
Chapter 45
Information Entropy-Based Complexity
Measurement for Systems Engineering
and Trade-Off Analysis

Jean Charles Domerçant

45.1 Introduction

Over time, engineered systems have become more interdependent and
interconnected due to technological advances in areas such as networking, embed-
ded computing, and communications. While there are many technical and
nontechnical factors that influence system design and development, complexity is
often blamed for a host of problems including failed system development, cost and
schedule overruns, unmaintainable and unrepairable systems, and obsolescence
upon delivery [1]. Complexity is not inherently a bad property and helps meet
evolving capability needs as more becomes demanded of systems.

While complexity adds value, affordability and complexity are two conflicting
objectives that require compromise. Therefore, only value-added complexity must
be incorporated into the system architecture and design. The impact of early
architecting and design decisions ripple through the entire system life cycle, affect-
ing downstream activities such as manufacture, maintenance, and operations. In
some industries, 75–85% of life cycle production costs are determined during
conceptual design [2]. Conceptual design is the first phase in the design process,
where the least knowledge exists but also where decisions that are made have the
greatest consequence on cost, schedule, and performance. With this in mind, it is
imperative to manage complexity early during this phase of design.

Before system complexity can be managed, it must first be measured. However, a
standard measure of complexity for systems engineering is not currently well
defined. A recent, comprehensive study of complexity measures reaches the conclu-
sion that “Most conceptions of complexity measures in the theoretical literature
could not be applied to systems engineering easily, and many concepts of complex-
ity within engineering do not have a close tie to theory” [3]. The goal of this research

J. C. Domerçant (*)
Georgia Tech Research Institute, Atlanta, GA, USA
e-mail: jean.domercant@gtri.gatech.edu

© Springer Nature Switzerland AG 2019
S. Adams et al. (eds.), Systems Engineering in Context,
https://doi.org/10.1007/978-3-030-00114-8_45

565

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00114-8_45&domain=pdf
mailto:jean.domercant@gtri.gatech.edu
https://doi.org/10.1007/978-3-030-00114-8_45

is to develop a standard method of measuring complexity that addresses these
shortcomings, enabling more informed trade-offs to meet design objectives.

45.2 Background: Causes of Complexity in Engineered
Systems

The first step in defining a measure is understanding the causes of complexity in
engineered systems. A system is considered an entity composed of separate yet
interrelated system nodes. A node may refer to a subsystem or even an entire system
that is part of a larger family or system of systems, depending on the scope. Nodes
interact through the sharing and processing of resources such as information, energy,
materials, and time to perform functions [4] and contribute to the overall system’s
behaviors, states, and processes. A complex system consists of interconnected parts
that as a whole exhibit one or more properties (behaviors among the possible
properties) not obvious from the properties of the individual parts [5]. Examples of
non-obvious behavior include emergent and adaptive behavior, self-organization,
and the difficult-to-predict interactions between elements of a system.

Many of today’s systems have evolved from simpler arrangements into the more
complex counterparts we see today. A prime example is avionics, which serve as the
computing infrastructure aboard military and commercial aircraft. Avionics are
responsible for aiding in navigation, flight control, and information display. Two
to three decades ago, systems such as these were generally stand-alone, discrete
systems or subsystems. Their function could be easily understood and their scope or
purpose was very limited [1, 6]. Over time, information sharing between various
components increased to reduce the number of black boxes required by each system.
For example, “a single sensor providing heading and rate information could provide
data to the navigation system, the weapons system, and the pilot’s display system.”
The advent of digital technology and increased computational capability led to the
following changes that also caused an increase in complexity [7]:

• Dramatic increases in functional integration
• Added functionality to meet expanding capability roles
• Increased performance requirements
• Increase in the number of subsystems
• Increased functional overlap/redundancies between subsystems and a blurring of

functional boundaries
• Increase in the total amount of information/resources processed by the system
• Increased sharing of information/resource among existing subsystems
• Increased physical integration to meet more demanding size, weight, power, and

other constraints

As a result, avionics have seen an increase in “performance, sensor types,
functionality, cost, integration, complexity, supportability (reuse), software

566 J. C. Domerçant

programs in terms of executable code, memory requirements, throughput, reliability,
data handling, data links, and obsolescence” [6]. Simultaneously, there has been a
reduction in size, weight, power consumption, and technology windows [6]. This is a
pattern that applies to many other types of systems as well. The Defense Advanced
Research Projects Agency (DARPA) has recently tried to address the significant
growth in development time and cost with increasing complexity for aerospace
defense systems [8, 25].

