dealing with a Markovian model such as the vector autoregression model
that will be formulated in Sect. 3.2, only the present state of work remaining is rel-
evant (Eq. (17)), so the amount of information needed for optimal prediction is just
equal to the amount of information needed to specify the current state. More formally,
any predictor g will translate the one-dimensional infinite past x:;o into an effective
state s = g[x:éo] and then make its prediction on the basis of 5. The amount of infor-
mation required to specify the effective state in case of discrete-type random variables
(or discretized continuous-type random variables) can be expressed by Shannon’s in-
formation entropy H[S] (Cover and Thomas 1991). It is defined for a discrete-type
random variable X with values in the alphabet X" as

H[X]:=— Z P(X =x)log, P(X = x). 5)
xeX
H[.] measures in [bits] the amount of freedom of choice in the associated decision
process. If we focus on the set M of maximally predictive models, we can define
what Grassberger called “the true measure complexity” C, of the process as the
minimal amount of information needed for optimal prediction:

Cu = min H[g[x=L]]- (6)

X~L, denotes the infinite, one-dimensional sequence of random variables
...X_3X_»X_1 representing the past of the process. Unfortunately, Grassberger
provided no procedure for finding the maximally predictive models. However, he
did draw the following conclusion. A basic result of information theory, called “the
data-processing inequality”, says that for any pair of random variables A and B the
mutual information follows the rule:

ITA, B] = I[g[Al, B]
The mutual information I[., .] measures the amount of information that can be ob-
tained about one random variable by observing another and can be equivalently ex-
pressed through the entropy H[.] as
I[A, Bl= H[A] — H[A|B]
= H[A]+ H[B] — H[A, B]
=1[B, Al.

According to the data-processing inequality, it is impossible to extract more infor-
mation from samples by processing than was in the samples to begin with. Since the
state of the predictor is a function of the past, it follows that

I[X2%, X5°] = 1[e[X 5] X&),
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where X° represents infinite future (including the present state). Presumably, for op-
timal predictors, the two information values are equal and the predictor’s state is just
as informative as the original data. Otherwise, the model would be missing potential
predictive power. Another basic inequality is that H[A] > I[A, B], i.e. no variable
contains more information about another than it does about itself. Even for the max-
imally predictive models, H[X :Cl,o] > I[X :éo, Xg"]. Grassberger called the latter
quantity 7[X :Cl,o, X§°]—the mutual information between the past and the future—
the Effective Measure Complexity (EMC):

EMC :=I[X_L, X§]. M

Shalizi and Crutchfield (2001) proved that the true measure complexity gives an up-
per bound:

C, >EMC.

In terms of a communication channel, EMC is the effective information transmission
rate of the process. The units are bits. C, is the memory stored in that channel.
Hence, the inequality above means that the memory needed to carry out an optimal
prediction of the future cannot be less than the information that is transmitted from
the past X :éo to the future X§° (by storing it in the present).

Another key invariant of stochastic processes that was discovered much earlier is
Shannon’s source entropy rate:

n=rn
hy = lim m ®)
n—0oo ]’]

This limit exists for all stationary processes. The source entropy rate is the intrinsic
randomness that cannot be reduced, even after considering statistics over longer and
longer blocks of generating variables. The unit of /4, is bits/symbol. In the above
definition the variable H[X"] is the information entropy of length-n blocks X" . In the
following, we will use the shorthand notation H (n) to represent this kind of entropy,
which is also termed Shannon block entropy (Grassberger 1986). For discrete-type
random variables it is defined as

H(n):=H[X"]=— ) P(X"=x")log, P(X" =x"), )
xteXxn
with
H(0):=0. (10)

The sums in the above equation run over all possible blocks of length n. The entropy
rate i, can also be defined on the basis of the two-point slope /,(n) of the block
entropy H (n). If the block length n is varied, the two-point slope is simply

hu(m):=H@m)—H(Mm—1), (11)
with
hy,(0) :=log, | X|. (12)

h,,(n) can be regarded as a dynamic entropy representing the entropy gain. i, (n) can
also be expressed as conditional entropy (cf. Eq. (30))

hu(n) == H[X,|X""'].
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In the limit of infinitely long blocks, it is equal to the source entropy rate
hu=n1£20hu(”=’7)- (13)

According to Crutchfield and Feldman (2003) each difference h,(n) — h,, repre-
sents the difference between the entropy rate conditioned on n measurements and
the entropy rate conditioned on an infinite number of measurements. In that sense, it
estimates the information-carrying capacity in blocks in which the difference is not
actually random but arises from correlations. The differences can be used to define a
universal learning curve A(n) (Bialek et al. 2001) as

Am):=h,n) —h,, n>1. (14)

The EMC is the discrete integral of A(n) with respect to the block length n, which
controls the speed of convergence of the dynamic entropy to its limit (Crutchfield
et al. 2010):

(0.¢]
EMC::ZA(n). (15)
n=1
In the sense of a learning curve, the EMC evaluates the apparent randomness at
small block length n that can be “explained away” by considering correlations among
blocks with increasing length.

As already mentioned, the EMC is zero for an iid process. According to Bialek
et al. (2001), it is positive in all other cases and grows with time less rapidly than a
linear function (subextensive). The EMC may either stay finite or grow infinitely with
time. If it stays finite, no matter how long we observe the past of a process, we gain
only a finite amount of information about the future. This holds true, for instance, for
the cited periodic processes after the period ¢ has been identified. A longer period re-
sults in larger complexity values and EMC = log, (¢). For some irregular processes,
the best predictions may depend only on the immediate past, e.g. in our Markovian
model or generally when evaluating a system far away from phase transitions or sym-
metry breaking. In these cases, the EMC is also small and is bound by the logarithm
of the number of accessible states. Systems with more accessible states and larger
memories are assigned larger complexity values. On the other hand, if the EMC di-
verges and optimal predictions are influenced by events in the arbitrarily distant past,
then the rate of growth may be slow (logarithmic) or fast (sublinear power).

The mutual information between the infinite past and future histories of a stochas-
tic process has been considered in many contexts. It is termed, for example, excess en-
tropy E (Crutchfield and Feldman 2003; Ellison et al. 2009; Crutchfield et al. 2010),
predictive information /.4 (Bialek et al. 2001), stored information (Shaw 1984) or
simply complexity (Arnold 1996; Li 1991). Rissanen (1996, 2007) also refers to the
part of stochastic complexity required for coding model parameters as model com-
plexity.

