
Chapter 4

Model-Driven Evaluation of the Emergent
Complexity of Cooperative Work Based
on Effective Measure Complexity

In this book, the main improvement on Grassberger’s original definition of the

effective measure complexity EMC, which is based on classic information-

theoretic quantities like Shannon’s information entropy that were developed to

evaluate stochastic processes with discrete states, is the generalization of the theory

and measures to continuous-state processes like that generated by the previously

introduced VAR(1) model of cooperative work according to state Eq. 8. However,

Li and Xie (1996), Bialek et al. (2001), de Cock (2002), Bialek (2003), Ellison

et al. (2009) and others have already pioneered the generalization of Grassberger’s
concepts toward continuous systems in their works, and we can build upon their

results. Their analyses show that we must primarily consider the so-called “differ-

ential block entropy” (Eq. 233) and the corresponding continuous-type mutual

information (Eq. 234) as basic information-theoretic quantities.

In general, the differential entropy extends the basic idea of Shannon’s infor-
mation entropy as a universal measure of uncertainty about a discrete-type random

variable with known probability mass function over the finite alphabet X to a

p-dimensional continuous-type variable X with a probability density function f x½ �
(pdf, see previous chapters) whose support is a set p. The differential entropy is

defined as:

H X½ � :¼ �
ð
p

f x½ �log2 f x½ � dx: ð232Þ

The differential block entropy (cf. Eq. 219) is defined in an analogous manner as:

H nð Þ :¼ H Xn½ � ¼ �
ð
p
� � �
ð
p

f x1; . . . ; xn½ �log2 f x1; . . . ; xn½ � dx1 . . . dxn: ð233Þ

In the above equation f [x1, . . ., xn] denotes the joint pdf of the vectors (X1, . . .,Xn)

with support np.
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The information entropy of a discrete-type random variable is non-negative and

can be used as a measure of average surprisal. This is slightly different for a

continuous-type random variable, whose differential entropy can take any value

from �1 to 1 and is only used to measure changes in uncertainty (Cover and

Thomas 1991; Papoulis and Pillai 2002). For instance, the differential entropy of a

continuous random variable X that is uniformly distributed from 0 to a (and whose

pdf is therefore f x½ � ¼ 1=a from 0 to a, and 0 elsewhere) is log2a. For a < 1 the

differential entropy is negative and can become arbitrarily small as a approaches

0. The differential entropy measures the entropy of a continuous distribution

relative to the uniformly distributed one. For a Gaussian distribution with a variance

of σ2 the differential entropy is H X½ � ¼ 1=2log2σ
2 þ const. Thus the differential

entropy can be regarded as a generalization of the familiar notion of variance. With

a normal distribution, the differential entropy is maximized for a given variance. An

additional subtlety is that the differential entropy can be negative or positive

depending on the coordinate system used for encoding the vectors. This also

holds true for the differential block entropy. However, it can be proven that the

complexity measure EMC calculated on the basis of dynamic entropies

(cf. Eqs. 224 and 225) is always positive and may exist even in cases where the

block entropies diverge. Under the assumption of an underlying VAR model, for

instance, a closed-form solution for the EMC can be derived that is simply a

logarithmic ratio of determinants of covariance matrices (cf. Eqs. 246 and 258),

which in most industrial case studies is a real number that is much larger than zero.

In this case, the generalized complexity measure can be interpreted similarly to

discrete-state processes. Furthermore, it can be proven that for finite complexity

values EMC is independent of the basis in which the state vectors of work

remaining are represented, and is invariant under linear transformations of the

state-space coordinates for any regular transformation matrix (Schneider and

Griffies 1999). This invariance is due to the fact that the measure can be expressed

as the continuous-type mutual information I X�1
�1;X1

0

� �
between the infinite past

and future histories of a stochastic process, where the base-independent mutual

information I[.;.] between the sequencesXn
1 ¼ X1; . . . ;Xnð Þ and Ym

1 ¼ Y1; . . . ; Ymð Þ
of random vectors with support nq and mp is defined as

I Xn
1 ; Y

m
1

� �
:¼
ð
q
� � �
ð
p

f x1; . . . ; xn; y1; . . . ; ym½ �

log2
f x1; . . . ; xn; y1; . . . ; ym½ �
f x1; . . . ; xn½ � f y1; . . . ; ym½ � dx1 . . . dxndy1 . . . dym : ð234Þ

For two random variables X and Y that are jointly normal with a correlation

coefficient of ρ there is I X; Y½ � ¼ 1=2log2 1� ρ2ð Þ. As such, the mutual information

can be viewed as a generalized covariance. Kraskov et al. (2004) published a simple

proof that the mutual information as defined in Eq. 234 is not only invariant under

linear transformations but also with respect to arbitrary reparameterizations based
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on smooth and uniquely invertible maps x01 ¼ x01 x1ð Þ, . . . , x0n ¼ x0n xnð Þ, y01 ¼
y01 y1ð Þ, . . . , y0m ¼ y0m ymð Þ. Therefore, I[.;.] provides a measure of statistical depen-

dency structures between variables that is independent of the subjective choice of

the measurement instrument. The analyses of Bialek et al. (2001) and other

researchers show that this measure is a valid, expressive and consistent quantity

for evaluating emergent complexity in open systems.

In the following chapters the generalization of the EMC to project organizations

that are modeled by continuous state variables will be carried out step-by-step.

Though some of the calculations are quite involved, the interested reader will find

that they lay important groundwork for the complexity analysis of cooperative work

in various kinds of open organizational systems, not only product development

organizations. In Section 4.1, we start by calculating closed-form solutions with

different strength for the vector autoregression models that were introduced in

Sections 2.1, 2.2 and 2.4. These models do not have “hidden” state variables and

therefore are quite easy to analyze in information-theoretic terms. To simplify the

analysis a generalized solution for a VAR(1) process that does not refer to a specific

family of pdfs of the unpredictable performance fluctuations is calculated in

Section 4.1. We will use this generalized solution to derive closed-form solutions

for the original state space (Section 4.1.1) and the spectral basis (Section 4.1.2)

under the assumption of Gaussian behavior. Furthermore, a very compact closed-

form solution will be obtained through a canonical correlation analysis (Sec-

tion 4.1.3). For these three different approaches, we will also present the

corresponding closed-form solutions of the persistent mutual information EMC(τ)
(Eq. 229) according to Ball et al. (2010). Moreover, to clarify the concept of

emergent complexity, polynomial-based solutions for simple processes with two

and three tasks are presented in Section 4.1.4. This chapter also includes a short

analytical study of minimizing emergent complexity subject to the constraint that

the expected total amount of work done over all tasks is constant. Moreover, lower

bounds are put on the EMC in Section 4.1.5. In Section 4.2.1, an additional explicit

closed-form solution for a Markov process with hidden variables (a linear dynam-

ical system, LDS, see Section 2.9) is calculated. This solution is, admittedly,

complicated and difficult to interpret because the state variables of cooperative

work that are not directly accessible can generate a significant number of long-

range correlations between observations, and a great deal of linear algebra is needed

to evaluate the associated infinite-dimensional integrals. Therefore, Section 4.2.2

will introduce two additional implicit formulations for the EMC. The first implicit

solution is based on the seminal work of de Cock (2002) and allows analogical

reasoning between the forward and backward innovation forms developed in

Section 2.9, and the generated past-future mutual information. The second implicit

solution is directly derived from the infinite-dimensional integrals and makes it

possible for the interested reader to gain additional insights into the information-

generating mechanisms by following the calculation step by step. Although the

closed-form solutions for LDS are significantly more complicated, their derivations

show that Grassberger’s theory can, in principle, be applied in a straightforward
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manner to a larger model class that, thanks to its informational richness and

predictive power, is especially attractive for applications in project management.

4.1 Closed-Form Solutions of Effective Measure
Complexity for Vector Autoregression Models
of Cooperative Work

To obtain analytical results, it is assumed that the parameterized VAR(1) process

{Xt} is strict-sense stationary (Puri 2010) and therefore all its statistical properties

(especially the first and second moments) are invariant to a shift in the chosen time

origin. Let fθ xtþ1; . . . ; xtþn½ � (t E ℤ, n Eℕ) be the joint pdf of the block of vectors

Xtþ1; . . . ;Xtþnð Þ generating the stochastic process, and let f θ xtþn

��xtþ1, . . . , xtþn�1

� �
be the conditional density of vectorXtþn given vectorsXtþ1, . . . ,Xtþn�1. We use the

shorthand notation f [.] and f :
��:� �

in the following to denote these density functions.

Due to strict sense stationarity the joint distribution of any sequence of samples

does not depend on the sample’s placement:

f xtþ1; . . . ; xtþn½ � ¼ f xtþ1þτ; . . . ; xtþnþτ½ � t E ℤ, n E ℕ, τ � 0ð Þ :

We can use the index υ instead of t to express the shift-invariance. Therefore,

f xvþ1; . . . ; xυþn½ � denotes the joint pdf and f xυþn

��xυþ1, . . . , xυþn�1

� �
denotes the

conditional density of the process in the steady state. The conditional density is

given by (cf. Billingsley 1995):

f xυþn

��xυþ1, . . . , xυþn�1

� � ¼ f xυþ1; . . . ; xυþn½ �
f xυþ1; . . . ; xυþn�1½ � :

Since the considered VAR(1) process is a Markov process (Eq. 18), the conditional

density simplifies to

f xυþn

��xυþ1, . . . , xυþn�1

� � ¼ f xυþn

��xυþn�1

� � ¼ f xυþn�1; xυþn½ �
f xυþn�1½ � ; ð235Þ

and the strict stationarity condition implies (Brockwell and Davis 1991)

f xυþn

��xυþn�1

� � ¼ f xυ
��xυ�1

� � ¼ f x2
��x1� �

and f xυþn�1½ � ¼ f xυ½ � ¼ f x1½ � 8υ � 2 :
ð236Þ

Furthermore, we assume that ergodicity holds, and the complexity measure can be

conveniently derived using stochastic calculus based on an ensemble average or an

infinite number of realizations of the unpredictable performance fluctuations (see
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Puri 2010). To compute the EMC for the introduced VAR(1) process in the steady

state, please recall from Eq. 216 that

EMC ¼ I X�1
�1;X1

0

� �
:

According to the definition of the mutual information I[.;.] from Eq. 234, we can

write the information that is communicated from the past to the future as

I X�1
�1;X1

0

� � ¼ ð
p
� � �
ð
p

f x�1
�1; x10

� �
log2

f x�1
�1; x10

� �
f x�1�1
� �

f x10
� � dx�1

�1 dx10 : ð237Þ

In the above equation the shorthand notation f x�1
�1;x10

� �¼ f x�1,x�1þ1, . . . ,x�1,½
x0,x1, , . . . ,x1�1,x1�, f x�1

�1
� �¼ f x�1;x�1þ1; . . . ;x�1½ �, f x10

� �¼ f x0;x1; . . . ;½
x1�1;x1�, dx�1

�1 ¼ dx�1dx�1þ1 . . .dx�1 and dx10 ¼ dx0dx1 . . .dx1 was used.