A detailed study of the complexity literature and existing complexity
measures resulted in a framework for categorizing complexity types and their
impact on system development efforts [1, 3]. A brief summary is provided in
Table 45.1.

It is possible to draw lines of cause and effect between the previously mentioned
architecture and design changes witnessed in avionics to the many complexity types
listed in Table 45.1. Additionally, a complementary view on the causes of complex-
ity in engineered systems is based on a mapping of interactions vs. coupling [9]. Sys-
tems such as aircraft (with their onboard avionics) possess both complex interactions
and tight coupling. Even here, “the degree of coupling and interaction types have
been inferred from a rough idea of the frequency of system accidents in the various
systems, rather than derived from analysis of the properties of the systems indepen-
dent of the nature of their failures” [9]. This further emphasizes the need for an
objective quantification of independent, observable system properties that contribute
to overall system complexity.

Table 45.1 Six types of complexity [1, 3]

Complexity
type Example subtype

1. Structural Size: number and types of elements, size of development process, total number of
requirements

2. Structural Connectivity: number, types, density, and strength of connections, connectivity
of development process

2. Structural Architecture: patterns, chunkiness of connections, inhomogeneity, boundaries

3. Dynamic Short term: sudden rapid change in system behavior, development system
behavior

4. Dynamic Long term: changes in number and types of things and relationships, evolution of
purpose

5.
Sociopolitical

Social and political: human cognitive limitations, multiple stakeholders, global
context, environmental sustainability, economics, “coopetition,” supplier chain
depth, distributed development

45 Information Entropy-Based Complexity Measurement for Systems. . . 567

45.3 Technical Approach

45.3.1 Defining the Context

The next step is to understand the context in which systems are architected and
designed. For military acquisition, this begins with the systems engineering process
(SEP). The SEP transforms the customer’s stated needs and requirements “into a set
of system product and process descriptions” [10] while generating information for
decision-makers. Similarly, a generalized, domain-based mapping of the design
process has also been developed that can be applied to many different fields—
software, hardware, systems, materials, organizations, and manufacturing systems
[11]. The following is a description of the various domains:

• Customer domain: characterized by the attributes (CA) that the customer is
looking for in a product or process or system or materials or organizations.

• Functional domain: the customer needs are specified in terms of functional
requirements (FRs) and constraints (Cs). FRs are the minimum set of indepen-
dent requirements that completely characterize the design objective based
on CAs.

• Physical domain: in order to satisfy the specified FRs, design parameters (DPs)
are conceived in the physical domain.

• Process domain: finally, to produce the product specified in terms of DPs, a
process is developed that is characterized by process variables (PVs) in the
process domain.

During the design process, architectures are generated to better describe and
understand the system [12]. An architecture is defined as the structure of compo-
nents, their relationships, and the principles and guidelines governing their design
evolution over time [13]. The following is a generalization of the different architec-
ture views available:

• Functional architecture details the complete set of functions to be performed and
their sequence; it identifies and structures the allocated functional and perfor-
mance requirements [11].

• Physical architecture details how the system is physically divided into subsystems
and components [11].

• System architecture identifies all the products necessary to support the
system [11].

• Data architecture defines the structure and meaning of data to ensure consistency
and proper management; it also defines the approach toward the structure,
semantics, redundancy, and storage of data [14].

In contrast to architecting, design is a decision-making process intended to
produce technically feasible and economically viable solutions. Each solution rep-
resents an integration of system elements under both logical and physical constraints
and is often a compromise of competing attributes and objectives according to the

568 J. C. Domerçant

level of technology present at the time. Within this context, the overall approach to
measuring complexity will be deemed useful if the causes of complexity can be
captured at both the architecture and design levels of abstraction.