2.3 Complexity measures from theories of systematic engineering design
The most prominent complexity theory in the field of systematic engineering design

has been developed by Suh (2005) on the basis of his famous axiomatic design the-
ory. His theory aims at providing a systematic way of designing large-scale systems.
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He defines complexity in the functional domain and measures uncertainty through
information-theory quantities. In this view, the product to be developed and the prob-
lem to solve the design issues are coupled through functional requirements (FRs) and
design parameters (DPs). Two axioms are proposed, the independence and the infor-
mation axioms. The independence axiom states that the FRs should be maintained by
the developers independently of one another. When there are two or more FRs, the
design solution must be such that each of the FRs can be satisfied without affecting
any of the other FRs. This means that a correct set of DPs is to be chosen so as to
satisfy the FRs and maintain their independence. If the independence can be main-
tained for all FRs, the design is “uncoupled” and a theoretically optimal solution.
Once the FRs are established, the next step is the conceptualization process, which
occurs during the mapping process going from the functional to the physical domain.
The conceptualization process may produce several designs, all of which may be sat-
isfactory in terms of the independence axiom. Even for the same task defined by a set
of m FRs (FRy, ..., FRy,), itis likely that different developers will come up with dif-
ferent designs, because there are many acceptable solutions. The information axiom
provides a guideline in selecting the best design among those. The metric being used
is the information content I; for a given FR; (1 <i < m). The information content is
defined on the basis of the probability p; of satisfying FR;:

1
I; :=log, P —log; pi-

1

In the general case of m FRs, the information content Iy for the entire system is
Isys :=—log, P(Xm),

where P(X™) denotes the joint probability that all m FRs are satisfied. When all FRs
are independent the information content /gy, can be decomposed into independent
summands — log, p;. When not all FRs are statistically independent, there holds

m
Iys ==Y logy piygy for (j}={1.....i —1}.

i=1

The term p;(;; denotes the conditional probability of satisfying FR; given that all
other interrelated {FR;};—1,. ;—1 are also satisfied. The information axiom states
that the best design is the one with the smallest Iy, because the least amount of
information is required to achieve the design goals. The probability of success p; can
be determined by the intersection of the design range defined to satisfy the FRs and
the ability of the system to produce the part within the specified range. It can be cal-
culated by specifying the design range () for the FR and by determining the system
range (sr) that the proposed design can provide to satisfy the FR. The lower bound
of the specified design range for functional requirement FR; is denoted by r/[FR;],
and the upper bound by r“[FR;]. The system range can be modeled by a probabil-
ity density function (pdf, Papoulis and Pillai 2002). The system pdf is denoted by
Ssys[FR;]. The overlap between the design and system ranges is called “the common
range” (cr), and this is the only range where the FR is satisfied. Consequently, the
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area A, under the system pdf within the common range is the design’s probability
of achieving the specified goal. The information content /; can be expressed as
r“[FR;]
I = —logz Aer = —logz/ fsys [FR;1dFR;.
r'[FR;]

Suh (2005) calls a design complex when its probability of success is low and hence
the information content Iy required to satisfy the FRs is high. To govern the de-
sign process toward more robust systems, he formulates an additional complexity
axiom, which says “reduce the complexity of a system” (Suh 2005). The metric is
the information content according to the above equation. In that sense Suh ties the
notion of complexity to the design range for the FRs—the tighter the design range,
the more difficult it becomes to satisfy the FRs. An uncoupled design is likely to
be least complex. However, the complexity of a decoupled design can be high be-
cause of so-called “imaginary complexity” if we do not understand the system. It is
not really complex, but it appears to be so because of our “ignorance”. According to
Suh (2005) complexity can also be a function of time if the system range changes
over time. Two types of time-dependent complexity are distinguished: combinatorial
and periodic complexity. Time-dependent combinatorial complexity is defined as the
complexity that increases as a function of time because of a continued expansion in
the number of possible combinations of FRs and DPs. Periodic complexity is defined
as the complexity that only exists in a finite time period, resulting in a finite and lim-
ited number of probable combinations. If a system is subject to combinatorial com-
plexity, Suh (2005) hypothesizes that the uncertainty of future outcomes continues
to grow over time, and as a result, the system cannot have long-term stability. In the
case of systems with periodic complexity, he presumes that the system is determinis-
tic and can renew itself over each period. Under this premise a reliable system must
be periodic. A systematically designed system should have small time-independent
real and imaginary complexity and no time-dependent combinatorial complexity. If
the system range must change as a function of time, the developer should introduce
time-dependent periodic complexity.

Although Suh’s complexity theory is grounded in axiomatic design theory and
has been successfully applied in different domains, our criticism is that product and
design problems are evaluated irrespective of the work processes, which are needed to
decompose the FRs and DPs. The decomposition is a highly cooperative process that
must be taken into account to satisfy all specified FRs on time and to avoid cycles of
continuing revisions. Furthermore, the fact that Suh uses the information content Iy
directly as a complexity measure can be subject to criticism. Iy, is a simple additive
measure that only represents the encoded length of the design in terms of binary
design decisions. It does not take into account the encoding scheme. However, both
parts of the description of a design are important because the description can always
be simplified by formulating more complicated design rules, more complex standard
components or interfaces (cf. Sect. 2.2.2). Finally, Suh (2005) does not define specific
measures for time-dependent complexity.

El-Haik and Yang (1999) have extended Suh’s theory by representing the imagi-
nary part of complexity through the differential entropy (Sect. 4) associated with the
joint pdf of FRs with three components of variability, vulnerability and correlation.
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These components evaluate the product design according to the vector of DPs (see
Summers and Shah 2010). Although this approach is able to assess the mapping from
the FRs to the DPs, an analysis of the topological structure of the Design Structure
Matrix (Browning 2001, see discussion below) and the variability of the design pa-
rameters do not take into account the dynamics of concurrent development processes
in terms of a Work Transformation Matrix (WTM, Sect. 3.1). An alternative view
introduced by Braha and Maimon (1998) suggests that complexity is a fundamen-
tal characteristic of the information content within either the product or the process.
They introduce two measures that quantify either the structural representation of the
information or the functional probability of achieving the specified requirements. The
measures are able to compare products and processes at different levels of abstrac-
tion. The process is nominally defined as mapping between the product and problem,
where the coupling determines process complexity. The size of the process is de-
fined as the summation over the number of instances of operators (relationships) and
operands (entities). A process instance is a sequence of the instances of operands
and operators. The average information content of sequences can be evaluated on
the basis of the block entropy (Eq. (9)). As the design takes on different types of
representations through the development stages, the average information contained
changes. Braha and Maimon (1998) suggest that the ratio of the amount of average
information content between the initial and current states is a measure of the current
abstraction level. The effort required to move between abstraction levels is inversely
proportional to this ratio. The proportionality constant is the information content of
the current state. Summers and Shah (2010) follow these lines of thought and pro-
pose a process size complexity measure that includes the vocabulary of the specific
representation for the problem, the product, the development process and the four
operators available for sequencing the states of the design evolution. The measure is
defined as

Cxize _process
= (M" +C%+ Pop)ln|idv+ddv +dr+mg + agp + eop + Sop + ropl-

The size of the vocabulary is represented by the total number of possible primitive
modules (M?), possible relations between these modules (C?) and possible operators
and operands (P,)). The additional parameters denote the variables whose values are
controlled by the designer (idv), are derived from the independent design parameters,
other dependent variables and design relations (ddv), are constraints that dictate the
association between the other design variables (dr), are used to determine how well
the current design configuration meets the goals (mg) plus the four operators avail-
able for sequencing the states. Although the concepts based on information contents
are appealing, the fact that the development process is only analyzed on different
hierarchical description levels, not on the basis of an explicit state-space model of
cooperative work opens it to criticism, because it does not take into account dynamic
entropies in the sense of Grassberger’s theory. Furthermore, in real design problems,
it is difficult to identify all operators and operands in advance and to specify valid
sequences leading from one level of abstraction to the next.