Due to the Markov property (Eqs. 235 and 236) the joint pdfs can be factorized:

f x�1
�1; x10

� � ¼ f x�1½ � f x�1þ1

��x�1
� �

. . . f x�1

��x�2

� �
f x0

��x�1

� �
f x1

��x0� �
. . . f x1

��x1�1

� �
f x�1

�1
� � ¼ f x�1½ � f x�1þ1

��x�1
� �

. . . f x�1

��x�2

� �
f x10
� � ¼ f x0½ � f x1

��x0� �
. . . f x1

��x1�1

� �
:

Hence, we can simplify the mutual information:

I X�1
�1;X1

0

� � ¼
ð
p
� � �
ð
p

f x�1
�1;x10

� �
log2

f x0
��x�1

� �
f x0½ � dx�1

�1 dx10

¼
ð
 p
� � �
ð
 p

f x�1
�1;x10

� �
log2 f x0

��x�1

� �
dx�1

�1 dx10

�
ð
 p
� � �
ð
 p

f x�1
�1;x10

� �
log2 f x0½ � dx�1

�1 dx10

¼
ð
 p

ð
 p
log2 f x0

��x�1

� �
dx0dx�1

ð
 p
� � �
ð
 p

f x�1
�1;x10

� �
dx�1 . . .dx�2dx1 . . .dx1

�
ð
 p
log2 f x0½ �dx0

ð
 p
� � �
ð
 p

f x�1
�1;x10

� �
dx�1 . . .dx�1dx1 . . .dx1: ð238Þ
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On the basis of the definitions of the marginal density functions

f x0½ � ¼
ð
p
� � �
ð
p

f x�1
�1; x10

� �
dx�1 . . . dx�1dx1 . . . dx1

f x�1; x0½ � ¼
ð
p
� � �
ð
p

f x�1
�1; x10

� �
dx�1 . . . dx�2dx1 . . . dx1

we can conclude that

I X�1
�1;X1

0

� � ¼ ð
p

ð
p

f x�1; x0½ �log2 f x0
��x�1

� �
dx�1dx0 �

ð
p

f x0½ �log2 f x0½ �dx0

¼
ð
p

ð
p

f x0
��x�1

� �
f x�1½ �log2 f x0

��x�1

� �
dx�1dx0 �

ð
p

f x0½ �log2 f x0½ �dx0;
ð239Þ

or equivalently

I X�1
�1;X1

0

� � ¼ ð
p

ð
p

f x1
��x0� �

f x0½ �log2 f x1
��x0� �

dx0dx1 �
ð
p

f x0½ �log2 f x0½ �dx0:

It is evident that the second summand is the differential entropy of the random

variable X0 with probability density function f[x0]. The first summand represents the

entropy of the random variable X1 conditioned on the variable X0 taking a value in

the supportp. The first summand therefore represents a conditional entropy that is

obtained by averaging over all possible values for X0.

Before we proceed with calculating the EMC on the basis of the generalized

solution from Eq. 239 in the coordinates of the original state space ℝp, we

summarize five essential properties that hold completely independent of the sto-

chastic model generating a strict-sense stationary Gaussian process {Xt}. A Gauss-

ian process is a stochastic process whose realizations consist of random values

associated with every time step such that each random variable in the sequence has

a normal distribution. In addition, every finite ensemble of random variables

generating the process has a multivariate normal distribution (Puri 2010).

The five essential properties are as follows (cf. Boets et al. 2007):

1) The EMC of a strict-sense stationary Gaussian process equals zero if and only if

the process is temporally uncorrelated:

EMC ¼ I X�1
�1;X1

0

� � ¼ 0 , Xt ¼ vt with

vt ¼ N η; μ;Vð Þ and E vtv
T
s

� � ¼ Vδts :
ð240Þ

μ denotes the mean of the process and s 2 ℤ an arbitrary time step. δts is the
Kronecker delta according to Eq. 14. The implication EMC ¼ 0 can be easily

deduced as Gaussian random variables being uncorrelated is equivalent to
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statistical independence, i.e. f X�1
�1;X1

0

� � ¼ f X�1
�1

� � � f X1
0

� �
. A proof of

the implication that the process is temporally uncorrelated involves

Jensen’s inequality and can be found in elementary textbooks like Cover and

Thomas (1991). Concerning the state and output equations of a LDS with

additive Gaussian noise (Eqs. 136 and 137), this may be realized either by

setting H ¼ 0 or with A0 ¼ 0.

2) The range of values of the Effective Measure Complexity is

EMC 2 0, þ1½ Þ: ð241Þ

This property follows directly from the canonical correlation analysis of the past

X�1
�1

� �
and future X1

0

� �
histories of the Gaussian process (see Eq. 265 in

Section 4.1.3)

I X�1
�1;X1

0

� � ¼ �1

2
log2

Yq
i¼1

1� ρ2i
� �

and the fact that the canonical correlations ρi are confined to ρi 2 0; 1½ Þ (see

e.g. de Cock 2002). The variable q > p denotes the effective dimensionality of

the process (see Section 4.2.1). The canonical correlation analysis was intro-

duced by Hotelling (1935) and is often used for state-space identification. The

goal is to find a suitable basis for cross-correlation between two random vari-

ables—in our case the infinite, one-dimensional sequences of random variables

representing the past and future histories of the process. Based on the material of

Creutzig (2008) we use a common variant of the canonical correlation analysis

to provide a so-called balanced state-space representation (cf. Section 4.2).

Given the ordered concatenation of the variables representing the past history

Xpast ¼ XT
�1 � � � XT

�2 XT
�1

� �T
and the future history

Xfut ¼ XT
0 XT

1 � � � XT
1

� �T
of the Gaussian process we seek an orthonormal base U ¼ U 1ð Þ; . . . ;U mð Þ� �

for

Xpast and another orthonormal base V ¼ V 1ð Þ; . . . ;V nð Þ� �
for Xfut that have

maximal correlations but are internally uncorrelated. Therefore, it must hold

that E U ið ÞV jð Þ� � ¼ ρiδi j, for i, j � min m; nð Þ. U(i) and V( j) are two zero-mean

random variables of dimensions m and n, respectively. The resulting basis

variables (U(1), . . .,U(m)) and (V(1), . . .,V(n)) are called canonical variates, and

the correlation coefficients ρi between the canonical variates are called canon-

ical correlations. The cardinalities of the bases must be chosen in a way that is

compatible with the persistent informational structure of the process. The ρi’s
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are not to be confused with the introduced ordinary correlations ρij and ρ0ij from
Chapter 2.

To find the orthonormal bases, we normalize with Cholesky factors. The

factors are given by

Lpast � LT
past :¼

1

N

� �
� Xpast � XT

past

Lf ut � LT
f ut :¼

1

N

� �
� Xfut � XT

f ut:

N denotes the number of samples that are taken from the stochastic process. The

sample size must be sufficiently large to uncover all canonical correlations. The

normalized variables bXpast and bXfut to determine the balanced state-space

representation are computed by

bXpast ¼ L�1
past � XpastbXfut ¼ L�1
f ut � Xfut:

A singular value decomposition is carried out (see e.g. de Cock 2002, and

Section 4.1.3) to identify the orthonormal bases:

1

N

� �
� bX fut � bX T

past ¼ Σyu � bV � bΣ � bU:

Σyu denotes the cross-covariance between Xfut and Xpast. We compute the state

space by

bXt :¼ bVT � bXpast ¼ bVT � L�1
past � Xpast

and balance

bX 0
t ¼ bΣ1

2 � bXt

such that for the covariance matrix it holds that

1

N

� �
� bX 0

t � bX 0
t

	 
T
¼ bΣ:

The requirement that the ρi’s be nonnegative and ordered in decreasing magni-

tude makes the choice of bases unique if all canonical correlations are distinct. It

is important to note that for a strict-sense stationary VAR(1) process {Xt}, only
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the p leading canonical correlations ρi of each pair X�1
�1;X1

0

� �
of subprocesses

are non-zero and therefore the cardinality of the base is equal to p (de Cock

2002; Boets et al. 2007). This is due to the simple fact that the process is

Markovian and so the amount of information that the past provides about the

future can always be encoded in the probability distribution over the p-dimen-

sional present state (assuming an efficient coding mechanism is used). Further-

more, because of strict-sense stationarity, all ρi’s are less than one.

3) EMC is a strictly increasing function of each of the canonical correlations. This

property also follows directly from relation 265:

I X�1
�1;X1

0

� � ¼ �1

2

Xq
i¼1

log2 1� ρ2i
� �

: ð242Þ

4) The EMC is invariant under a transformation of the observations Xt by a

nonsingular constant matrix T 2 ℝ p� p. When we denote the transformed obser-

vations Zt ¼ T � Xt, it holds that

I Z�1
�1; Z1

0

� � ¼ I X�1
�1;X1

0

� �
: ð243Þ

From the explicit result in Eq. 291 for the EMC of a process that is generated by

a linear dynamical system with additive Gaussian noise, one can directly derive

this invariance property. Similar to the notation in Section 4.2, xt2t1 denotes the

vector obtained by stacking the observation sequence Xt2
t1
in a long vector of size

p t2 � t1 þ 1ð Þ � 1. We define the long vector zt2t1 in the same way. Then we

can relate the transformed observations to the original ones via Zt2
t1
¼

It2�t1þ1 � Tð Þ � Xt2
t1
. The covariance of the history of transformed observations

follows immediately and can be related to the covariance

Cxð Þt2t1 ¼ E Xt2
t1

Xt2
t1

	 
T� �
:

Czð Þt2t1 ¼ E Zt2
t1

Zt2
t1

	 
T� �
¼ E It2�t1þ1 � Tð ÞXt2

t1
Xt2
t1

	 
T
It2�t1þ1 � Tð ÞT

� �
¼ It2�t1þ1 � Tð Þ Cxð Þt2t1 It2�t1þ1 � Tð ÞT:

It is straightforward to compute EMC by using the general expression for LDS

(Eq. 291) with H ¼ I and V ¼ 0 as
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I Z�1
�1; Z1

0

� � ¼ 1

2
log2

Det Czð Þ�1
�1Det Czð Þ10

Det Czð Þ1�1

¼ 1

2
lim

tp!�1
tf!1

log2
Det Czð Þ�1

tp
Det Czð Þtf0

Det Czð Þtftp

¼ 1

2
lim

tp!�1
tf!1

log2Det I�t p � T
� �

Cxð Þ�1
tp

I�tp � T
� �T	 
n

þ log2Det Itfþ1 � T
� �

Cxð Þtf0 Itfþ1 � T
� �T	 


� log2Det Itf�tpþ1 � T
� �

Cxð Þtftp Itf�tpþ1 � T
� �T	 
o

¼ 1

2
lim

tp!�1
tf!1

log2
Det Cxð Þ�1

tp
Det Cxð Þtf0

Det Cxð Þtftp

¼ I X�1
�1;X1

0

� �
;

where we have used the fact that Det A � Bð Þ ¼ Det Að Þ � Det Bð Þ and that for

matrices A 2 ℝn�n,B 2 ℝm�m we have Det A� Bð Þ ¼ Det Að Þð Þn Det Bð Þð Þm.
5) If the p-component vector of all observations Xt can be divided into two separate

sets comprised of the vectors X
1ð Þ
t 2 ℝ p1 and X

2ð Þ
t 2 ℝ p2 with p ¼ p1 þ p2,

which are completely uncorrelated,

CXX τð Þ ¼ E XtX
T
tþτ

� � ¼ E
X

1ð Þ
t

X
2ð Þ
t

" #
X

1ð Þ
tþτ

X
2ð Þ
tþτ

" #T" #
¼ CX 1ð ÞX 1ð Þ τð Þ 0

0 CX 2ð ÞX 2ð Þ τð Þ
� �

;

then the EMC of the whole sequence of observations equals the sum of the EMC

of each set resulting from the partitioning:

I X�1
�1;X1

0

� � ¼ I X 1ð Þ� ��1

�1; X 1ð Þ� �1
0

h i
þ I X 2ð Þ� ��1

�1; X 2ð Þ� �1
0

h i
: ð244Þ

Since uncorrelated Gaussian random variables are independent, i.e. their joint

pdf equals the product of the individual pdfs—in this case

f x�1
�1; x10

� � ¼ f x 1ð Þ� ��1

�1; x 1ð Þ� �1
0
; x 2ð Þ� ��1

�1; x 2ð Þ� �1
0

h i
¼ f x 1ð Þ� ��1

�1; x 1ð Þ� �1
0

h i
� f x 2ð Þ� ��1

�1; x 2ð Þ� �1
0

h i
;
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the above property of additivity for uncorrelated observations can be easily

verified:

I X�1
�1;X1

0

� � ¼ ð f x�1
�1; x10

� �
log2

f x�1
�1; x10

� �
f x�1�1
� �

f x10
� � dx�1

�1dx10

¼
ð
f x�1

�1; x10
� �

log2

f x 1ð Þ� ��1

�1; x 1ð Þ� �1
0

h i
f x 2ð Þ� ��1

�1; x 2ð Þ� �1
0

h i
f x 1ð Þð Þ�1

�1
h i

f x 1ð Þð Þ10
� �

f x 2ð Þð Þ�1

�1
h i

f x 2ð Þð Þ10
� � dx�1

�1dx10

¼
ð
f x 1ð Þ
	 
�1

�1
; x 1ð Þ
	 
1

0

� �
f x 2ð Þ
	 
�1

�1
; x 2ð Þ
	 
1

0

� �

log2

f x 1ð Þ� ��1

�1; x 1ð Þ� �1
0

h i
f x 1ð Þð Þ�1

�1
h i

f x 1ð Þð Þ10
� � dx�1

�1dx10

þ
ð
f x 1ð Þ
	 
�1

�1
; x 1ð Þ
	 
1

0

� �
f x 2ð Þ
	 
�1

�1
; x 2ð Þ
	 
1

0

� �

log2

f x 2ð Þ� ��1

�1; x 2ð Þ� �1
0

h i
f x 2ð Þð Þ�1

�1
h i

f x 2ð Þð Þ10
� � dx�1

�1dx10 :

In the first term, the integration with respect to x 2ð Þ� ��1

�1, x 2ð Þ� �1
0
yields one, and

analogously in the second term the integration with respect to the first variable

set yields one. Ultimately, we obtain:

I X�1
�1;X1

0

� � ¼ ð f x 1ð Þ
	 
�1

�1
; x 1ð Þ
	 
1

0

� �
log2

f x 1ð Þ� ��1

�1; x 1ð Þ� �1
0

h i
f x 1ð Þð Þ�1

�1
h i

f x 1ð Þð Þ10
� � d x 1ð Þ

	 
�1

�1
d x 1ð Þ
	 
1

0

þ
ð
f x 2ð Þ
	 
�1

�1
; x 2ð Þ
	 
1

0

� �
log2

f x 2ð Þ� ��1

�1; x 2ð Þ� �1
0

h i
f x 2ð Þð Þ�1

�1
h i

f x 2ð Þð Þ10
� � d x 2ð Þ

	 
�1

�1
d x 2ð Þ
	 
1

0

¼ I ðX 1ð ÞÞ�1
�1ðX 1ð ÞÞ10

h i
þ I ðX 2ð ÞÞ�1

�1; ðX 2ð ÞÞ10
h i

:

4.1.1 Closed-Form Solutions in Original State Space

To calculate the EMC on the basis of the generalized solution from Eq. 239 in the

coordinates of the original state space ℝp, we must find the pdf of the generated

stochastic process in the steady state. Let the p-dimensional random vectorX�1�τþ1

be normally distributed with location μ�1�τþ1 ¼ A0 � x�1�τ and covariance
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Σ�1�τþ1 ¼ Σ1 (Eqs. 19 and 20), that is X�1�τþ1 eN x;A0 � x�1�τ ,Σ1ð Þ. Starting
with this random vector the project evolves according to state Eq. 8. As already

shown in Section 2.2, the strictly stationary behavior for t ! 1 means that a joint

probability density is formed that is invariant under shifting the origin. Hence, for

the locus we must have μ ¼ A0 � μþ E εt½ � ¼ A0 � μ, and for the covariance matrix

the well-known Lyapunov criterion Σ ¼ A0 � Σ � AΤ
0 þ Var εt½ � ¼ A0 � Σ � AΤ

0 þ C
must be satisfied (Eqs. 4 and 27). It follows that μ must be an eigenvector

corresponding to the eigenvalue 1 of the WTM A0. Clearly, if the modeled project

is asymptotically stable and the modulus of the largest eigenvalue of A0 is less than

1, no such eigenvector can exist. Hence, the only vector that satisfies this equation is

the zero vector 0p, which indicates that there is no remaining work (Eq. 26).

Let λ1(A0), . . ., λp(A0) be the eigenvalues of WTM A0 ordered by magnitude. If

λ1 A0ð Þj j < 1, the solution of the Lyapunov Eq. 27 can be written as an infinite

power series (Lancaster and Tismenetsky 1985):

Σ ¼
X1
k¼0

Ak
0 � C � AΤ

0

� �k
: ð245Þ

It can also be expressed using the Kronecker product �:

vec Σ½ � ¼ Ip2 � A0 � A0

� ��1
vec C½ � :

Σ is also positive-semidefinite. In the above equation it is assumed that Ip2 � A0 � A0

is invertible, vec[C ] is the vector function which was already used for the

derivation of the least square estimators in Section 2.7, and Ip2 is the identity matrix

of size p2 � p2.
Under the assumption of Gaussian behavior, it is not difficult to find different

closed-form solutions. Recalling that the random vector X0 in steady state is

normally distributed with location μ ¼ 0 p and covariance Σ, it follows from

textbooks (e.g. Cover and Thomas 1991) that the differential entropy as the second

summand in Eq. 239 can be expressed as

�
ð
p

f x0½ �log2 f x0½ �dx0 ¼ �
ð
ℝp

N x0; μ;Σð Þ log2N x0; μ;Σð Þdx0

¼ 1

2
log2 2πeð ÞpDet Σ½ �:

For the calculation of the conditional entropy (first summand in Eq. 239), the

following insight is helpful. Given a value x0, the distribution of X1 is a normal

distribution with location A0 � x0 and covariance C. Hence, the conditional entropy
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is simply equal to minus the differential entropy of that distribution. For Gaussian

distributions, the differential entropy is independent of the locus. Therefore, for the

conditional entropy it holds thatð
p

ð
p

f x1
��x0� �

f x0½ �log2 f x1
��x0� �

dx0dx1

¼
ð
ℝp

ð
ℝp

N x1;A0x0,Cð ÞN x0; μ;Σð Þlog2N x1;A0x0,Cð Þdx0dx1

¼
ð
ℝp

N x1;A0x0,Cð Þ log2N x1;A0x0,Cð Þdx1

¼ �1

2
log2 2πeð Þ pDet C½ �:

It follows for the VAR(1) model of cooperative work that

EMC ¼ 1

2
log2

Det Σ½ �
Det C½ �

 �

¼ 1

2
log2Det Σ½ � � 1

2
log2Det C½ �

¼ 1

2
log2Det Σ � C�1

� �
: ð246Þ

According to the above equation, the EMC can be decomposed additively into

dynamic and pure-fluctuation parts. The dynamic part represents the variance of the

process in steady state. If the fluctuations are isotropic, the dynamic part completely

decouples from the fluctuations, as will be shown in Eqs. 250 and 251

(Ay et al. 2012). If the solution of the Lyapunov equation (Eq. 245) is substituted

into the above equation, we can write the desired first closed-form solution as

EMC ¼ 1

2
log2

Det
X1

k¼0
Ak
0 � C � AΤ

0

� �kh i
Det C½ �

0@ 1A: ð247Þ

The determinant Det[Σ] of the covariance matrix Σ ¼
X1

k¼0
Ak
0 � C � AΤ

0

� �k
in the

numerator of the solution above can be interpreted as a generalized variance of the

stationary process. In the same manner Det[C] represents the generalized variance

of the inherent fluctuations. The inverseC�1 is the so-called “concentration matrix”

or “precision matrix” (Puri 2010). Det[C] can also be interpreted as the intrinsic

(mean squared) one-step prediction error that cannot be underrun, even if we

condition the observation on infinite past histories to build a maximally predictive

model. An analogous interpretation of Det[Σ] is to consider it as the (mean squared)

error for an infinite-step forecast of the VAR(1) model that is parameterized by the

optimizing parameters x0, A0 and C (Lütkepohl 1985). In this sense, EMC is the

logarithmic ratio related to the mean squared errors for infinite-step and one-step

forecasts of the process state. Another interesting interpretation of Det[Σ] is pro-
duced if we do not refer to the predictions of a parameterized VAR(1) model over

an infinite forecast horizon but instead to the one-step prediction error of a naı̈ve
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VAR(0) model whose predictions are based on the (zero) mean of the stationary

process. It is evident that this kind of model completely lacks the ability to

compress past project trajectories into a meaningful internal configuration to denote

the state of the project and therefore has zero complexity. Hence, EMC can also be

interpreted as the logarithmic ratio of the (mean squared) one-step prediction error

of a naı̈ve VAR(0) model with zero complexity and a standard VAR(1) model with

non-negligible complexity due to procedural memory that incorporates an effective

prediction mechanism. In this context “effective” means that the state should be

formed in a way that the mean squared prediction error is minimized at fixed

memory (sensu Still 2014). In terms of information theory, the generalized variance

ratio can be interpreted as the entropy lost and information gained when the

modeled project is in the steady state, and the state is observed by the project

manager with predefined “error bars”, which cannot be underrun because of the

intrinsic prediction error (Bialek 2003).

The covariance matrices Σ and C are positive-semidefinite. Under the assump-

tion that they are of full rank, the determinants are positive, and the range of the

EMC is
�
0, þ1�. This was already mentioned in the discussion of the essential

properties of EMC (see Eq. 241).

Interestingly, we can reshape the above solution so that it can be interpreted in

terms of Shannon’s famous “Gaussian channel” (cf. Eq. 262 and the associated

discussion) as

EMC ¼ 1

2
log2Det Ip þ

X1
k¼1

Ak
0 � C � AΤ

0

� �k !
� C�1

" #
: ð248Þ

If the covariance C is decomposed into an orthogonal forcing matrix K and a

diagonal matrix ΛK as shown in Eq. 22, the determinant in the denominator of

Eq. 247 can be replaced by Det C½ � ¼ Det ΛK½ �.
We can also separate the noise componentK � ΛK � KΤ in the sum and reshape the

determinant in the numerator as follows:

EMC¼ 1

2
log2

Det
X1

k¼0
Ak
0 �K �ΛK �KΤ � AΤ

0

� �kh i
Det ΛK½ �

0@ 1A
¼1

2
log2

Det
X1

k¼1
Ak
0 �K �ΛK �KΤ � AΤ

0

� �kþK �ΛK �KΤ
h i

Det ΛK½ �

0@ 1A
¼1

2
log2

Det K½ � �Det KΤ �
X1

k¼1
Ak
0 �K �ΛK �KΤ � AΤ

0

� �k	 

�KþΛK

h i
�Det KΤ

� �
Det ΛK½ �

0@ 1A
¼ 1

2
log2

Det KΤ �
X1

k¼1
Ak
0 �K �ΛK �KΤ � AΤ

0

� �k	 

�KþΛK

h i
Det ΛK½ �

0@ 1A:
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Moreover, because ΛK is diagonal, taking Tr[log2(ΛK)] is equivalent to

log2(Det[ΛK]) and we have

EMC ¼ 1

2
log2Det A

ı
0 þ ΛK

� �� 1

2

Xp
i¼1

log2λi Cð Þ; ð249Þ

where Aı
0 ¼ KΤ � P1

k¼1A
k
0 � K � ΛK � KΤ � AΤ

0

� �k	 

� K:

If the noise is isotropic, that is, the variances along the independent directions

are equal C ¼ σ2
� � � Ip� �

, and therefore correlations ρij (Eq. 43) between perfor-

mance fluctuations do not exist, we obtain a surprisingly simple solution:

EMC ¼ 1

2
log2Det

X1
k¼0

Ak
0 � AΤ

0

� �k" #

¼ 1

2
log2Det Ip � A0 � AΤ

0

� ��1
h i

¼ �1

2
log2Det Ip � A0 � AΤ

0

� �
: ð250Þ

The above solution is based on the von Neumann series that generalizes the

geometric series to matrices (cf. Section 2.2).