45.3.2 Uncertainty, Entropy, and Information Theory

Defining an absolute measure of complexity is not the goal of this research. The
diversity of both natural and engineered systems makes defining an absolute mea-
sure of complexity difficult at best [15, 16]. Also, many existing complexity
measures tend to be very domain specific or too theoretically abstract to usefully
apply to real-world systems [15–17]. This research focuses on enabling informed
trade-offs during the design process by developing a method to characterize system
complexity as it relates to the functions, resources, and interactions between nodes.
Information measures prove useful in this regard, as they “provide a precise method
of dealing with trade-offs between knowledge and ignorance, and they supply a
useful definition of complexity” [18]. In particular, information entropy [19] pro-
vides a statistical measure of information that relates the fundamental concepts of
uncertainty, probability, and entropy, where entropy is a measure of unpredictability
or the degree of randomness of a thermodynamic system [20]. Equation (45.1) is the
mathematical formulation of the information entropy, H:

H ¼ �K
X
i

pilogpi ð45:1Þ

Information entropy “takes the concept of entropy out of the restricted thermo-
dynamic setting in which it arose historically and lifts it to the higher domain of
general probability theory” [20]. Maximum entropy occurs when all states are
equiprobable. Furthermore, Eq. (45.1) has unique properties that qualify it formally
as an information measure, including nonnegativity, symmetry, accumulation, and
convexity [18]. The choice of a logarithmic base is arbitrary, as well as the value of
the proportionality constant, K. When K is one and the base 2 logarithm is used, the
unit of entropy is called a bit [19]. Therefore, a system that can be in two equiprob-
able states contains one bit of information. Information entropy provides a common
basis of measurement across both the architecture and design levels of abstraction,
making trade-off analysis easier. The challenge then lies in using information
entropy, which is a measure of uncertainty, in a way that captures the fundamental
interactions and relationships among nodes [2].

45 Information Entropy-Based Complexity Measurement for Systems. . . 569

45.4 Architecture Complexity

In order to capture the different sources of system complexity at the architecture
level of abstraction, a measurement framework [4] is used that characterizes an
architecture according to two principal domains. The identified domains are the
functional domain and the resource domain. Within each domain, there exists a state
complexity measure, as well as a processing complexity measure. Each measure is
defined as follows:

• Functional domain:

– Functional state complexity (FSC): The allowable variation in either func-
tional requirements or function outputs that determines the number of distinct
functional states the system can inhabit and that must be accounted for.

– Functional processing complexity (FPC): The accounting of all the potential
independent process sequence paths that result during the execution of system
functions.

• Resource domain:

– Resource state complexity (RSC): The allowable variation in resource proper-
ties that determines the number of distinct values or states these resources
inhabit and that must be accounted for. Data/information, energy, time, and
materials are examples of different categories or types of system resources that
are exchanged and processed by the system.

– Resource processing complexity (RPC): A measure of the capacity to share,
communicate, and process resources between system components.

Measurement within each domain makes use of the tools available to the architect
or designer during the conceptual design phase. The following sections illustrate
how this is accomplished.

45.4.1 Functional State Complexity

The role of a system function, as in mathematics, is the transformation of an input to
a usable output. The functional architecture provides a description of the system in
terms of what it does logically and in terms of the performance required when
functions are executed [10]. A system will occupy certain functional states at any
given time, based on if or how each function transforms given the resources. For
example, navigation is a common avionics function where the system relies on
information from sensors to determine the position and velocity of the center of
mass of the aircraft. If the avionics were only able to compute a single value pair for
position and velocity given a range of inputs, then the function would be a constant
transform and thus highly predictable and simple. If, however, the position and

570 J. C. Domerçant

velocity output are highly nonlinear and exhibit a wide range of values, this would
lead to increased functional complexity, as there would be more distinct possible
functional states describing the system.