In addition to methods for measuring characteristics of the design based on
information-theoretic quantities, a large body of literature has been published around
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the Design Structure Matrix (Steward 1981) as a dependency modeling technique
supporting complexity management by focusing attention on the elements of a
system and the dependencies through which they are related. Recent surveys can
be found in the textbooks of Lindemann et al. (2009) or Eppinger and Brown-
ing (2012). Browning (2001) distinguishes two basic DSMs types: static and time-
based. Static DSMs represent either product components, development tasks or
teams in an organization existing simultaneously. Time-based DSMs either repre-
sent dynamic activities indicating precedence relationships or design parameters
that change as a function of time. Product- or team-related static DSMs are usu-
ally analyzed for structural characteristics or by clustering algorithms (e.g. Rogers
et al. 2006), while time-based DSMs are typically used to optimize workflows based
on sequencing, tearing and banding algorithms (e.g. Gebala and Eppinger 1991;
Maurer 2007). Kreimeyer et al. (2008) reviews and discusses a comprehensive set of
metrics that can be applied to assess the structure of engineering design processes en-
coded by DSMs (and other forms). The vast majority of work on complexity manage-
ment with static DSMs focuses on the concept of modularity in identifying product-
related cluster structures (see Baldwin and Clark 2000). This work has been very
influential in academia and industry. An important limitation, however, is a purely
static view of the product structure and, consequently, of the task structure and the
interactions among them. Task processing on different time scales corresponding to
different autonomous task processing rates of developers cannot be represented. Re-
cent publications also indicate that technical dependencies in product families tend
to be volatile and therefore coordination needs among development tasks can evolve
over time (e.g. Cataldo et al. 2006, 2008; Sosa 2008). When those evolving coordina-
tion needs are not adequately managed, significant misalignments of organizational
structure and product architecture can occur that have a negative effect on product
quality (Gokpinar et al. 2010). An effective method for dealing with volatility of de-
pendencies is to use models with different static task-based DSMs (see Sects. 3.1
and 3.2) for different phases of the project where no task is theoretically processed
independently of the others. Furthermore, at the transition points between phases ad-
ditional task-mapping matrices can be specified. By doing so, the number of tasks as
well as the kind and intensity of coordination needs can be adapted.

Another limitation of the concept of product modularity is that the organizational
patterns of a development project (e.g. communication links, team co-membership)
not necessarily mirror the technical dependency structures (Sosa et al. 2004). The lit-
erature review of Colver and Baldwin (2010) shows that the “mirroring hypothesis”
was supported in only 69 % of the cases. Support for the hypothesis was strongest in
the within-firm sample, less strong in the across-firm sample, and relatively weak in
the open collaborative sample. In that sense, static task-based DSMs represent depen-
dency structures in their own right. They must be related to product components or
development teams through additional multiple domain mapping matrices (Danilovic
and Browning 2007) and cannot be substituted by the traditional modeling elements.

An approach for measuring structural complexity based on component-based
DSMs that is formally similar to our dynamic dependency analysis in the spectral
basis (see Sects. 3.3 and 4.2) has been introduced by Sinha and de Weck (2009). The
parameters of their metric C are related to the complexity of each component in the
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product («;) and the complexity of each connection between a pair of components
(Bij). Moreover, a scaling factor y is introduced. The definition is (Denman et al.
2011):

n n n
C=) o+ (Z Zﬂi,-Ai,)yE(A)
i=1 i=1 j=1

The scaling factor y is taken as 1/n and used to map the n different components
onto a comparable scale. The matrix A is the component-based DSM of the product.
The underlying concept of the metric is that in order to develop the individual com-
ponents, a non-zero complexity is involved. This complexity can vary across compo-
nents and is represented by the «;’s. Similar arguments hold true for the complexity
of each connection. If there are multiple types of connection between two compo-
nents (energy flow, material flow, control action flow etc.), large beta coefficients are
assigned since it would require more effort to implement them compared to a simpler
(univariate) connection. An important aspect is the correlation among the «;’s and
Bi’s that can vary depending on the kind of product. For large-scale mechanical sys-
tems, the B;’s are often much smaller than the «;’s. However, in micro or nanoscale
systems it can be the opposite, because it is often much more difficult to develop the
interfaces. Finally, the term E(A) represents the graph energy of the DSM. For the
calculation a binary encoding scheme is used (i.e. an adjacency matrix). The graph
energy is defined as the sum of the singular values o; of the orthogonal vectors:

n
E(A):=) o,
i=1
where

A=Ux,VT
X4 = diag[o;].

The graph energy is invariant under isomorphic transformations (Weyuker 1988) and
therefore highly objective. Summers and Shah (2010) developed a coupling measure
based on graphical models in which the tasks are nodes of a graph and connected
through variable dependency. This measure requires a formal representation that is
based on undirected graphs, which seem to not be expressive enough for project man-
agement and consequently will not be considered in the following.

The information-theory and dependency-structure-based complexity metrics from
theories of systematic engineering design are undoubtedly beneficial in facilitating
studies that require the use of equivalent but different design problems and in com-
paring computer-aided design automation tools. However, they do not stress the dy-
namic nature of cooperation in NPD projects and cannot be derived from first princi-
ples. Therefore, we will bring the EMC into focus in the following sections accord-
ing to Grassberger’s seminal theoretical work (1986). EMC is able to evaluate self-
generated complexity and can be calculated efficiently either from generative models
or from field data, without intervening models. If the work processes are represented
by a generative model in a specific class but with unknown parameters, we can derive
closed-form solutions of different strength, as will be shown in Sects. 4.1 and 4.2
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for first order vector autoregression models (cf. Egs. (38) and (45)). Corresponding
deterministic and stochastic formulations will be developed in the next section.

3 Models of cooperative work in new product development projects
3.1 Deterministic formulation

To analyze the interrelationships between project dynamics and emergent complexity
explicitly, mathematical models of cooperative work had to be formulated. We start
by formulating a deterministic continuous-state, discrete time model. The model is
based on the seminal work of Smith and Eppinger (1997), according to whom the time
evolution of a NPD project with p concurrent but interacting tasks can be expressed
as

xp=Ao-x—1 (=1). (16)

The p-dimensional state vector x; represents the work remaining for all tasks at time
step t. The amount of work remaining can be measured by the time left to finalize a
specific design, the number of engineering drawings requiring completion before the
design is released, or the number of open issues that need to be addressed/resolved
before design release (Yassine et al. 2003). The p x p matrix Ag = (a;;) is a dy-
namical operator for the iteration over all tasks, also called the “work transforma-
tion matrix” (WTM). According to Browning’s taxonomy in the previous section,
the WTM is a static task-based DSM covering all parallel development tasks. Con-
tinuing feedback/feed-forward loops are modeled by the off-diagonal elements. The
WTM enables the project manager to model, visualize and evaluate the dynamic de-
pendencies among development tasks and to derive suggestions for reorganization.
The task-centered approach is motivated by the work of Tatikonda and Rosenthal
(2000), who relate project complexity to the nature, quantity and magnitude of or-
ganizational subtasks and subtask interactions. Given a distinct phase of an NPD
project, it is assumed that the WTM does not vary with time.