If the matrix A0 is diagonalizable, it can be decomposed into eigenvectors ϑi(A0)

in the columns S:i of S (Eq. 35) and written as A0 ¼ S � ΛS � S�1. ΛS is a diagonal

matrix with eigenvalues λi(A0) along the principal diagonal. Hence, if C ¼ σ2
� � � Ip

and A0 is diagonalizable, the EMC from Eq. 250 can be fully simplified:

EMC ¼ 1

2
log2

Yp
i¼1

1

1� λi A0ð Þ2

¼ 1

2

Xp
i¼1

log2
1

1� λi A0ð Þ2

¼ �1

2

Xp
i¼1

log2 1� λi A0ð Þ2
	 


: ð251Þ

Both closed-form solutions that were obtained under the assumption of isotropic

fluctuations only depend on the dynamical operator A0, and therefore the dynamic

part of the project can be seen to decouple completely from the unpredictable

performance fluctuations. Under these circumstances the argument 1� λi A0ð Þ2
	 


of the binary logarithmic function can be interpreted as the damping coefficient of

design mode ϕi ¼ λi A0ð Þ,ϑi A0ð Þð Þ (see Section 2.1).

Similarly, for a project phase in which all p development tasks are processed

independently at the same autonomous processing rate a, the dynamic part
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completely decouples from the performance fluctuations under arbitrary correlation

coefficients. In this non-cooperative environment with minimum richness of tem-

poral and structure-organizational dependencies, we simply have

A0 ¼ Diag a; . . . ; a½ �. For EMC, it therefore holds that

EMC ¼ 1

2
log2

Det
X1

k¼0
Diag a; . . . ; a½ �ð Þk � C � Diag a; . . . ; a½ �T

	 
k� �
Det C½ �

0BB@
1CCA

¼ 1

2
log2

Det C �
X1

k¼0
Diag a; . . . ; a½ �ð Þk � Diag a; . . . ; a½ �ð Þk

h i
Det C½ �

0@ 1A
¼ 1

2
log2Det

X1
k¼0

Diag a2; . . . ; a2
� �� �k" #

¼ 1

2
log2Det Diag

1

1� a2
; . . . ;

1

1� a2

� �� �
¼ � p

2
log2 1� a2

� �
: ð252Þ

An additional closed-form solution in which the EMC can be expressed in terms

of the dynamical operator A0 and a so-called prewhitened operator W was formu-

lated by DelSole and Tippett (2007) and Ay et al. (2012). Using Det A½ �=Det B½ � ¼
Det A � B�1
� �

and the Lyapunov Eq. 27 we can write

Det C½ �
Det Σ½ � ¼ Det Σ� A0 � Σ � AΤ

0

� � � Σ�1
� � ¼ Det Ip � A0 � Σ � AΤ

0 � Σ�1
� �

:

Defining

W :¼ Σ�1
2 � A0 � Σ 1

2

we obtain

Det C½ �
Det Σ½ � ¼ Det Ip �W �WΤ

� �
;

where Det Ip � A � N � A�1
� � ¼ Det Ip � N

� �
and Σ ¼ ΣΤ were used. Hence, we

obtain the EMC also as
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EMC ¼ �1

2
log2Det Ip �W �WΤ

� �
: ð253Þ

According to DelSole and Tippett (2007) the application of the dynamical operator

W can be regarded as a whitening transformation of the state-space coordinates of

the dynamical operator A0 by means of the covariance matrix Σ.
Concerning the evaluation of the persistent mutual information—represented by

the variable EMC(τ)—of a vector autoregressive process, Section 3.2.4 showed that

this can be expressed by the continuous-type mutual information I[.;.] as

EMC τð Þ ¼ I X�1
�1;X1

τ

� �
¼
ð
p
� � �
ð
p

f x�1
�1; x1τ

� �
log2

f x�1
�1; x1τ

� �
f x�1�1
� �

f x1τ
� � dx�1

�1 dx1τ :

The independent parameter τ � 0 denotes the lead time. The term f x�1
�1

� �
designates the joint pdf of the infinite one-dimensional history of the stochastic

process. Likewise, f x1τ
� �

designates the corresponding pdf of the infinite future

from time τ onward. We used the shorthand notation f x�1
�1; x1τ

� � ¼ f x�1,½
x�1þ1, . . . , x�1, xτ, xτþ1, , . . . , x1�1, x1�, f x�1

�1
� � ¼ f x�1; . . . ; x�1½ �, f x1τ

� � ¼
f xτ; . . . ; x1½ �, dx�1

�1 ¼ dx�1 . . . dx�1 and dx1τ ¼ dxτ . . . dx1. Informally, for

positive lead times the term I X�1
�1;X1

τ

� �
can be interpreted as the information

that is communicated from the past to the future ignoring the current length-τ
sequence of observations Xτ�1

0 . Assuming strict stationarity, the joint pdfs are

invariant under shifting the origin. Due to the Markov property of the VAR

(1) model they can be factorized as follows:

f x�1
�1; x1τ

� � ¼ ð
p
� � �
ð
p

f x�1
�1; x10

� �
dx0 . . . dxτ�1

¼ f x�1½ � f x�1þ1

��x�1
� �

. . . f x�1

��x�2

� �
f xτþ1

��xτ� �
. . . f x1

��x1�1

� �
�
ð
p
� � �
ð
p

f x0
��x�1

� �
. . . f xτ

��xτ�1

� �
dx0 . . . dxτ�1

f x�1
�1

� � ¼ f x�1½ � f x�1þ1

��x�1
� �

. . . f x�1

��x�2

� �
f x1τ
� � ¼ f xτ½ � f xτþ1

��xτ� �
. . . f x1

��x1�1

� �
:

Hence, we can simplify the mutual information as follows:

I X�1
�1;X1

τ

� � ¼ ð
p
� � �
ð
p

f x�1
�1; x1τ

� �

log2

ð
p
� � �
ð
p

f x0
��x�1

� �
. . . f xτ

��xτ�1

� �
dx0 . . . dxτ�1

f xτ½ � dx�1
�1 dx1τ :
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According to the famous Chapman-Kolmogorov equation (Papoulis and Pillai

2002) it holds that:ð
p
� � �
ð
p

f x0
��x�1

� �
. . . f xτ

��xτ�1

� �
dx0 . . . dxτ�1 ¼ f xτ

��x�1

� �
Hence, we have

I X�1
�1;X1

τ

� �¼ð
 p

ð
 p
log2 f xτ

��x�1

� �
dx�1dxτ

ð
 p
� � �
ð
 p

f x�1
�1;x1τ

� �
dx�2

�1 dx1τþ1

�
ð
 p
log2 f xτ½ �dxτ

ð
 p
� � �
ð
 p

f x�1
�1;x1τ

� �
dx�1

�1 dx1τþ1

¼
ð
 p

ð
 p

f x�1;xτ½ �log2 f xτ
��x�1

� �
dx�1dxτ�

ð
 p

f xτ½ �log2 f xτ½ �dxτ

¼
ð
 p

f x�1½ �dx�1

ð
 p

f xτ
��x�1

� �
log2 f xτ

��x�1

� �
dxτ�

ð
 p

f xτ½ �log2 f xτ½ �dxτ:

For a VAR(1) process the transition function is defined as

f xτ
��x�1

� � ¼ N xτ;A
τ
0 � x�1,C τð Þ� �

;

with the lead-time dependent covariance

C τð Þ ¼ A0 � C τ � 1ð Þ � AΤ
0 þ C

¼
Xτ
k¼0

Ak
0 � C � AΤ

0

� �k
:

We find the solution

EMC τð Þ ¼ 1

2
log2Det Σ½ � � 1

2
log2Det C τð Þ½ �

¼ 1

2
log2

Det Σ½ �
Det C τð Þ½ �

 �

¼ 1

2
log2Det Σ � C τð Þð Þ�1

h i
:

The solution can also be expressed as the logarithm of the variance ratio

(Ay et al. 2012):

EMC τð Þ ¼ 1

2
log2

Det Σ½ �
Det Σ� Aτþ1

0 � Σ � AΤ
0

� �τþ1
h i

0@ 1A; ð254Þ
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noting thatC ¼ Σ� A0 � Σ � AΤ
0 . As in Section 4.1 we can rewrite the above solution

on the basis of the dynamical operator A0 and lead-time dependent prewhitened

operator W(τ) (Eq. 253; DelSole and Tippett 2007; Ay et al. 2012) as

EMC τð Þ ¼ �1

2
log2Det Ip �W τð Þ �W τð ÞΤ

h i
;

with

W τð Þ ¼ Σ�1
2 � Aτþ1

0 � Σ1
2: ð255Þ

Following the same principles, a closed-form solution can be calculated for the

elusive information σμ τð Þ ¼ I X�1
�1;X1

τ Xτ�1
o

��� �
from Eq. 231. As explained in

Section 3.2.4, the elusive information is one of two essential pieces of the persistent

mutual information and represents the Shannon information that is communicated

from the past to the future by the stochastic process, but does not flow through the

currently observed length-τ sequence Xτ�1
0 (James et al. 2011). The key

distinguishing feature of the persistent mutual information is that it is nonzero for

τ � 1 if a process necessarily has hidden states (Marzen and Crutchfield 2014).

Conversely, due to the Markov property of the VAR(1) model, the elusive infor-

mation completely vanishes for positive length τ.
This statement is easy to prove by using the definitions for the conditional

mutual information from Eq. 214 and the conditional entropy from Eq. 213.

Based on these definitions, the following relationship can be expressed:

I X; Y
��Z� � ¼ H X

��Z� �þ H Y
��Z� �� H X,Y

��Z� �
¼ H X; Z½ � � H Z½ � þ H Y; Z½ � � H Z½ � � H X; Y; Z½ � þ H Z½ �
¼ H X; Z½ � þ H Y; Z½ � � H Z½ � � H X; Y; Z½ �:

As it holds

I X; Z; Y½ � ¼ H X½ � þ H Z; Y½ � � H X; Y; Z½ �

we find

I X; Y
��Z� � ¼ H X;Z½ � � H Z½ � � H X½ � þ I X; Z; Y½ �

¼ I X; Z; Y½ � � I X; Z½ �:

In particular, we have

σμ τð Þ ¼ I X�1
�1;X1

τ

��Xτ�1
0

� �
¼ I X�1

�1;Xτ�1
0 ;X1

τ

� �� I X�1
�1;Xτ�1

0

� �
¼ I X�1

�1;X1
0

� �� I X�1
�1;Xτ�1

0

� �
:
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Using the Markov property (Eq. 235), we see from the calculations Eq. 237–238

that the emergent complexity does not depend on the future of the autoregressive

process beyond the lead time τ, i.e.

I X�1
�1;X1

0

� � ¼ I X�1
�1;Xτ�1

0

� �
:

This proves that it holds for τ � 1:

σμ τð Þ ¼ 0:

This result is independent of the coordinate system in the vector autoregression

model of cooperative work.