It cannot be assumed that system functions are well defined during the conceptual
design phase since the system components that will carry out these functions may
not have been assigned or even exist. Thus, another method of specifying the number
of possible states for a given function must be used. With this in mind, FSC is
measured using the performance requirements defined in the functional architecture.
FSC is calculated using Eq. (45.2) for each performance requirement:

FSC ¼
X
i

log2
j bi � ai j

ri
ð45:2Þ

The values of bi and ai in Eq. (45.1) represent the bounds of different subranges or
“bins” within the overall range of a single performance requirement. This formula-
tion assumes there is no constraint that bins within a performance requirement must
be of uniform size or resolution. Meanwhile, ri represents the associated resolution
for each bin or the smallest significant/measurable interval. Further increases in
resolution mean comparatively more fine-grained measurements are necessary in
order to differentiate between significant functional states, adding to complexity.
Intuitively, this matches the effect observed in chaotic systems, where the sensitivity
of the parameters plays a key role. Table 45.2 provides a summary of example FSC
calculations for a sample avionics terminal electrical requirement [7].

Table 45.2 illustrates how trade-offs in range and resolution of performance
requirements affect architecture complexity. Also, the more functions added to the
functional architecture, the greater the complexity. The FSC for each performance
requirement is then summed to determine the total number of possible functional
states.

Table 45.2 Functional state complexity for an avionics performance requirement

Function: changes in input level
(transformer coupled) Range (volts)

Resolution
(volts)

Number of
function states

FSC
(bits)

1. Base requirement 0.86–14.00 0.01 1314 10.36
2. Increase in range 0.86–20.00 0.01 1914 10.90

3. Decrease in range 4.00–14.00 0.01 600 9.23

4. Increase in resolution 0.860–14.000 0.001 13,140 13.68

5. Decrease in resolution 0.9–14.0 0.1 131 7.03

6. Increase in both range and
resolution

0.860–20.000 0.001 19,140 14.22

The bold values represent baseline values for comparison against increases or decreases in range
and/or resolution

45 Information Entropy-Based Complexity Measurement for Systems. . . 571

45.4.2 Resource State Complexity

RSC is measured in a similar fashion to FSC; only now Eq. (45.2) is applied to a
resource rather than a performance requirement. The RSC for the entire system is
calculated through a simple summation, and RSC increases as more functions and
therefore resources are included in the functional architecture. Table 45.3 provides
sample RSC calculations for two different types of resources. Resource A is an
avionics bus command word that specifies the function that a remote terminal is to
perform [7]. Resource B is cold, dry air used to cool electronic components.

Table 45.3 also shows how RSC is determined via the decomposition of a
resource into its fundamental physical properties. Digital resources, such as
Resource A, are already encoded in bits, so there is no need to calculate the range
and resolution.

45.4.3 Functional Processing Complexity

Systems are designed to execute their functionality within a programmatic sequence.
The greater the number of possible program paths, the greater the complexity. For
example, earlier versions of the Microsoft®Word program for word processing have
been estimated to contain more than 264, or over 1.8 � 10 [19], separate program
paths [2]. This large path size is caused by the presence of multiple feedback and
feedforward loops, interdependent tasks that are coupled, and multiple branching
points such as if-then statements or parallel pathways. Analyzing, testing, and
maintaining software with this type of complexity are difficult. It is hard to trace
the sequential program execution or to determine the impact of a change in one part
of the program on the functioning of the rest of the program.

Software designers have long used control flow graphs (CFG) to illustrate
functional sequences. A CFG is a graph-based visualization where nodes represent
either a basic block of code or a branch point [21], and edges indicate the flow of
program execution. Example CFG [2] can be seen in Fig. 45.1.