In this paper, we use the improved WTM concept of Yassine et al. (2003) and
Huberman and Wilkinson (2005). Hence, the diagonal entries a;; (i = 1...p) ac-
count for different productivity levels of developers and are defined as autonomous
task-processing rates. This is in contrast to the original WTM model of Smith and
Eppinger (1997) in which tasks are processed at the same rate. The a;;’s indicate the
part of the work left incomplete after an iteration over task i and therefore must be
nonnegative real numbers (a;; € R™). The off-diagonal entries a;; (i # j) model the
coupling among tasks and indicate the intensity and nature of cooperative relation-
ships. Depending on their value, they have different meanings: (1) if a;; = 0, work
carried out on task j has no direct effect on task 7; (2) if a;; > 0, work on task j
slows down the processing of task i, and one unit of work on task j at time step
t generates ag;; units of extra work on task 7 at step ¢ + 1; (3) if a;; < 0, work on
task j accelerates the processing of task i, and one unit of work on task j reduces
the work on task i by a;; units at time step ¢ + 1. The only limitation on the use of
negative entries is that negative values of work remaining in the state vector x; are
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not allowed. In practice, many off-diagonal elements must be expected to be larger
than zero, because NPD projects usually require intensive cooperation, leading to
additional work. This paper only considers project phases in which subgroups of in-
teracting tasks must be processed in parallel. That means that no task in the subgroup
is theoretically processed independently of the others, because input about modules
or components under development by other tasks is required regularly. This assump-
tion does not limit the generality of the approach. In NPD projects in which work is
broken down into non-overlapping stages, the analysis holds for each stage.

The time instant = O usually indicates the beginning of a phase. It is often as-
sumed that all parallel tasks are initially 0 % complete, and so the initial state is
xo=1[1,..., 1]T. However, one can also assign nonnegative values smaller than one
to vector components of xg. By doing so, it is possible to model overlapping tasks
(see Schlick et al. 2008, 2012). Moreover, if an NPD project undergoes major reor-
ganization, one can define separate initial states and WTMs.

From the theory of linear systems it is known that the rate and nature of
convergence of the modeled NPD project are determined by the eigenmodes of
Ag. Following Smith and Eppinger (1997), we use the term “design mode” ¢; =
(Xi(Ap), ¥ (Ap)) to refer to an eigenvalue A; (Ag) inherent to Ag along with its eigen-
vector 9;(Ag) (1 <i < p). In that sense, each design mode ¢; has both temporal
(eigenvalue) and structure-organizational (eigenvector) characteristics. According to
Luenberger (1979), the work remaining converges to the zero vector, if and only if
the modulus of all eigenvalues X;(Ap) is less than 1: that is, Vi: [A;(Ag)| < 1. In
this case, the project is asymptotically stable. We follow the convention of listing
the eigenvalues in order of decreasing magnitude (|A1(Ag)| > [A2(Ag)| > ---). The
equation |A1(Ap)| =1 for the first design mode ¢; with the dominant (i.e. greatest-
magnitude) eigenvalue determines the stability bound of the project. If the project is
not asymptotically stable and |A1(Ag)| > 1, a redesign of tasks is necessary, because
the work remaining increases beyond all given limits. Unfortunately, even if the mod-
eled project is asymptotically stable, theoretically an infinite number of iterations are
necessary to reach the state where zero work remains for all tasks. Therefore, the
project manager has to specify an additional stopping criterion § € [0; 1], e.g. at most
five percent for all tasks. According to Huberman and Wilkinson (2005), the zero
vector represents a theoretical optimal solution, and the values of the state vector are
an abstract measure of the amount of work left before a solution is optimal.

3.2 Stochastic formulation in original state space

In their seminal paper on performance variability and project dynamics, Huberman
and Wilkinson (2005) showed how to model NPD projects as open organizational sys-
tems based on stochastic processes theory. An open organizational system is a system
in which humans continuously interact with each other and with their work environ-
ment. These interactions usually take the form of goal-directed information exchange
within and through the system boundary and lead to a kind of self-organization, since
patterns can emerge that convey new properties, such as oscillations. In the work pre-
sented here, we follow the basic ideas of Huberman and Wilkinson and formulate
a model as a linear stochastic difference equation. However, we do not incorporate
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“multiplicative noise” to represent performance variability as Huberman and Wilkin-
son did, but rather assume that the effects of performance fluctuations are cumulative.
Our model generalizes the deterministic state Eq. (16) to a stochastic process {X;}
generated by

XtZAO'Xt_] + &;. (17)

The random variable X, € [0; 1]7 represents the measured (or estimated) work re-
maining at time step . Ag is the cited WTM. The variable ¢, is used to model per-
formance fluctuations (noise). In NPD projects there are many performance-shaping
factors. Although we do not know their exact number or distribution, the central limit
theorem tells us that, to a large degree, the sum of independently and identically
distributed factors can be represented by a Gaussian distribution N (x; i, C) with lo-
cation u = E[x] and covariance C = E[(u —x) - (u — x)T]. The covariance matrix C
is a square matrix of size p, whose entry Cy[; j7) in the i, j position is the covariance
between the i-th element x ) and the j-th element x(/) of the random vector X, that
is

Ciii.jn = Cov[x @, xP] = E[(u® — x @) (uD) — xD)].
C is symmetric by definition and also positive-semidefinite (Lancaster and Tismenet-
sky 1985). The diagonal elements Cj; ;1) represent the scalar-valued variances
¢ = Var[x @] = E[(u® —x@)?]. (18)

cii is the standard deviation. The off-diagonal elements Cy; jj) represent the scalar-
valued covariances

PijCiiCjj = pij\/Var[x(i)]Var[x(f)] (i 75 ]), (19)

where the first factor is Pearson’s famous product-moment coefficient

pij = Corr[x®, x| = Cov[x®, x()] |
\/Var[x(i)]var[x(,i)]

The correlation p;; is +1 in the case of a perfect positive linear relationship and —1
in the case of a perfect negative linear relationship. It has values between —1 and 1 in
all other cases, indicating the degree of linear dependence between the variables. We
assume that the fluctuations have no systematic component and that iz = (00 ... 0)T.
We put no restrictions on the covariance matrix C. Hence, ¢, is represented by the
Gaussian pdf

(20)

FIXI=N(x;0,C) = Lot o -xj| 1)

1
@m)P/2(Det[C])' 2 Exp[_z

(see e.g. Puri 2010). If C = {02} I,,, we speak of isotropic noise. The factor o2 eR*t
represents the scalar variance.