4.1.2 Closed-Form Solutions in the Spectral Basis

In this chapter, we calculate additional solutions in which the dependence of the

EMC on the anisotropy of the performance fluctuations is made explicit. These

solutions are much easier to interpret, and to derive them we work in the spectral

basis (cf. Eq. 35). According to Neumaier and Schneider (2001), the steady-state

covariance matrix Σ0 in the spectral basis can be calculated on the basis of the

transformed covariance matrix of the performance fluctuations

C0 ¼ S�1 � C � SΤ
� �*	 
�1

(Eq. 41) as

Σ0 ¼

c011
2

1� λ1λ1

ρ012c
0
11c

0
22

1� λ1λ2
� � �

ρ012c
0
11c022

1� λ2λ1

c022
2

1� λ2λ2
� � �

⋮ ⋮ ⋱

0BBBBB@

1CCCCCA: ð256Þ

In the above equation, the ρ0ij’s are the transformed correlations, which were defined

in Eq. 43 for a WTM A0 with arbitrary structure and in Eq. 47 for A0’s that are
symmetric. The c0ii

2’s (cf. Eq. 10) and ρ0ijc
0
iic

0
jj’s (cf. Eq. 11) are the scalar-valued

variance and covariance components of C0 in the spectral basis:

C0 ¼
c011

2 ρ012c
0
11c

0
22 � � �

ρ012c
0
11c

0
22 c022

2 � � �
⋮ ⋮ ⋱

0B@
1CA: ð257Þ

The transformation into the spectral basis is a linear transformation of the state-

space coordinates (see Eq. 41) and therefore does not change the mutual informa-

tion being communicated from the infinite past into the infinite future by the
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stochastic process. Hence, the functional form of the closed-form solution from

Eq. 246 holds, and the EMC can be calculated as the (logarithmic) variance ratio

(Schneider and Griffies 1999; de Cock 2002):

EMC ¼ 1

2
log2

Det Σ0½ �
Det C0½ �

 �

¼ 1

2
log2Det Σ0 � C0�1

h i
: ð258Þ

The basis transformation does not change the positive-definiteness of the covari-

ance matrices. Under the assumption that the matrices are of full rank, the deter-

minants are positive. As already shown in Section 4.1.1., the determinant Det[Σ0] of
the covariance matrix Σ0 can be interpreted as a generalized variance of the

stationary process in the spectral basis, whereas Det[C0] represents the generalized
variance of the inherent performance fluctuations after the basis transformation.

The variance ratio can also be interpreted in a geometrical framework (de Cock

2002). It is well known that the volume Vol[.] of the parallelepiped spanned by the

rows or columns of a covariance matrix, e.g. Σ0, is equal to the value of its

determinant:

Vol parallelepiped Σ0½ �½ � ¼ Det Σ0½ �:

In this sense the inverse variance ratio Det[C0]/Det[Σ0] represents the factor by

which the volume of the parallelepiped referring to the dynamical part of the

process can be collapsed due to the state observation by the project manager leading

to a certain information gain.

An important finding is that the scalar-valued variance and covariance compo-

nents of the fluctuation part are not relevant for the calculation of the EMC. This

follows from the definition of a determinant (see Eq. 267). The calculated deter-

minants of Σ0 and C0 just give rise to the occurrence of the factor
Yp

n¼1
c0nn

2, which

cancels out:

Det Σ0 � C0�1
h i

¼ Det Σ0½ � � Det C0�1
h i

¼ Det Σ0½ �
Det C0½ � ¼

Det Σ0
N

� �
Det C

0
N

� � :
Hence, we can also calculate with the “normalized” covariance matrices Σ0

N and

C0
N:

Σ0
N ¼

1

1� ��λ1��2 ρ012
1� λ1λ2

� � �

ρ012
1� λ2λ1

1

1� ��λ2��2 � � �

⋮ ⋮ ⋱

0BBBBBB@

1CCCCCCA ð259Þ
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C0
N ¼

1 ρ012 � � �
ρ012 1 � � �
⋮ ⋮ ⋱

0B@
1CA: ð260Þ

It can be proved that the normalized covariance matrices are also positive-

semidefinite. If they are furthermore not rank deficient, inconsistencies of the

complexity measure do not occur. According to Shannon’s classic information-

theory findings about the capacity of a Gaussian channel (Cover and Thomas 1991),

the normalized covariance matrix Σ0
N can be decomposed into summands as

follows:

Σ0
N ¼ C0

N þ

1

1� ��λ1��2 � 1
ρ012

1� λ1λ2
� ρ012 . . .

ρ012
1� λ2λ1

� ρ012
1

1� ��λ2��2 � 1 . . .

⋮ ⋮ ⋱

0BBBBBB@

1CCCCCCA:

The second summand in the above equation is defined as Σ00
N. This matrix can be

simplified:

Σ
00
N ¼

��λ1��2
1� ��λ1��2 ρ012

λ1λ2
1� λ1λ2

. . .

ρ012
λ2λ1

1� λ2λ1

��λ2��2
1� ��λ2��2 . . .

⋮ ⋮ ⋱

0BBBBBB@

1CCCCCCA: ð261Þ

We obtain the most expressive closed-form solution based on the signal-to-noise

ratio SNR :¼ Σ00
N:C

0
N
�1

:

EMC ¼ 1

2
log2Det Ip þ Σ

00
N � C0

N
�1

h i
: ð262Þ

The SNR can be interpreted as the ratio of the variance Σ00
N of the signal in the

spectral basis that is generated by cooperative task processing and the effective

variance C0
N of the performance fluctuations. The variance of the signal drives the

process to a certain extent and can be reinforced through the structural organization

of the project. The effective fluctuations are in the same units as the input xt. This is
called “referring the noise to the input” and is a standard method in physics for
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characterizing detectors, amplifiers and other devices (Bialek 2003). Clearly, if one

builds a photodetector it is not so useful to quote the noise level at the output in

volts; one wants to know how this noise limits the ability to detect dim lights.

Similarly, when we characterize a PD project that uses a stream of progress reports

to document a quasicontinuous workflow, we don’t want to know the variance in

the absolute labor units; we want to know how variability in the performance of the

developers limits precision in estimating the real work progress (signal), which

amounts to defining an effective “noise level” in the units of the signal itself. In the

present case, this is just a matter of “dividing” generalized variances, but in reality it

is a fairly complex task. According to Sylvester’s determinant theorem, we can

swap the factors in the second summand:

Det Ip þ Σ
00
N � C0

N
�1

h i
¼ Det Ip þ C0

N
�1 � Σ00

N

h i
:

The obtained closed-form solution in the spectral basis has at most only p2 � pð Þ=
2þ p ¼ p pþ 1ð Þ=2 independent parameters, namely the eigenvalues λi(A0) of the

WTM and the correlations ρ0ij in the spectral basis, and not a maximum of

the approximately p2 þ p2 � pð Þ=2þ p ¼ p 3 pþ 1ð Þ=2 parameters encoded in

both the WTM A0 and the covariance matrix C (Eq. 248). In other words, through

a transformation into the spectral basis we can identify the essential variables

influencing emergent complexity in the sense of Grassberger’s theory and

reduce the dimensionality of the problem in many cases by the factor

3pþ 1
�
=
�
pþ 1

� �
.

Furthermore, these independent parameters are easy to interpret, and at this point

we can make a number of comments to stress the importance and usefulness of the

analytical results. It is evident that the eigenvalues λi(A0) represent the essential

temporal dependencies of the modeled project phase in terms of effective produc-

tivity rates on linearly independent scales determined by the eigenvectors ϑi(A0)

i ¼ 1 . . . pð Þ. The effective productivity rates depend only on the design modes ϕi

of the WTM A0 and therefore reflect the project’s organizational design. The lower
the effective productivity rates because of slow task processing or strong task

couplings, the less the design modes are “damped,” and hence the larger the project

complexity. On the other hand, the correlations ρ0ij model the essential dependencies

between the unpredictable performance fluctuations in open organizational systems

that can give rise to an excitation of the design modes and their interactions. This

excitation can compensate for the damping factors of the design mode. The ρ0ij’s
scale linearly with the λi(C) along each independent direction of the fluctuation

variable ε0t: the larger the λi(C), the larger the correlations and the stronger the

excitation (Eq. 43). However, the scale factors are determined not only by a linear
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interference between design modes ϕi and ϕj caused by cooperative task processing

but also by the weighted interference with performance fluctuation modes Ψi and Ψj

caused by correlations between performance variability (cf. Eqs. 43 and 47). In

other words, the emergent complexity of the modeled project phase does not simply

come from the least-damped design modeϕ1 ¼ λ1 A0ð Þ,ϑ1 A0ð Þð Þ because this mode

may not be sufficiently excited, but rather is caused (at least theoretically) by a

complete interference between all design and performance fluctuation modes. Like

the analytical considerations of Crutchfield et al. (2013) concerning stationary and

ergodic stochastic processes whose measurement values cover a finite alphabet, the

obtained closed-form solutions show that in a development process complexity is

not just controlled by the “first spectral gap,” i.e. the difference between the

dominant eigenvalue and the eigenvalue with the second largest magnitude. Rather,

the entire spectrum of eigenvalues is relevant and therefore all subspaces of the

underlying causal-state process can contribute to emergent complexity (Crutchfield

et al. 2013). In most practical case studies, only a few subspaces will dominate

project dynamics. However, the closed-form solution from Eq. 262 in conjunction

with Eqs. 260 and 261 shows that this is not generally the case. In Section 4.1.4, we

will present fairly simple polynomial-based solutions for projects with only two or

three tasks, and we will make the theoretical connections between the eigenvalues,

the spectral gaps and the correlations very clear. The solution for two tasks will also

allow us to identify simple scaling laws for real-valued eigenvalues. As a result, we

see that emergent complexity in the sense of Grassberger’s theory is a holistic

property of the structure and process organization, and that, in most real cases, it

cannot be reduced to singular properties of the project organizational design. This is

a truly nonreductionist approach to complexity assessment insisting on the specific

character of the organizational design as a whole.

Similarly to the previous chapter, we can obtain a closed-form solution for the

persistent mutual information EMC(τ) in the spectral basis. The transformation into

the spectral basis is a linear transformation of the state-space coordinates and

therefore does not change the persistent mutual information communicated from

the past into the future by the stochastic process. Hence, in analogy to Eq. 256 the

variance ratio can also be calculated

EMC τð Þ ¼ 1

2
log2

Det Σ0½ �
Det Σ0 � Λτþ1

S � Σ0 � ΛΤ
S

� �*	 
τþ1
� �

0BB@
1CCA

in the spectral basis, where the diagonal matrix ΛS is the dynamical operator

(Eq. 39) as

ΛS ¼ Diag λi A0ð Þ½ � 1 � i � p :
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Because ΛS is diagonal, the solution in the spectral basis can be simplified to

EMC τð Þ ¼ �1

2
log2

Det Σ0 � Λτþ1
S � Σ0 � ΛΤ

S

� �*	 
τþ1
� �

Det Σ0½ �

0BB@
1CCA

¼ �1

2
log2

Det Σ0 � Λτþ1
S � Σ0 � Λ*

S

τþ1
h i

Det Σ0½ �

0@ 1A
¼ �1

2
log2Det Ip � Λτþ1

S � Σ0 � Λ*
S

τþ1 � Σ0�1
h i

¼ �1

2
log2Det Ip � Σ0 τð Þ � Σ0�1

h i
; ð263Þ

with Σ0 τð Þ ¼ Λτþ1
S � Σ0 � Λ*

S

τþ1
τ � 0ð Þ.