Table 45.3 Resource state complexity for various types of resources

Resource type Range Resolution

Number of
resource
states

RSC
(bits)

A. Avionics bus Manchester II bit encoding
(20-bit command word)

– – 1,048,576 20.00

B1. Cold, dry cooling air (Mass flow rate –
cubic feet per minute)

50–75 1 25 4.64

B2. Cold, dry cooling air (Temperature – �F) 40–60 1 20 4.32

B3. Cold, dry cooling air (Humidity – %) 6.00–10.00 0.01 400 8.64

572 J. C. Domerçant

The CFG is a useful abstraction, and similar types of diagrams found in systems
engineering include functional flow block diagrams [10], activity sequence dia-
grams, and task-based design structure matrices (DSMs) [22]. Any of these diagrams
can be analyzed from a graph-theoretic perspective to determine the number of
acyclic paths present. An acyclic path is defined as a path from program entry to
exit that does not traverse an arc more than once. In Fig. 45.1, the left and right CFG
possess the same number of nodes but different number of acyclic paths. The left
CFG has eight acyclic paths, compared with four acyclic paths for the right CFG.
The left CFG is therefore less predictable than the right CFG, and this is reflected in
the in-degree of the nodes labeled N1, N2, and N3. In-degree is simply the number
of edges entering a node. Nodes N1, N2, and N3 will be “the crossroad of more than
one path and thus increase the uncertainty of the expected program behavior” [21].

FPC is determined by applying Eq. (45.1), which requires defining the probability
or frequency of traversing each path. In the case that the probabilities are equiprob-
able, this means taking the logarithm of the number of acyclic paths. Under this
assumption, the FPC of the left CFG is 3 bits, while the FPC of the right CFG is
2 bits. Various algorithms exist to automatically count acyclic paths for a given CFG,
though care must be taken when features such as nesting or different types of
conditional and iteration statements are present [21, 23].

45.4.4 Resource Processing Complexity

Nodes exchange resources with other nodes, systems, or the environment in order to
function. At the most abstract level, this exchange of resources can be modeled as a
communication, where messages originate at an information source, are encoded
into a message using symbols, and then transmitted over a channel to a receiver
which then decodes the message at the destination. This concept is applied to the
exchange of resources between nodes, as different parts of the system effectively
communicate via resources such as information, energy, materials, etc. in order for
the system as a whole to function. More precisely, this communication is modeled as

Fig. 45.1 (a) Less
predictable control flow
graph; (b) more predictable
control flow graph

45 Information Entropy-Based Complexity Measurement for Systems. . . 573

a stochastic “m-order” Markov chain where the probability of emission of a partic-
ular symbol depends on the preceding m number of symbols [20].

The first step in calculating RPC is to identify the system interfaces, which define
the boundaries at which dependencies and coupling between nodes occur. Next,
symbols must be identified for the resources exchanged at these boundaries.
Table 45.3, shown previously, specifies the number of possible states for each
resource in the avionics example. An arbitrary symbol is assigned to each possible
resource state, and Table 45.4 lists example word/messages that are formed when the
arbitrary symbols chosen correspond to actual resource values.

A word/message sequence (or even its absence) is a symbolic representation of
the current state of a collection of resources being exchanged at a snapshot in time.
To calculate RPC, each word/message is assigned a frequency p(i), or the probability
of that specific word/message occurring during the resource exchange. Transition
probabilities pi(j) are also assigned to indicate the likelihood of a next word/message
occurring in the sequence. Diagram probabilities p(i,j) are then obtained with
Eq. (45.3):

p i; jð Þ ¼ p ið Þpi jð Þ where
X
j

pi jð Þ ¼
X
i

p ið Þ ¼
X
i, j

p i; jð Þ ¼ 1 ð45:3Þ

RPC is then equal to the entropy of the p(i,j) matrix. Maximum RPC occurs for
equiprobable p(i,j), signifying independence among the resource exchanges and
great uncertainty in discerning the exact sequence of resource states as they are
exchanged over time. Any deviations from equiprobability mean that correlations
and dependencies exist in the transmission and processing of resources, helping to
drive down the processing complexity. RPC requires the system architect to specify
the transmission frequency of each resource, as different resources may be transmit-
ted at different intervals compared to other resources. For example, the command
word could be transmitted at twice the frequency as cold, dry air, as seen in example
D of Table 45.4. Possible noise sources should also be considered along with the
various architectural mechanisms and patterns (such as redundancy, backup systems,
check sums, etc.) needed to help ensure error-free transmission of resources.