It is not difficult to see that the process can be decomposed into a deterministic
and stochastic part as

t
Xi=Ay-xo+ Y AT ey, t=1

v=1
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The first summand represents the means of the work remaining E[X,, N'(x; 0, C)] =
Af) - X0, which evolve unperturbed. The second summand represents the performance
fluctuations, which are independent of the work remaining. Despite this indepen-
dency, the correlations between performance fluctuations among tasks i and j, de-
fined as p;; above, can have a strong effect on the time evolution of the project. To
reinforce the correlations, the covariance matrix C must have nonzero off-diagonal
entries: in other words, the noise must be nonisotropic. Depending on the structure of
the WTM Ay, the correlations p;; can significantly excite the design modes and lead
to unexpected effects of emergent complexity, such as the cited problem-solving os-
cillations in the preasymptotic range of development projects (Mihm and Loch 2006;
Schlick et al. 2008). We will return to the excitation of design modes in Sects. 4 and 5.

3.3 Stochastic formulation in spectral basis

In order to identify the essential independent parameters (Sect. 4.2), it is useful to
work in the spectral basis (Neumair and Schneider 2001). To carry out the trans-
formation of the state-space coordinates, the WTM A is diagonalized through an
eigendecomposition as

Ag=S-Ag-S7, (22)
where
As =diag[Ai(A9)] 1<i=<p. (23)

The eigenvectors ¥;(Ag) = S.; of the design modes ¢; of Ag are the column vectors
of S (i =1...p). Because Ag must not be symmetric, the eigenvectors are in general
not mutually orthogonal, and their entries can be complex numbers. The diagonal
matrix Ag stores the ordered eigenvalues X; (Ag) along the principal diagonal. In the
spectral basis, the dynamic model from Eq. (17) can be expressed by the state vector
X, and the fluctuation vector &; as simple linear combinations:

X, =S-X,,

&g =3S5-¢.
For the initial state,

x0=35"x).

The coefficient vectors are defined as:
x,={x; V.. x )"
& = {8;(1), e sé(p)}T.
We obtain the transformed dynamic model for the coefficient vectors as:
X! =As - X_ +el (24)
with

e, =N(x;0,C") (25)
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and
c'=s".c-(sT)7". (26)

C’ is also positive-semidefinite. The “*’ symbol in the above equation represents the
conjugate matrix.

In the literature the stochastic process that is generated by the state equations (17)
and (24) is termed a vector autoregressive process of order 1, abbreviated as VAR(1).
Neumair and Schneider (2001), Liitkepohl (2005) and others developed efficient
methods to estimate the parameters, spectral information and confidence regions.
These methods were used to validate the model against data from an industrial com-
pany (see Schlick et al. 2008, 2012).

4 Model-based evaluation of emergent complexity

The main problem that has to be addressed is that Grassberger (1986) defined the
EMC on the basis of information-theoretic variables with discrete states and did not
generalize it to continuous-state processes. However, Bialek et al. (2001), de Cock
(2002), Bialek (2003), and Ellison et al. (2009) pioneered the generalization, and
we can build upon their results to evaluate emergent complexity in NPD projects.
Their analyses show that we must primarily consider the differential block entropy
(Eq. (29)) and not the Shannon block entropy (Eq. (9)) as a basic quantity. The dif-
ferential entropy extends the fundamental idea of Shannon’s information entropy as
a universal measure of uncertainty about a discrete-type random variable with known
probability mass function to a continuous-type variable with given pdf. According to
Eq. (9) the entropy of a discrete-type random variable X is always positive and can
be used as a measure of average surprisal about X. This is slightly different for a
continuous-type variable, whose entropy can take any value from —oo to oo and is
only used to measure changes in uncertainty. For instance, the differential entropy of
a continuous random variable X that is uniformly distributed from O to a (and whose
pdf is therefore f[x]=1/a from O to a, and 0O elsewhere) is log, a. For a < 1 the
differential entropy is negative and can get arbitrarily small as a approaches 0. An
additional subtlety is that the continuous entropy can be negative or positive depend-
ing on the coordinate system. This also holds true for the differential block entropy
(Eqg. (29)). However, it can be proven that the EMC calculated on the basis of dy-
namic differential entropies (Eq. (33)) is always positive and may exist even in cases
where the block entropies diverge. Under the assumption of an underlying VAR(1)
model, for instance, a closed-form solution for the EMC can be derived that is simply
aratio of determinants of covariance matrices (cf. Egs. (38) and (41)), which in most
case studies can be interpreted similarly to discrete-state processes. Furthermore, it
can be proven that EMC is invariant under arbitrary reparameterizations based on
smooth and uniquely invertible maps (Kraskov et al. 2004). The theoretical analyses
of Bialek et al. (2001) and other researchers show that the generalized measure is an
objective and valid quantity for evaluating emergent complexity.

To obtain analytical results, it is assumed that the VAR(1) process is strict-sense
stationary (Puri 2010) and therefore all its statistical properties are invariant to a time-
shift. Let f[xt41,...,Xr4n] (t € Z,n € N) be the joint pdf of the block of random
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vectors (X¢4+1, ..., Xt4+n), and let f[x;4n|Xr41, ..., Xr4n—1] be the conditional den-
sity of vector X,4, given vectors X;11, ..., X;4+,—1. Hence,

Slxeet, oo Xl = f14es o Xranael

SXepnlXegt, ooy Xeqgn—1]

= f[Xt4ntcl X140, - s Xegn—14c] (€4, neN, 1>0).

Furthermore, we assume that ergodicity holds. Due to the strict-sense stationary be-
havior we can use the index v to denote the time structure. Hence, f[xy+1, .., Xy+4n]
denotes the joint pdf and f[Xy4n|Xy+1, - - -, Xu+n—1] denotes the conditional density

of the process in the steady state. The conditional density is given by (cf. Billingsley
1995):
flxv—my ooy Xp—1, %01
flxo—m, ooy xu-1]
Since the considered VAR(1) process is a Markov process, the conditional density
simplifies to

SIxolxp—m, .- xp—1]:=

SXv4n—1, Xu4n]
f[xv+n|xv+17 ces Xygn—1]= f[xv+n|xv+n—l] = Mv 27

Slxoan—1]

and the strict stationarity condition implies (Brockwell and Davis 1987)

Fxognlxvgpn—1l= flxolxv—1] = flx2lx1] and  flxypn—1l= flxo]l= flx1]
Yu > 2. (28)

Let the differential block entropy of the process (cf. Eq. (9)) be
H(n)::—/ fIx1, ..., xpllogy flx1, ..., xpldx1 ... dx,. 29)
RP RP

To compute the EMC for the introduced VAR(1) process in the steady state, observe
first that

H(n):—/ fIx1, ..., xn]-logy flx1, ..., xpldx1 ... dx,
RP RP

=—/ / flxalxt, .o xa—1]- flxt, .o xp—1]
RP RP
logy (flxnlxt, ..o xum1]- fIx1, ... Xp—1])dxy ... dx,