As with the derivation of the expressive closed-form solution in Section 4.2, the

generalized variance term Σ0 � Λτþ1
S � Σ0 � ΛΤ

S

� �*	 
τþ1

¼ Σ0 � Λτþ1
S � Σ0 � Λ*τþ1

S in

the denominator of the variance ratio can be written in an explicit matrix form:

Σ0 �Λτþ1
S �Σ0 �Λ*τþ1

S

¼

c011
2

1� λ1λ1
� λ1

τþ1c011
2 λ1
� �τþ1

1� λ1λ1

ρ012c
0
11c

0
22

1� λ1λ2
� λ1

τþ1ρ012c
0
11c

0
22 λ2
� �τþ1

1� λ1λ2
� � �

ρ012c
0
11c

0
22

1� λ2λ1
� λ2

τþ1ρ012c
0
11c

0
22 λ1
� �τþ1

1� λ2λ1

c022
2

1� λ2λ2
� λ2

τþ1c022
2 λ2
� �τþ1

1� λ2λ1
� � �

⋮ ⋮ ⋱

0BBBBBB@

1CCCCCCA

¼

c011
2

� �1� λ1j j2 τþ1ð Þ

1� λ1j j2 c011c
0
22

ρ012 1� λ1
τþ1 λ2
� �τþ1

	 

1� λ1λ2

� � �

c011c
0
22

ρ012 1� λ2
τþ1 λ1
� �τþ1

	 

1� λ2λ1

c022
2

� �1� λ1j j2 τþ1ð Þ

1� λ1j j2 � � �

⋮ ⋮ ⋱

0BBBBBBBB@

1CCCCCCCCA
:

It can be proved that the covariances c0ij in the above matrix form are not relevant for

the calculation of EMC(τ). This follows from the definition of a determinant (see

Eq. 267). When calculating the determinants of Σ0 and Σ0 �Λτþ1
S �Σ0 �Λ*τþ1

S they

just give rise to the occurrence of a factor
Y p

n¼1
c0nn

2
, which cancels out in the

variance ratio. Therefore, the persistent mutual information can also be calculated

using normalized covariance matrices. The normalized covariance matrix of Σ0,

termed Σ0
N , was defined in Eq. 259. The normalized covariance matrix of Σ0 �Λτþ1

S

�Σ0 �Λ*
S

τþ1
is simply
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Σ0
N � Λτþ1

S � Σ0
N � Λ*τþ1

S

¼

1� λ1j j2 τþ1ð Þ

1� λ1j j2 ρ012
1� λ1

τþ1 λ2
� �τþ1

	 

1� λ1λ2

� � �

ρ012
1� λ2

τþ1 λ1
� �τþ1

	 

1� λ2λ1

1� λ2j j2 τþ1ð Þ

1� λ2j j2 � � �

⋮ ⋮ ⋱

0BBBBBBBB@

1CCCCCCCCA
:

Hence,

EMC τð Þ ¼ �1

2
log2

Det Σ0
N � Λτþ1

S � Σ0
N � Λ*

S
τþ1

� �
Det Σ0

N

� � !

¼ �1

2
log2Det Ip � Λτþ1

S � Σ0
N � Λ*

S
τþ1 � Σ0

N
�1

� �
¼ �1

2
log2Det Ip � Σ0

N τð Þ � Σ0
N
�1

� �
; ð264Þ

with Σ0
N τð Þ ¼ Λτþ1

S � Σ0
N � Λ*

S
τþ1 τ � 0ð Þ.

4.1.3 Closed-form Solution through Canonical Correlation
Analysis

If the matrix C
0
N representing the intrinsic prediction error in the spectral basis is

diagonal in the same coordinate system as the normalized covariance matrix Σ0
N

contributed by cooperative task processing, then the matrix product Σ0
N � C0

N
�1 ¼

Ip þ Σ00
N � C0

N
�1

� �
is diagonal, and simple reduction of emergent complexity to

singular properties of the design modes ϕi ¼ λi A0ð Þ, ϑi A0ð Þð Þ and performance

fluctuation modes Ψ i ¼ λi Cð Þ, ki Cð Þð Þ will work. In this case, the elements along

the principal diagonal are the signal-to-noise ratios along each independent direc-

tion. Hence, the EMC is proportional to the sum of the log-transformed ratios, and

these summands are the only independent parameters. However, in the general case

we have to diagonalize the above matrix product in a first step to obtain an additional

closed-form solution. This closed-form solution has the least number of independent

parameters. In spite of its algebraic simplicity, the solution is not very expressive,

because the spatiotemporal covariance structures of the open organizational system

are not revealed. We will return to this point after presenting the solution.

Unfortunately, the diagonalization of the matrix product Σ0
N � C0

N
�1

cannot be

carried out through an eigendecomposition, because the product of two symmetric

matrices is not necessarily symmetric itself. Therefore, the left and right eigenvec-

tors can differ and do not form a set of mutually orthogonal vectors, as they would if

the product was diagonal. Nevertheless, we can always rotate our coordinate system
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in the space of the output to make the matrix product diagonal (Schneider and

Griffies 1999). To do this, we decompose Σ0
N � C0

N
�1 into singular values (singular

value decomposition, see e.g. de Cock 2002) as

Σ0
N � C0

N
�1 ¼ U � ΛUV � VΤ;

where

U � UΤ ¼ Ip and V � VΤ ¼ Ip

and

ΛUV ¼ Diag σ0i
� �

1 � i � p :

The columns of U are the left singular vectors; those of V are the right singular

vectors. The columns of V can be regarded as a set of orthonormal “input” basis

vectors for Σ0
N � C0

N
�1; the columns of U form a set of orthonormal “output” basis

vectors. The diagonal values σ0i in matrix ΛUV are the singular values, which can be

thought of as scalar “gain controls” by which each corresponding input is multiplied

to give a corresponding output. The σ0i’s are the only independent parameters of the

following closed-form solution (see ). The relationship between the singular values

σ0i of Σ0
N � C0

N
�1 and the canonical correlations ρi (see summary of properties of

EMC at the end of Section 4.1) in our case is as follows (de Cock 2002):

σ0i ¼
1

1� ρ2i
1 � i � p :

Under the assumption that Det Σ0
N � C0

N
�1

� �
> 0, it is possible to prove that

Det U½ � � Det V½ � ¼ 1. We can obtain the desired closed-form solution as follows:

EMC ¼ 1

2
log2det Σ

0
N � C0

N
�1

� �
¼ 1

2
log2det U � ΛUV � VΤ

� �
¼ 1

2
log2 Det U½ � � Det ΛUV½ � � Det V½ �ð Þ

¼ 1

2
log2det ΛUV½ �

¼ 1

2
Tr log2 ΛUVð Þ½ �

¼ 1

2

Xp
i¼1

log2σ
0
i

¼ 1

2

Xp
i¼1

log2
1

1� ρ2i


 �
¼ �1

2

Xp
i¼1

log2 1� ρ2i
� �

: ð265Þ
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In spite of its algebraic simplicity, a main disadvantage of this closed-form solution

with only p parameters σ0i or ρ2i is that both the temporal dependencies of the

modeled work process in terms of essential productivity rates (represented by the

λi’s), and the essential cooperative relationships exciting fluctuations (represented

by the ρ0ij’s) are not explicit, but are compounded into correlation coefficients

between the canonical variates. Therefore, it is impossible for the project manager

to analyze and interpret the spatiotemporal covariance structures of the organiza-

tional system and to identify countermeasures for coping with emergent complexity.

A canonical correlation analysis over τ time steps leads to the following solution

of the persistent mutual information:

EMC τð Þ ¼ 1

2
log2Det Σ0

N � Σ0
N � Λτþ1

S � Σ0
N � Λ*

S
τþ1

� ��1
h i

¼ 1

2
log2Det U τð Þ � ΛUV τð Þ � V τð ÞΤ

h i
¼ 1

2
log2 Det U τð Þ½ � � Det ΛUV τð Þ½ � � Det V τð Þ½ �ð Þ

¼ 1

2
log2Det ΛUV τð Þ½ �

¼ 1

2
Tr log2 ΛUV τð Þð Þ½ �

¼ 1

2

Xp
i¼1

log2σ
0
i τð Þ

¼ 1

2

Xp
i¼1

log2
1

1� ρi τð Þð Þ2
 !

¼ �1

2

Xp
i¼1

log2 1� ρi τð Þð Þ2
	 


: ð266Þ

The termU τð Þ � ΛUV τð Þ � V τð ÞΤ represents the product of the matrices resulting from a

decomposition ofΣ0
N � Σ0

N � Λτþ1
S � Σ0

N � ΛS
*

� �τþ1
	 
�1

as a function of the lead time τ:

U τð Þ,ΛUV τð Þ,V τð Þð Þ ¼ SVD Σ0
N � Σ0

N � Λτþ1
S � Σ0

N � ΛS
*

� �τþ1
	 
�1

� �
;

where the matrix-valued function SVD[.] represents the singular value decompo-

sition of the argument. The σ0i(τ)’s and ρi(τ)’s represent, respectively, the singular

values and canonical correlations given the lead time.

4.1.4 Polynomial-Based Solutions for Processes with Two
and Three Tasks

We can also analyze the spatiotemporal covariance structure of Σ0
N (Eq. 259) in the

spectral basis explicitly by recalling the definition of a determinant. IfB ¼ bi j
� �

is a

matrix of size p, then
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Det Bð Þ ¼
X
β2Rp

sgn βð Þ
Yp
i¼1

bi,β ið Þ ð267Þ

holds. Rp is the set of all permutations of {1, . . ., p}. Thus, because of the regular

structure of the matrix Σ0
N , Det[Σ0

N] is a sum of p ! summands. Each of these

summands is a fraction, because it is a product of elements from Σ0
N , where exactly

one entry is chosen from each row and column. The denominator of those fractions

is a product consisting of p factors of 1� λi A0ð Þλiλ j A0ð Þ. The numerator is a

product of 2, 3, . . ., p factors ρ0ij, or simply 1 if the permutation is the identity. (The

case of one factor cannot occur, because the amount of factors equals the amount of

numbers changed by the permutation β, and there is no permutation that changes

just one number). The coefficients (i, j) of the factor 1� λi A0ð Þλ j A0ð Þ in the

denominator correspond to the coefficients (k, l ) of the factor ρ0kl in the numerator,

i.e. i ¼ l and j ¼ k, if i 6¼ k holds. Otherwise, in the case that i ¼ k, no

corresponding factor is multiplied in the numerator, because the appropriate entry

of Σ0
N lies on the principal diagonal. Moreover, 1� λi A0ð Þλ j A0ð Þ ¼ 1� λi A0ð Þj j2

holds in that case.

These circumstances are elucidated for project phases with only p ¼ 2 and

p ¼ 3 fully interdependent tasks. For p ¼ 2 we have

Σ0
N ¼

1

1� ��λ1��2 ρ012
1� λ1λ2

ρ012
1� λ2λ1

1

1� ��λ2��2
0BBB@

1CCCA;

hence,

Det Σ0
N

� � ¼ 1

1� ��λ1��2� �
1� ��λ2��2� �� ρ012

2

1� λ2λ1
� �

1� λ1λ2
� � :

For p ¼ 3 we have

Σ0
N¼

1

1� ��λ1��2 ρ012
1� λ1λ2

ρ013
1� λ1λ3

ρ012
1� λ2λ1

1

1� ��λ2��2 ρ023
1� λ2λ3

ρ013
1� λ3λ1

ρ023
1� λ3λ2

1

1� ��λ3��2

0BBBBBBB@

1CCCCCCCA;
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hence,

Det Σ0
N

� � ¼ 1

1� ��λ1��2� �
1� ��λ2��2� �

1� ��λ3��2� �
� ρ0232

1� ��λ1��2� �
1� λ3λ2
� �

1� λ2λ3
� �� ρ0132

1� ��λ2��2� �
1� λ3λ1
� �

1� λ1λ3
� �

� ρ0122
1� ��λ3��2� �

1� λ1λ2
� �

1� λ2λ1
� �þ ρ012ρ

0
13ρ

0
23

1� λ1λ2
� �

1� λ2λ3
� �

1� λ3λ1
� �

þ ρ012ρ
0
13ρ

0
23

1� λ2λ1
� �

1� λ3λ2
� �

1� λ1λ3
� � :

The results for C0
N are much simpler. From Eqs. 259 and 260 it follows that the

numerator is the same, whereas the denominator is simply 1.