Table 45.4 Resource word message examples

Example resource message sequence
(word/message) Command word value

Cold, dry air
values (CFM, �F,
% humidity)

A. 1,001,111,000,001,110,010,165,400,701 10,011,110,000,011,100,101 65/ 40/ 7.01

B. 1,111,111,000,001,110,111,152,510,805 11,111,110,000,011,101,111 52/ 51/ 8.05

C. 0000101011001010010158530600 00001010110010100101 58/ 53/ 6.00

D. 00001010110010100101000010101100
1010010158530600

00001010110010100101 58/ 53/ 6.00

574 J. C. Domerçant

45.5 Design Complexity

45.5.1 Independence Axiom

In contrast to architecting, design is focused on integration, satisfying constraints,
and ensuring the system is physically realizable. An axiomatic approach [11] to
design seeks to define scientific foundations for the design of complex systems. The
first axiom, the independence axiom, states that “when there are two or more FRs,
the design solution must be such that each of the FRs can be satisfied without
affecting any of the other FRs. This means that we have to choose a correct set of
DPs to be able to satisfy the FRs and maintain their independence” [11]. This is
represented mathematically in Eq. (45.4) using a design matrix A that provides the
mapping between FRs and DPs.

FR1

:
:

FRm

9>>=
>>;

8>><
>>:

¼
A11 0 � � � 0
0 A22 . . . 0
⋮ ⋮ ⋱ ⋮
0 0 . . . Amm

2
66666

3
77777

DP1

:
:

DPm

9>>=
>>;

8>><
>>:

ð45:4Þ

where Aij is a sensitivity coefficient and Aij ¼ δFRi/δDPj. Equation (45.4) represents
an uncoupled design with a square design matrix (where there are m number of FRs
and m number of DPs) with values only along the diagonals. A design that violates
axiom 1 is either a decoupled design or a coupled design. A decoupled design has a
square design matrix, but there is coupling between DPs due to nonzero off-diagonal
elements. Finally, a coupled design has a rectangular matrix where p number of DP
components exist with m > p. Axiom 1 can be maintained in a decoupled design
when the DPs are controlled in some sequence [11, 24]. Equation (45.7) [24]
provides an entropy-based formulation of the first axiom, assuming A is a square
and nonsingular constant matrix:

h f FRf gð Þ ¼ h
�
f DP DPf gð Þ þ logb A½ �j j ð45:7Þ

where |[A]| is the determinant of the design matrix A. The variation inherent in the
FRs, DPs, and PVs are typically continuous random variables [24]. If normal
probability distribution functions (pdfs) are assumed with parameters (μ, σ2), and
the correlation between DPs is expressed as ρ, the total design complexity is
captured by Eq. (45.8), assuming a natural logarithmic base:

45 Information Entropy-Based Complexity Measurement for Systems. . . 575

h ϕ DPf gð Þ ¼
Xp�1

l¼1

Xp

k¼lþ1
ln 2πe

ffi
1� ρ2kl
� �

σl

q
σk

� �

þ ln 2πeð Þp
Yp

l¼1
σ2l

� �1
2 þ ln A½ �j j ð45:8Þ

The following components of complexity are captured [24]:

• Variability: the measured entropy of the DPs, captured by the (h(fDP({DP}) term

in Eq. (45.7) and the normal information sources, ln 2πeð Þp
Yp

l¼1
σ2l

� �1
2

in

Eq. (45.8).
• Vulnerability: three factors related to the design matrix A influence the vulnera-

bility, mapping, sensitivity, and dimension. Mapping is the topological structure
of A corresponding to the position of the nonzero sensitivity coeffi-
cients Aij ¼ δFRi/δDPj. Sensitivity refers to the magnitude and sign of nonzero
Aij. Dimension refers to the size of the design problem itself, i.e., the number of
the FRs, m. Vulnerability is associated with the logb|[A]| in Eq. (45.7) and ln|[A]|
in Eq. (45.8).