=—f | Pl ] IR X ]
RP RP

logy flxulxt, ..., xp—1ldxy...dx,

_/ Slxnlxt, oo, xp—1] - flx1, .., x0—1]
RP RP
logy flxi, ..., xp—1ldxi ...dx,

:_/ e | fIx1s e x0—]
RP RP

. (/R flxnlxt, ..., xp—11-log, f[xn|x1,...,xn_1]dxn>dx1 codxp—q
V4
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_f e f[xly“-v'xl’lfl]'10g2f['x17"'7~xn7]]
RP RP

. (f flxnlxt, ... ,xn]]dxn>dx1 codxn_q. 30)
RP

According to the definition of a pdf, the inner integral in the second summand of the
above equation equals 1. Hence,

H(n):—f / flxt, .o xn-1]
RP RP

. < Slxalxt, ..., xp—1]-logy flxnlx1, ---,xnl]dxn)dxl codxp—
RP
T Hn-1),

which implies that

hﬂ(n):/ flxt, ..oy xn=1]
RP RP

. </R flxnlx1, ..., xn—11- log, flxanlx1, ...,x,,_l]dxn>dx1 codxp—q.
4

In view of the Markov property, the above equation can be expressed as

hM(n) = _A%I' fDCn_l](_A{p f[xn|xn—l] : logz f[xn|xn—l]dxn>dxn—l,
Vn=>2. 31D

It follows that the entropy rate 4, is equal to the dynamic entropy A, (n) for block
length n = 2 and that larger block lengths do not change the rate, that is

hy=h,2)=h,3)="---. (32)

Given the steady-state condition, we conclude that
hy = —/ f[xl]( flxalx1]- log, f[lexl]dxz)dxl-
RP RP

Based on Eq. (15), we obtain the generalized solution:

EMC =h,, (1) — h,
=H()—h.(2)

==/, flxillog, flxildx

+ / / flxalxillog, flxzlxildxs flxildx;. (33)
RP JRP
4.1 Closed-form solution in original state space
To calculate EMC on the basis of the above-generalized solution in the coordinates

of the original state space R?”, we must find the pdf of the stochastic process in the
steady state. Let the p-dimensional random vector X be normally distributed with
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location ;1 = Agp - xo and covariance X = C (Egs. (17) and (21)), that is X; =
N (x; Ag - xo, C). Starting with this random vector the project evolves according to
state Eq. (17). Due to the strictly stationary behavior for t+ — 0o a joint probability
density is formed that is invariant under shifting the origin. In steady state we must
have for the locus

w= Ag-pu+Ele;] =40 - (34
and for the variance
T =Ag-¥-A}+ Var[e,]=Ag- X - A} +C. (35)

It follows from Eq. (34) that u must be an eigenvector corresponding to the eigen-
value 1 of Ay. Clearly, if the modeled project is asymptotically stable, no such eigen-
vector can exist. Hence, the only vector that satisfies this equation is the zero vector,
indicating that there is no remaining work. Let A1(Ao), ..., A,(Ao) be the eigenval-
ues of WITM A( ordered by magnitude. If |11(Ag)| < 1, the solution of Eq. (35) can
be written as (Lancaster and Tismenetsky 1985):

z=Yak (A" (36)
k=0

It follows from the definition of the differential entropy of a Gaussian distribution
with pdf according to Eq. (21) (e.g. Cover and Thomas 1991) that the first summand
in Eq. (33) is

—/R flxillog, flx1)dx =10g2((271)p/2w/Det[2])+§.

For the calculation of the second summand, the following insight is helpful. Given
vector x| in steady state, the distribution of X» is a normal distribution with location
Ap-x1 and covariance C. Hence, the inner integral of the second summand in Eq. (33)
is equal to minus the differential entropy of that distribution. It follows that the second
summand is simply

1 P
[ (om Gy ) - ) s

As we are integrating with respect to a pdf, the above term is equal to

p

1
log)( —— .
0g2<(2n)P/2«/Det[C]) 2

It follows for the VAR project model that

_ p/2 P 1 _Pr
EMC = log, ((27)"/*\/Det[ X1) + 5 +log2<(2n)p 5 W) 5
1 Det[ ]\ 1 1
= Elog2<m> =3 log, (Det[X]) 5 log, (Det[C])
= %logz Det[ > -C7']. 37)
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According to the above equation, the EMC can be decomposed additively into dy-
namic and pure-noise parts. The dynamic part represents the differential entropy dur-
ing steady-state operation. If the noise is isotropic, the dynamic part completely de-
couples from the noise (Ay et al. 2010). Substituting Eq. (36) in Eq. (37), we obtain
the desired first closed-form solution as

1 Det[>2° Ak . C - (AD)k
EMC = - log, et imo Ao C- (AN
2 Det[C]

The covariance matrices above are positive-semidefinite. Under the assumption that
they are of full rank, the determinants are positive, and the range of the EMC is
[0, +o0].

(38)

4.2 Closed-form solutions in the spectral basis

In this section, we calculate an additional solution in which the dependence of the
EMC on the anisotropy of the noise is made explicit. This solution is much easier
to interpret, and to derive it we work in the spectral basis (cf. Eq. (22)). Accord-
ing to Neumair and Schneider (2001), the steady-state covariance matrix X’ in the
spectral basis can be calculated based on the transformed covariance matrix of the
performance fluctuations C' = § -l (8Tt (Eq. (26)) as

72

AV
i Prcu
1310 1=k
' = | Pfue ) . (39)

1—A2A 1—A2hs

The ,ol-’ j’s are the transformed correlation coefficients (cf. Eq. (20)). The c;?’s (cf.
Eq. (18)) and p; ; c; ic} ;s (cf. Eq. (19)) are scalar-valued variance and covariance com-
ponents of C':
2
i P12€11%)

C'=|rhchich, & ] (40)

The transformation into the spectral basis is a linear transformation and therefore
does not change the mutual information. Hence, the functional form of the closed-
form solution from Eq. (37) holds, and the EMC can be expressed as the variance
ratio (de Cock 2002):

1 Det[ X’ 1
EMC = 51og2<ﬁ) = log; Det[ X 1. 1)
The basis transformation does not change the positive-definiteness of the covariance
matrices. Under the assumption that the matrices are of full rank, the determinants
are positive. The determinant Det[ X'] of the covariance matrix X’ can be regarded
as a generalized variance of the stationary process in the spectral basis, while Det[C’]
represents the generalized variance of the prediction error. The variance ratio can be
interpreted as the (entropy lost and) information gained when the modeled project is
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in the steady state, and the state is observed by the project manager with predefined
“error bars”, which cannot be under-run because of the inherent prediction error. The
inverse C'~! is the so-called “precision matrix”.

An important finding is that the scalar-valued variance components of the noise
part do not contribute to emergent complexity. This follows from the definition of a
determinant. The calculated determinants of X" and C’ just give rise to the occurrence

of the factor ]_[f=1 c;lg, which cancels out:
Det[ X’
Det[z' - C'~'] = Det[ =] - Det[¢"'] = 24> 1
Det[C’]

Hence, we can also calculate with the “normalized” covariance matrices X' I/\, and C ;V:

1 fia
1*|/)L1|2 1=

/o /012 1

Xy = or ToaE | (42)
1/ Py -

cy=|r2 1 43)

According to Shannon’s classic findings about the capacity of a Gaussian channel
(Cover and Thomas 1991), the normalized covariance matrix X ]’\, can be decomposed
into summands as follows:

1112 1Ak
1=[3 2 1212122
i 2
y=Ch+| p, 22N [22] . (44)

127 5ox 1—|A2|?