For p ¼ 2 we have

C0
N ¼ 1 ρ012

ρ012 1


 �
;

hence,

Det C0
N

� � ¼ 1� ρ012
2:

For p ¼ 3 we have

C0
N ¼

1 ρ012 ρ013
ρ012 1 ρ023
ρ013 ρ023 1

0@ 1A;

hence,

Det C0
N

� � ¼ 1þ 2ρ012ρ
0
13ρ

0
23 � ρ012

2 � ρ013
2 � ρ023

2:

These results readily yield the closed-form expression

EMC ¼ 1

2
log2

1

1� ρ0122
1

1� ��λ1��2� �
1� ��λ2��2� �� ρ012

2 1

1� λ2λ1
� �

1� λ1λ2
� � !" #

ð268Þ
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for p ¼ 2 tasks and

EMC ¼ 1

2
log2

1

1þ 2ρ012ρ
0
13ρ

0
23 � ρ0122 � ρ0132 � ρ0232

Det Σ0
N

� �� �
ð269Þ

for p ¼ 3 tasks, where the simplified determinant Det[Σ0
N] of the normalized

covariance matrix Σ0
N is given by

Det Σ0
N

� �¼ 1

1� ��λ1��2� � 1

1� ��λ2��2� �
1� ��λ3��2� �� ρ023

1� λ3λ2
� �

1� λ2λ3
� � !

þρ012ρ
0
13ρ

0
23

1

1� λ1λ2
� �

1� λ2λ3
� �

1� λ3λ1
� �þ 1

1� λ1λ3
� �

1� λ2λ1
� �

1� λ3λ2
� � !

� ρ012
2

1� ��λ3��2� �
1� λ1λ2
� �

1� λ2λ1
� �� ρ013

2

1� ��λ2��2� �
1� λ3λ1
� �

1� λ1λ3
� � : ð270Þ

Now, we suppose that all eigenvalues λi(A0) are real. Under this assumption EMC

can be expressed by the spectral gaps λi � λ j

� �
i6¼ j

between eigenvalues as

EMC ¼ 1

2
log2

1

1� λ1
2

� �
1� λ2

2
� �þ ρ012

2

1� ρ0122
λ1 � λ2ð Þ2

1� λ1
2

� �
1� λ2

2
� �

1� λ1λ2ð Þ2
" #

¼ 1

2
log2

1

1� λ1
2

� �
1� λ2

2
� � 1þ ρ012

2

1� ρ0122
λ1 � λ2ð Þ2
1� λ1λ2ð Þ2

 !" #

¼ �1

2
log2 1� λ1

2
� �� 1

2
log2 1� λ2

2
� �þ log2 1þ ρ012

2

1� ρ0122
λ1 � λ2ð Þ2
1� λ1λ2ð Þ2

" #
;

ð271Þ

for p ¼ 2, and as

EMC ¼ �1

2
log2 1� λ1

2
� �� 1

2
log2 1� λ2

2
� �� 1

2
log2 1� λ3

2
� �

þ1

2
log2 1þ ρ012

2

ρ0
λ1 � λ2ð Þ2
1� λ1λ2ð Þ2 þ

ρ013
2

ρ0
λ1 � λ3ð Þ2
1� λ1λ3ð Þ2 þ

ρ023
2

ρ0
λ2 � λ3ð Þ2
1� λ2λ3ð Þ2

"

þ 2ρ012
2ρ013

2ρ023
2

ρ0
1� λ1

2
� �

1� λ2
2

� �
1� λ3

2
� �� 1� λ1λ2ð Þ 1� λ1λ3ð Þ 1� λ2λ3ð Þ

1� λ1λ2ð Þ 1� λ1λ3ð Þ 1� λ2λ3ð Þ

#
ð272Þ

for p ¼ 3 using analogous simplifications. The factor ρ0 equals the determinant of

the covariance matrix of a standard trivariate normal distribution taking variances

c211 ¼ c222 ¼ c233 ¼ 1 and is given by
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ρ0 ¼ 1þ 2ρ012ρ
0
13ρ

0
23 � ρ012

2 � ρ013
2 � ρ023

2:

Hence, if the dynamical operator A0 has only real eigenvalues λi(A0), EMC can be

decomposed into simple additive complexity factors and the factor related to the

correlations between the covariance components of C0 in the spectral basis is a

simple function of the spectral gap(s).

For a process with p ¼ 2 tasks that is asymptotically stable in the sense of

Lyapunov (Eq. 4), it is evident that the first, second and third summand in the last

row of Eq. 271 can only take values in the range 0, þ1½ Þ, and for different

correlations ρ012 E �1; 1½ � the sum of the first and second summand

�1=2log2 1� λ1
2

� �� 1=2 log2 1� λ2
2

� �
is a lower bound. To gain additional

insights into the scaling behavior of EMC in the spectral gap Δλ ¼ λ1 � λ2ð Þ and
the correlation coefficient ρ012, we define another variable ς ¼ λ1 þ λ2ð Þ that is

orthogonal to Δλ. The Taylor series expansion of EMC in the spectral gap Δλ about
the point Δλ ¼ 0 to order Δλ2 leads to:

EMC ¼ �1

2
log2 1� ς2

4


 �2
" #

þ 4 1þ ρ012
2

� �þ ς2 � 3ρ012
2ς2

� �
ρ0122 � 1
� �

ς2 � 4ð Þlog10 2ð Þ Δλ2 þ o Δλ½ �3:

For the correlation coefficient ρ012 we obtain the series expansion

EMC ¼ �1

2
log2 1� ς� Δλð Þ2

4

 !
1� ςþ Δλð Þ2

4

 !" #

þ 2Δλ2

4þ Δλ2 � ς2
� �

log10 2ð Þ ρ
0
12

2 þ o ρ012
� �3

about the point ρ012 ¼ 0 to order ρ012
2.

For p ¼ 3 tasks it can also be proved that the fourth summand in Eq. 272 can

only take values in the range 0, þ1½ Þ in view of the definition of the covariance

matrix. The sum of the first, second and third summands is also a lower bound.

Interestingly, the coefficient ρ012
2= 1� ρ012

2
� �

in Eq. 271 is equivalent to Cohen’s
f2, which is an effect size measure that is frequently used in the context of an F-test

for ANOVA or multiple regression. By convention, in the behavioral sciences

effect sizes of 0.02, 0.15, and 0.35 are termed small, medium, and large, respec-

tively (Cohen 1988). The squared product-moment correlation ρ012
2 can also be

easily interpreted within the class of linear regression models. If an intercept is

included in a linear regression model, then ρ012
2 is equivalent to the well known

coefficient of determination R2. The coefficient of determination provides a mea-

sure of how well future outcomes are likely to be predicted by the statistical model.

Moreover, interesting questions arise from the identification of these lower

bounds. The answers will improve the understanding of the unexpectedly rich

dynamics that even small open organizational systems can generate. The identified

lower bounds can be reached, if and only if either the performance fluctuations are
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isotropic, that is, for the corresponding covariance matrix in the original state-space

coordinates the expression C ¼ σ2
� � � Ip holds (see Eq. 250), or the dynamical

operator A0 is symmetric and the column vectors of the forcing matrix K are

“aligned,” in the sense that A0 ¼ cf g � K holds (c 2 ℝ or c ¼ Diag ci½ � in general).

More details about the interrelationship between A0 and K were presented earlier in

Section 2.3. In the following, we focus on the question of how to identify the

“optimal” spectrum of eigenvalues λi, in the sense that emergent complexity

according to the metric EMC ¼ 1
2
log2Det Σ0

N � C0�1
N

h i
is minimized subject to the

constraint that the expected total amount of work xtot 2 ℝþ done over all tasks in the

modeled project phase is constant. This constrained optimization problem will be

solved under the assumptions that all eigenvalues λi(A0) are real, it holds that λi
A0ð Þ > 0 and the performance fluctuations are isotropic, i.e. for a process consisting

only of relaxators (see Fig. 2.6) and in which the design modes are excited as little

as possible. We therefore need to find project organization designs that could, on

average, process the same amount of work while leading to minimum emergent

complexity. A closed-form solution of the mean vector x of the accumulated work

for distinct tasks in an asymptotically stable process given the initial state x0 can be

calculated across an infinite time interval as x ¼ Ip � A0

� ��1 � x0 (see Section 2.2).

The expected total amount of work xtot ¼ Total x½ � is simply the sum of the vector

components (Eq. 16). For two tasks, the above question can be formulated as the

following constrained optimization problem:

min
a11;a12;a21;a22ð Þ

1

2
log2Det 1� λ1

a11 a21
a12 a22


 �� �2 !
1� λ2

a11 a21
a12 a22


 �� �2 ! !�1
24 35

subject to Total
1� a11 � a12
�a21 1� a22


 ��1

� x01
x02


 �" #
¼ xtot:

For three tasks, the corresponding formulation would be:

min

ai jf g
i; jð ÞE 1;2;3f g2

	 
 1
2
log2Det

Y3
i¼1

1� λi

a11 a12 a13
a21 a22 a23
a31 a32 a33

0@ 1A24 3520@ 1A0@ 1A�1
264

375

subject to Total

1� a11 �a12 �a13
�a21 1� a22 �a23
�a31 �a32 1� a33

0@ 1A�1

�
x01
x02
x03

0@ 1A24 35 ¼ xtot:

In these equations, λi[.] represents the i-th eigenvalue of the argument matrix. To

solve the constrained optimization problems, the method of Lagrange multipliers is
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used. Unfortunately, this method leads to simple and expressive closed-form

solutions that this book can only present and discuss under additional constraints.

The first additional constraint is that only two development tasks are processed.

Furthermore, both tasks have to be “uncoupled” and the corresponding off-diagonal

elements a12 ¼ 0 and a21 ¼ 0 indicate the absence of cooperative relationships.

Finally, the initial state is constrained to a setting in which both tasks are 100% to be

completed, that is x0 ¼ 1 1½ �Τ, and in this case the total amount of work must be

larger than 2 xtot > 2ð Þ. Under these constraints, it follows that the eigenvalues

λ1(A0) and λ2(A0) are equal to the autonomous task processing rates:

λ1
a11 0

0 a22


 �� �
¼ a11 and λ2

a11 0

0 a22


 �� �
¼ a22 :

The closed-form solution of the constrained optimization problem is the piecewise-

defined complexity function:

EMCmin ¼
log2

xtot
2

xtot � 1ð Þ

 �

� 2 if 2 < xtot � 2þ ffiffiffi
2

p

1

2
log2 2xtot � 1ð Þ � 1 if 2þ ffiffiffi

2
p

< xtot:

8>><>>:
The corresponding equations for the autonomous task processing rates (alias eigen-

values) are

amin
11 ¼ λmin1 ¼

xtot � 2

xtot
if 2 < xtot � 2þ ffiffiffi

2
p

1

xtot � 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ xtot � 4ð Þxtot

p if 2þ ffiffiffi
2

p
< xtot

8>><>>:
amin
22 ¼ λmin2 ¼

xtot � 2

xtot
if 2 < xtot � 2þ ffiffiffi

2
p

1

xtot � 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ xtot � 4ð Þxtot

p if 2þ ffiffiffi
2

p
< xtot:

8>><>>:
When we analyze the above solutions, an interesting finding is that the value x1tot ¼
2þ ffiffiffi

2
p 	 3:414 of the total amount of work indicates a kind of “bifurcation point”

in the complexity landscape. Below that point, minimum complexity values are

assigned for equal autonomous task processing rates (or eigenvalues); above it,

minimum complexity values are attained, if and only if the difference between

rates (the spectral gap Δλmin ¼ λmin1 � λmin2 ) is

amin
11 � amin

22 ¼ λmin1 � λmin2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ xtot � 4ð Þxtot

p
2xtot � 1

:

This bifurcation behavior of an open organizational system in which only two

uncoupled tasks are concurrently processed was unexpected. Figure 4.1 shows the

bifurcation point in detail.
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We also found analytical results for the constrained optimization problem in the

more general case of two uncoupled overlapping tasks, i.e. a bundle of independent

tasks where, initially, only the second task has to be fully completed, while the first

task is already completed to a level of x% and we therefore have an initial state

x0 ¼ 1� xð Þ=100 1½ �Τ. However, the closed-form solutions are very complicated

and, due to space limitations, cannot be presented here. It is important to note that

the piecewise-defined complexity function and the corresponding bifurcation point

are completely independent of the degree of task overlapping and only depend on

the dynamics of task processing. This is a highly desirable property of the preferred

complexity metric.