• Correlation: expressed in terms of a jointly distributed pdf between the correlated
design variables or via a covariance matrix. Correlation (ρkl in Eq. (45.8)) is a
causal relationship between DPs via some noise factors (e.g., common
manufacturing variations).

Thus, the three components are separable and distinguishable from each other.
This permits devising strategies for complexity reduction based on the component’s
significance. However, this might not be the case when the design is highly nonlinear
with inseparable components due to the loss of additivity. Consequently, significant
components of complexity may not be easily identified [24].

45.5.2 Information Axiom

The second axiom, the information axiom, states that the design with the highest
probability of success is the best design [11], even though many different designs
may be acceptable in terms of the independence axiom. In the general case ofm FRs,
the information content for the entire system is:

Isys ¼ �logbP mf g ð45:9Þ

where P{m} is the joint probability that all m FRs are satisfied. The probability of
success can be computed by specifying the design range for the FR and by deter-
mining the system range that the proposed design can provide to satisfy the FR. The
area of overlap between the design range and system range indicates the probability
of success.

576 J. C. Domerçant

45.6 Results and Conclusions

The complexity measures previously discussed directly address the list of the causes
of increased complexity in systems based on the avionics system case study. This is
illustrated in Table 45.5.

The aim of this research is to provide a useful measure of complexity for systems
engineering that aids trade-off analysis. The approach taken is to identify observable
system properties that lead to increased complexity. As part of the approach, notable
causes of increased complexity are identified using avionics as a prime example.
There is little doubt that systems such as avionics will continue to grow in

Table 45.5 System complexity factors captured by the architecture and design complexity
measures

Measure Complexity factor/trend/sensitive to Required inputs

Functional state
complexity
(FSC)

Added functionality/subsystems,
functional redundancy, and change in
performance requirements

Functional architecture: defined set
of atomic-level functions and per-
formance requirements including
range and resolution

Functional
processing
complexity
(FPC)

Feedback and feedforward (process
execution iterations), coupled tasks,
and branching due to different factors:
functional overlap, redundancies,
function integration, and resource
sharing

Functional flow block diagram, con-
trol flow graphs/program logic flow
(software), design structure matrix,
activity sequence diagram

Resource state
complexity
(RSC)

Added functionality/subsystems,
changes in the amount and types
(analog signal, digital signal, mechan-
ical, energy, etc.) of resources being
shared

Resource architecture: defined set of
function resources including range
and resolution

Resource
processing
complexity
(RPC)

Increase in the amount of information/
resources processed by the system,
increased information and sharing
among subsystems, dramatic increases
in functional integration, increase in
the number of subsystems,
modularization and coupling and
cohesion

Logical/objective architecture: func-
tion assignment to logical compo-
nents and subsystems/
modularization/logical interface
boundaries, e.g., DSM with cluster-
ing applied, noise and loss functions;
resource/data architecture: mutual
information and resource coupling,
redundancy, relative transmission
frequencies, communication
protocols

Axiomatic engi-
neering design
complexity

Increases in physical integration to
meet more demanding size, weight,
power, and other constraints; the size
of the design problem along with
coupling and correlation between
design parameters; difficulty in meet-
ing design goals and the impact of
technology on probability of design
success

Functional requirements, design
parameters, system range, sensitivity
of design parameters in meeting
functional requirements, correlation
between design parameters

45 Information Entropy-Based Complexity Measurement for Systems. . . 577

complexity, and an objective measure of complexity provides the basis for evaluat-
ing different architectural patterns and design decisions. Future work will focus on
applying the developed complexity measures to an avionics case study in order to
further develop and assess relevant analyses and their correlation to emergent
behavior, difficulty in modeling and simulation, and not to mention cost, schedule,
and performance during acquisition. Ultimately, this should result in a useful trade-
off environment for systems engineering and aid in the timely and affordable
acquisition of systems moving forward.

References

1. Sheard, S. A., & Mostashari, A. (2010). 7.3. 1 A complexity typology for systems engineering.
In INCOSE International Symposium (Vol. 20, No. 1, pp. 933–945).