The second summand in the above equation is defined as X,. We obtain an expres-
sive closed-form solution based on the signal-to-noise ratio SNR := X - C;\T ¥

_ 1 " —1
EMC = - log Det[I, + Xy -Cy '] (45)

The SNR can be interpreted as the ratio of the effective variance X7, of the sig-
nal (work remaining) in the spectral basis that is generated by cooperative work
and the effective variance C}, of the performance fluctuations. The performance
fluctuations “drive” the development processes to a certain extent and can be rein-
forced through the structural organization of the project. The effective fluctuations
are in the same units as the input x;. This is called “referring the noise to the in-
put” and is a standard method in physics for characterizing detectors, amplifiers and
other devices (Bialek 2003). The obtained closed-form solution has at most only
(p? — p)/2 + p = p(p +1)/2 independent parameters and not a maximum of ap-
proximately p? + (p> — p)/2 + p = p(3p + 1)/2 parameters, which are encoded in
the WTM Ay and the covariance matrix C. Hence, through a transformation into the
spectral basis we can identify the essential parameters influencing emergent com-
plexity and reduce the dimensionality of the problem in many cases by the factor
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@Bp+1)/(p+1). The essential parameters are also easy to interpret. The eigenval-
ues A; (Ag) represent the essential temporal dependencies of the modeled project in
terms of effective productivity rates on linearly independent scales determined by the
eigenvectors ¥;(Ag) (i = 1... p). The effective productivity rates depend only on the
design modes ¢; and therefore reflect the project’s organizational design. The lower
the effective productivity rates because of slow task processing or strong task cou-
plings, the less the design modes are “damped”, and hence the larger the complexity.
On the other hand, the correlations p; j model the essential dependencies between the
unpredictable performance fluctuations that can give rise to an excitation of the de-
sign modes and their interactions. This excitation can compensate for the damping
factors. The p] f ’s scale linearly with the variances along each independent direction
of the fluctuations: the larger the variances, the larger the correlations and the stronger
the excitation. However, the scale factors are determined not only by a linear inter-
ference between design modes ¢; and ¢; caused by cooperation but by the weighted
interference with corresponding eigenvectors of the covariance matrix of the fluc-
tuations. In other words, the emergent complexity of the modeled NPD project does
not simply come from the least-damped design mode ¢1 = (A1(Ap), ¥1(Ap)) because
this mode may not be sufficiently excited, but rather is caused by a complete interfer-
ence between all design and “fluctuation” modes. Emergent complexity in the sense
of Grassberger’s theory is a holistic property of the organization and usually cannot
be reduced to a single property of the project organizational design. This is a truly
nonreductionist approach.

4.3 Lower bounds on EMC

To calculate the lower bounds on EMC we can make use of Oppenheim’s inequality
(see Horn and Johnson 1985). Let M and N be positive-semidefinite matrices and
let M o N be the entry-wise product of these matrices (so-called “Hadamard prod-
uct”). The Hadamard product of two positive-semidefinite matrices is again positive-
semidefinite. Furthermore, if M and N are positive-semidefinite, then the following
equality based on Oppenheim holds:

p

Det[M o N] > (1_[ M[[,-,,-]])Det[N].

i=1

Let M = (M; jj) = (1/(1 — A;(A0)%j(Ap))) be a Cauchy matrix (1 <i,j < p).
The entries along the principal diagonal of this matrix represent the “damping factor”
1 — |A;|% of design mode ¢;, and the off-diagonal entries 1 — A;A; are the damping
factors between the interacting modes ¢; and ¢ ;. We follow the convention that the
eigenvalues are ordered in decreasing magnitude in rows. Let N = C}, be the nor-
malized covariance matrix of the noise, as defined in Eq. (43). Then the normalized
covariance matrix of the signal X', from Eq. (42) can be written as the Hadamard
product X', = M o C},. According to Oppenheim’s inequality, the following inequal-
ity holds:
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(Det El’v]) 1 L <Det[M o C;V])
Det[Cly] £2\ "Dt} ]

_ Ly
2
1 ((H, | Mygi)Det[Cl, ])
-2

Det[C)y]
1 P 1
=1 S
2 °g2(}]11—u,-|2>
1 14
=3 Zlogz(l — nl%). (46)
i=1

The lower bound according to the above equation shows that emergent complex-
ity can be kept to a minimum, if the variances of the performance fluctuations are
equalized by purposeful interventions of the project manager and correlations be-
tween vector components are suppressed. Next, because of the commutativity of the
Hadamard product, it holds that

1 Det[ X, 1 Det[C), o M
EMcz_lg( e ]) _10g2<M)

2 Det[C}] 2 Det[C},]
1 (I ;= Cyyii iy DetlM]

> ~log, 1_[ =1 “NI[li, ]/]
2 Det[C}]

1 Det[M]
=S logy( ———— ).
2 Det[C})]
The determinant of the Cauchy matrix M in the numerator can be written as (Krat-
tenthaler 2005)

1 1

=2 12k 07 p T
1 1 1_[,<j()L )"j)()"l_)‘j)
Det[M]:Det 1=kt 1—|0|? e | = 7 —
2 . i,j(l = Aikj)
Hence,
1 Det[C), o M
EMC = L 1og, ( 2S1En ° M
2 Det[C)y]

1 <H,”<,<x — 2 )i —A))
> —log, 5 -
2 ;i (1= 2iA)Det[Cy]

1{<& _
=5 (Z(logz(ki — X)) +1logy (hi — Aj))

i<j

p
- Zlog2(1 — hinj) — log, Det[cg\,]) (47)
iJ

The additional lower bound on the EMC in the above equation is only defined for a
dynamical operator Ay with distinct eigenvalues. Under this assumption, a particu-
larly interesting property of the bound is that it includes not only the damping factors
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(1 — Aj%;) inherent to the dynamical operator Ay (as does the bound in Eq. (46))
but also the differences between eigenvalues (A; — A;) and their complex conjugates
i — A_j). We can draw the conclusion that under certain circumstances, differences
among effective productivity rates (represented by the A;’s) stimulate emergent com-
plexity in NPD. Conversely, small complexity scores are assigned if the effective
productivity rates are similar. Numerical analyses have shown that the lower bound
defined in Eq. (46) is tighter when the eigenvalues of the dynamical operator Ag are
of similar magnitudes.