2. Minai, A., & Braha, D. (2006). Complex engineered systems: Science meets technology.
3. Sheard, S. A., & Mostashari, A. (2013). 5.2. 2 Complexity measures to predict system

development project outcomes. In INCOSE International Symposium (Vol. 23. No. 1).
4. Domercant, J. C. (2011). ARC-VM: An architecture real options complexity-based valuation

methodology for military systems-of-systems acquisitions. Atlanta: Georgia Institute of
Technology.

5. Joslyn, C., & Luis, R. (2000). Towards semiotic agent-based models of socio-technical orga-
nizations. In Proc. AI, Simulation and Planning in High Autonomy Systems (AIS 2000)
Conference, Tucson, Arizona.

6. Moir, I., Seabridge, A. G., & Jukes, M. (2006). Military avionics systems. Hoboken, NJ: John
Wiley & Sons.

7. Spitzer, C. R. (2001). Avionics Handbook (Vol. 200, p. 158). Boca Raton: CRC Press.
8. Eremenko, P. (2009). META novel methods for design & verification of complex systems

DARPA presentation, December 22 (p. 10).
9. Perrow, C. (2011). Normal accidents: Living with high risk technologies. Princeton, NJ:

Princeton University Press.
10. Lightsey, B. (2001). Systems engineering fundamentals. Fort Belvoir, VA: Defense Acquisition

University.
11. Suh, N. P. (2005). Complexity: Theory and applications. Oxford: Oxford University Press on

Demand.
12. Maier, M. W. (2009). The art of systems architecting. Boca Raton, FL: CRC Press.
13. IEEE Standard 1471 (IEEE 1471, 2000; Maier, Emery, & Hilliard, 2001).
14. Jamshidi, M. (2005). System-of-systems engineering-a definition. In IEEE SMC 2005

(pp. 10–12).
15. Kinsner, W. (2008). Complexity and its measures in cognitive and other complex systems. In

ICCI 2008. 7th IEEE International Conference on Cognitive Informatics. Piscataway, NJ:
IEEE.

16. Mitchell, M. (2009). Complexity: A guided tour. Oxford: Oxford University Press.
17. Alderson, D. L., & Doyle, J. C. (2010). Contrasting views of complexity and their implications

for network-centric infrastructures. IEEE Transactions on Systems, Man, and Cybernetics-Part
A: Systems and Humans, 40(4), 839–852.

18. Gell-Mann, M., & Lloyd, S. (1996). Information measures, effective complexity, and total
information. Complexity, 2(1), 44–52.

19. Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical
Journal, 27(3), 379–423.

20. Gatlin, L. L. (1972). Information theory and the living system.

578 J. C. Domerçant

21. Nejmeh, B. A. (1988). NPATH: A measure of execution path complexity and its applications.
Communications of the ACM, 31(2), 188–200.

22. Steward, D. V. (1981). The design structure system: A method for managing the design of
complex systems. IEEE Transactions on Engineering Management, 3, 71–74.

23. McCabe, T. J. (1976). A complexity measure. IEEE Transactions on Software Engineering, 4,
308–320.

24. El-Haik, B., & Yang, K. (1999). The components of complexity in engineering design. IIE
Transactions, 31(10), 925–934.

25. Stuart, D., & Mattikalli, R. (2011). META II complexity and adaptability. St Louis, MO:
Boeing Co.

45 Information Entropy-Based Complexity Measurement for Systems. . . 579

	Chapter 45: Information Entropy-Based Complexity Measurement for Systems Engineering and Trade-Off Analysis
	45.1 Introduction
	45.2 Background: Causes of Complexity in Engineered Systems
	45.3 Technical Approach
	45.3.1 Defining the Context
	45.3.2 Uncertainty, Entropy, and Information Theory

	45.4 Architecture Complexity
	45.4.1 Functional State Complexity
	45.4.2 Resource State Complexity
	45.4.3 Functional Processing Complexity
	45.4.4 Resource Processing Complexity

	45.5 Design Complexity
	45.5.1 Independence Axiom
	45.5.2 Information Axiom

	45.6 Results and Conclusions
	References