5 Conclusions and outlook

This paper introduced vector autoregression models of cooperative work in NPD
projects that are subjected to concurrent engineering. The models are based on the
seminal work of Smith and Eppinger (1997) and Yassine et al. (2003) on determin-
istic project dynamics and also consider the important developments by Huberman
and Wilkinson (2005) toward the theory of stochastic processes. The models can
capture typical patterns of project dynamics in open organizational systems and ex-
plain “problem-solving oscillations” (Mihm et al. 2003) with few assumptions about
the problem-solving processes. According to the deterministic and stochastic parts
of the state equations, the irregular oscillations between being on, ahead of, and be-
hind schedule can be interpreted as excited performance fluctuations (Schlick et al.
2008). The excitation can occur because of the multiple interrelationships between
the design modes ¢; of the work transformation matrix Ao and the effective variance
C'y of performance fluctuations. These mechanisms were uncovered explicitly in the
spectral basis (Eq. (45) in conjunction with Egs. (42), (43) and (44)).

Moreover, an information-theory complexity metric termed effective measure
complexity (EMC) was introduced, and closed-form solutions were calculated. These
solutions are beneficial for evaluating emergence in terms of mutual information com-
municated from the infinite past to the infinite future. The measure goes back to
Grassberger (1986), whose seminal work in theoretical physics has been completely
overlooked in organization theory and engineering management literature. His theory
allowed us to derive the EMC of the specified class of models from first principles
and to find closed-form solutions with different strengths. The results are given in
Egs. (38) and (45). Furthermore, we were able to calculate lower bounds (Egs. (46)
and (47)). It is important to point out that Grassberger’s theory is not limited to a
specific class of project models. If the data are generated by a project in a specific
class but with unknown parameters, we can calculate the EMC explicitly, as we did.
It is also possible, however, to evaluate the complexity of projects that fall outside the
conventional models.

The EMC has several favorable properties: (1) It is small for projects in which
tasks can be processed independently without cooperation and it assigns larger com-
plexity values to intuitively more complex projects with the same dominant eigen-
value of the work transformation matrix but a stronger task coupling. The importance
of the nature, quantity and magnitude of organizational subtasks and subtask inter-
actions is also pointed out in the theoretical and empirical analyses of Tatikonda
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and Rosenthal (2000). Interestingly, the empirical studies of Holttd-Otto and Magee
(2006) show that estimation of effort in NPD projects is primarily based on the
scale and stretch of the project and not on interactions. This is due to the fact that
the balancing or reinforcing effects of concurrent interactions are very difficult to
anticipate for project managers. In that sense, the measure can contribute to more
reliable effort estimation. The dependencies between tasks were also mentioned as
complexity-contributing elements in four out of six cases in the empirical analysis
of Bosch-Rekveldt et al. (2011). Summers and Shah (2010) consider “complexity as
coupling” as one of three main aspects of design complexity. (2) The measure tends
to assign larger complexity values to projects with more tasks if the intensity of co-
operative relationships is similar, and therefore it is sensitive to the cardinality of the
project. This property follows, for instance, from the lower bound in Eq. (46). The
complexity-reinforcing effects of the “size” of a project are also stressed in Mihm
et al. (2003), Mihm and Loch (2006), Huberman and Wilkinson (2005), Suh (2005),
Holttd-Otto and Magee (2006), Summers and Shah (2010), and Bosch-Rekveldt et al.
(2011). Alternatively, one can divide EMC by the dimension p of the state space and
compare projects with different cardinalities. (3) The measure can evaluate both weak
and strong emergence in an uncertain product development environment. According
to Chalmers (2002) weak emergence means that there is in principle no choice of
outcome. It can be anticipated without detailed inspection of particular instances of
task processing. Given the state equation, there are entirely reproducible features of
its subsequent evolution that inevitably emerge over time. In light of our approach, a
good technique for the evaluation of weak emergence is the eigenvalue analysis of the
WTM. It is obvious that the EMC indicates the same bound of asymptotic stability
as does a classic eigenvalue analysis by assigning infinite complexity values: if the
dominant eigenvalue has modulus less than 1, the infinite sum in Eq. (38) converges,
and the project will converge toward the asymptote of “no remaining work™; on the
other hand, if the dominant eigenvalue has modulus greater than 1, the sum diverges,
and the work remaining grows over all given limits. The emergence of complexity is
termed strong if the patterns of project dynamics can only be reliably forecast from
the observation of the past of each particular instance of task processing and with
relevant knowledge of prior history (Chalmers 2002). In the management literature
this phenomenon is also known as “path dependence” (Maylor et al. 2008). Relevant
information about the prior history is extracted through the predictive information
according to Eq. (45). This formula—in conjunction with the formulation of the nor-
malized work transformation and fluctuation matrices—allows a holistic excitation
analysis of the design modes under uncertainty. The importance of the factor “uncer-
tainty” in the scope and methods of a project in conjunction with “stability of project
environment” is also pointed out in the TOE framework of Bosch-Rekveldt et al.
(2011). The information axiom of Suh (2005) addresses both size and uncertainty.
The simulation study of Lebcir (2011) shows that development time significantly
increases when project uncertainty is changed from low to reference level. (4) The
measure is independent of the basis in which the state vectors are represented. It is
invariant under arbitrary reparameterizations based on smooth and uniquely invert-
ible maps (Kraskov et al. 2004) and therefore is independent of the subjective choice
of the measurement instrument of the project manager. To the best of our knowledge,
this fundamental objectiveness is a unique property that other metrics do not possess.
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The task-based approach to evaluating emergent complexity in NPD in conjunc-
tion with the developed state-space models will need to be worked out in more detail
in the future. A first step in that direction would be to compute the EMC of the project
model developed by Huberman and Wilkinson (2005), which incorporates multi-
plicative instead of additive noise (cf. Eq. (17)). Their model is interesting not only
because it can reproduce critical effects of both large groups and long delays with
few parameters, but also because of its reasonable assumption that the autonomous
task-processing rates and the task coupling are subject to random influences. How-
ever, to the best of our knowledge, the Huberman—Wilkinson model has not been
supported by empirical evidence, and it is an open question whether it has a higher
validity than our VAR(1) approach, which has been validated in an industrial case
study (Schlick et al. 2008, 2012). A theoretically and practically very promising ex-
tension of the dynamic project model is to formulate a periodic vector autoregressive
(PVAR) stochastic process (Ursu and Duchesne 2008). A PVAR process can cap-
ture the dynamics of short cyclic processing of component-level design information
within the development teams as well as long-range “seasonal” effects. A seasonal
effect is common in large-scale CE projects and is caused by the periodic informa-
tion release policy of system-level design information across teams. A deterministic
model able to simulate this kind of task processing was developed by Yassine et al.
(2003). A corresponding stochastic model has been formulated recently (see Schlick
et al. 2011). A PVAR model offers a compact representation as a VAR process, as
we have formulated in Eq. (17). Hence, the closed-form solutions and bounds can be
applied directly. In the long run, we aim to conduct an external validation study with
experienced project managers in industry. It is hypothesized that the EMC is a con-
ceptually valid complexity variable and that it has the potential to capture the implicit
knowledge of project managers based on the process dimension in NPD (Summers
and Shah 2010). In general, this complexity measure provides valuable information
enabling the project manager and CE teams to better organize their work and to im-
prove coordination.
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