When we relax the constraint that both tasks have to be uncoupled, and consider

all four matrix entries of the WTM A0 as free parameters, we find another simple

analytical solution to the constrained optimization problem. The initial state is

constrained to be x0 ¼ 1 1½ �Τ as before. However, the obtained solution is not

very structurally informative, as all four elements of A0 are supposed to be equal to

xtot � 2ð Þ=2xtot, and we have the symmetric matrix representation

Amin
0 ¼

1

2
� 1

xtot

1

2
� 1

xtot
1

2
� 1

xtot

1

2
� 1

xtot

0B@
1CA:

From a practical point of view, this kind of project organizational design seems to

be rather “pathological” because the relative couplings between tasks are extremely

strong and one must expect a large amount of additional work in the iterations. The

corresponding complexity solution is

2.5 3.0 3.5 4.0 4.5 5.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 4.1 Plot of autonomous task processing rates a11 and a22 leading to a minimum EMC subject

to the constraint that the expected total amount of work xtot is constant. The underlying closed-

form solution was calculated based on Lagrange multipliers. Note that the solution only holds

under the assumption that the tasks are uncoupled and the initial state is x0 ¼ 1 1½ �Τ, in which case
xtot must be larger than 2
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EMCmin ¼ 1

2
log2

xtot
2

4 xtot � 1ð Þ

 �

if 2 < xtot :

It is evident that the above minimum of emergent complexity scales for xtot > 2:5
almost linearly in the expected total amount of work.

4.1.5 Bounds on Effective Measure Complexity

To calculate the lower bounds on EMC for an arbitrary number of tasks we can

make use of Oppenheim’s inequality (see Horn and Johnson 1985). LetM and N be

positive-semidefinite matrices and let M∘N be the entry-wise product of these

matrices (so-called “Hadamard product”). The Hadamard product of two positive-

semidefinite matrices is again positive-semidefinite. Furthermore, if M and N are

positive-semidefinite, then the following equality based on Oppenheim holds:

Det M∘N½ � �
Y p

i¼1
M i;i½ �½ �

	 

Det N½ �:

Let M ¼ M i; j½ �½ �
� � ¼ 1= 1� λi A0ð Þλ j A0ð Þ

	 
	 

be a Cauchy matrix 1 � i, j � pð Þ.

The elements along the principal diagonal of this matrix represent the “damping

factor” 1� ��λi��2 of design mode ϕi, and the off-diagonal elements 1� λiλi are the
damping factors between the interacting modes ϕi and ϕj. We follow the convention

that the eigenvalues are ordered in decreasing magnitude in rows. Let N ¼ C0
N be

the normalized covariance matrix of the noise, as defined in Eq. 260. Then the

normalized covariance matrix of the signal Σ0
N from Eq. 259 can be written as the

Hadamard productΣ0
N ¼ M∘C0

N . According to Oppenheim’s inequality, the follow-
ing inequality holds:

EMC¼ 1

2
log2

Det Σ0
N

� �
Det C0

N

� � !
¼ 1

2
log2

Det M∘C0
N

� �
Det C0

N

� � !
� 1

2
log2

Y p

i¼1
M i;i½ �½ �

	 

Det C0

N

� �
Det C0

N

� �
0@ 1A

¼ 1

2
log2

Y p

i¼1

1

1� ��λi��2
 !

¼�1

2

Xp
i¼1

log2 1� ��λi��2� �
: ð273Þ

The lower bound according to the above equation is equal to the closed-form

solution for EMC that was obtained under the assumptions of isotropic noise

C¼ σ2
� � � Ip� �

and A0 being diagonalizable (see Eq. 251). In other words, emer-

gent complexity in PD projects can be kept to a minimum, if the variances of the
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unpredictable performance fluctuations are equalized by purposeful interventions

of the project manager and correlations between vector components are suppressed.

Next, because of the commutativity of the Hadamard product, it holds that

EMC¼ 1

2
log2

Det Σ0
N

� �
Det C0

N

� � !
¼ 1

2
log2

Det C0
N∘M

� �
Det C0

N

� � !
� 1

2
log2

Y p

i¼1
C0
N i;i½ �½ �

	 

Det M½ �

Det C0
N

� �
0@ 1A

¼ 1

2
log2

Det M½ �
Det C0

N

� � !
:

The determinant of the Cauchy matrix M in the numerator can be written as

(Krattenthaler 2005)

Det M½ � ¼ Det

1

1� ��λ1��2 1

1� λ1λ2
. . .

1

1� λ2λ1

1

1� ��λ2��2 . . .

⋮ ⋮ ⋱

266664
377775 ¼

Y p

i< j
λi � λ j

� �
λi � λ j

� �Y p

i, j
1� λiλ j

� � :

Hence,

EMC¼1

2
log2

Det C0
N∘M

� �
Det C0

N

� � !

� 1

2
log2

Y p

i< j
λi�λ j

� �
λi �λ j

� �Y p

i, j
1�λiλ j

� �
Det C0

N

� �
0@ 1A

¼ 1

2

Xp
i< j

log2 λi�λ j

� �þ log2 λi �λ j

� �� ��Xp
i, j

log2 1�λiλ j

� �� log2Det C
0
N

� � !
:

ð274Þ

The lower bound on the EMC in the above equation is only defined for a dynamical

operator A0 with distinct eigenvalues. Under this assumption, a particularly inter-

esting property of the bound is that it includes not only the damping factors

1�λiλi
� �

inherent to the dynamical operator A0 (as does the bound in Eq. 273)

but also the spectral gap between eigenvalues λi�λ j

� �
and their complex conju-

gates λi �λ j

� �
. We can draw the conclusion that under certain circumstances,

differences among effective productivity rates (represented by the λi’s) stimulate

emergent complexity in PD (cf. Eqs. 271 and 272). Conversely, small complexity

scores are assigned if the effective productivity rates are similar.

Additional analyses have shown that the lower bound defined in Eq. 273 is

tighter when the eigenvalues of the dynamical operator A0 are of similar
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magnitudes. Conversely, the lower bound defined in Eq. 274 comes closer to the

true complexity values if the magnitudes of the eigenvalues are unevenly

distributed.

Finally, it is also possible to put both upper and lower bounds on the EMC that

are explicit functions of the dynamical operator A0 and its dimension p. To find

these bounds, we considered results for the determinant of the solution of the

Lyapunov equation (Eq. 27, cf. Mori et al. 1982). Let Σ be the covariance matrix

of the process in the steady state, and let the dominant eigenvalue ρ A0ð Þ ¼ max ij j of
A0 be less than 1 in magnitude (see Section 2.1). Then we have

Det Σ½ � � Det C½ �
1� Det A0½ �ð Þ p

2

	 
 p :

Moreover, if A0 is diagonalizable and ρ AΤ
0 � A0

� � � C� A0 � Σ � AΤ0 is positive-

semidefinite, then

Det Σ½ � � Det C½ �
1� ρ AΤ

0 � A0

� �� � p ;
where ρ AΤ0 � A0

� �
denotes the dominant eigenvalue ofAΤ

0 � A0. Based on Eq. 246 we

can calculate the following bounds:

� p

2
log2 1� Det A0½ �ð Þ p

2

	 

� EMC � � p

2
log2 1� ρ AΤ0 � A0

� �� �
: ð275Þ

The upper bound only holds if A0 is diagonalizable and ρ AΤ
0 � A0

� � � C� A0 � Σ � AΤ0
is positive-semidefinite. If C is diagonal, then ρ AΤ0 � A0

� � � C� A0 � Σ � AΤ0 is always
positive-semidefinite. Both bounds grow strictly monotonically with the dimension

of the dynamical operator A0 and it is evident that the EMC assigns larger com-

plexity values to projects with more tasks, if the task couplings are similar. One can

also divide the measure by the dimension p of the state space and compare the

complexity of project phases with different cardinalities.

4.1.6 Closed-Form Solutions for Higher-Order Models

It is also not difficult to calculate the EMC of stochastic processes in steady state

that are generated by higher-order autoregressive models of cooperative work in PD

projects. In Section 2.4, we said that a vector autoregression model of order n,
abbreviated as VAR(n) model, without an intercept term is defined by the state

equation (see Neumaier and Schneider 2001 or Lütkepohl 2005):
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Xt ¼
Xn�1

i¼0

Ai � Xt�i�1 þ εt:

The probability density function of the vector εt of performance fluctuations is

given in Eq. 13. It is evident that due to the autoregressive behavior involving

n instances of the process in the past, the generated stochastic process {Xt} does not

possess the Markov property (cf. Eq. 18) and therefore neither the generalized

complexity solution from Eq. 239 nor the closed-form solution for a VAR(1) pro-

cess from Eq. 247 can be used to evaluate emergent complexity. However, as we

showed in Section 2.5, we can make the stochastic process Markovian by

“augmenting” the state vector and rewriting the state equation as a first-order

recurrence relation (Eq. 59):

~Xt ¼ ~A � ~Xt�1 þ ~εt t ¼ 1, . . . ,T ; ð276Þ

where ~X t is the augmented state vector (Eq. 60)

~Xt ¼
Xt

Xt�1

⋮
Xt�nþ1

0BB@
1CCA;

~ε t is the augmented noise vector (Eq. 61)

~ε t ¼
εt
0

⋮
0

0BB@
1CCA

and ~A is the extended dynamical operator (Eq. 62)

~A ¼

A0 A1 � � � An�2 An�1

Ip 0 � � � 0 0

0 Ip � � � 0 0

0 0 ⋱ 0 0

0 0 . . . Ip 0

0BBBBBB@

1CCCCCCA:

The covariance matrix ~C can be written as
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~C ¼ E
�
~εt~ε

T
t

�
¼

C 0 � � � 0

0 0 0

⋮ ⋱ ⋮
0 0 � � � 0

0BB@
1CCA :

ð277Þ

The partial covariance C ¼ E εtεTt
� �

represents the intrinsic one-step prediction

error of the original autoregressive process.

In light of the mutual information that is communicated from the infinite past to

the infinite future (by storing it in the present) the problem with this kind of order

reduction by state-space augmentation is that the augmented state vector ~X t has

vector components that are also included in the previous state vector ~X t�1 and

therefore the past and future are not completely shielded in information-theoretic

terms, given the present state. To be able to apply the closed-form complexity

solution from Eq. 247 directly to the higher-order model in the coordinates of the

original state space ℝp, we have to find a state representation with disjoint vector

components. This can be easily done by defining the combined future and present

project state ~X tþn�1 to be the block of random vectors

~Xtþn�1 ¼
Xtþn�1

Xtþn�2

⋮
Xt

0BB@
1CCA

and the past project state ~X t�1 to be the block of vectors

~Xt�1 ¼
Xt�1

Xt�2

⋮
Xt�n

0BB@
1CCA:

The calculation of the n-th iterate of ~X tþn�1 leads to the higher-order recurrence

relation

~X tþn�1 ¼ ~A � ~X tþn�2 þ ~ε tþn�1

¼ ~A ~A � ~X tþn�3 þ ~ε tþn�2

� �þ ~ε tþn�1

¼ ~A 2 � ~X tþn�3 þ ~A � ~ε tþn�2 þ ~ε tþn�1

⋮

¼ ~A n � ~X t�1 þ
Xn
i¼1

~A
� �n�i � ~ε tþi�1 t ¼ 2� n, . . . ,T � nþ 1 : ð278Þ

Under the assumption of strictly stationary behavior of ~X t

� �
for t ! 1, we can

utilize the complexity solution from eq. 247 and express the mutual information

that is communicated by the VAR(n) model from the infinite past to the infinite
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future through the present project state by the logarithmic generalized variance ratio

as follows:

EMC ¼ 1

2
log2

Det
X1

k¼0
~A n
� �k �

Xn

i¼1
~A
� �n�i � ~C � ~A

� �n�i
	 
Τ
 �

� ~A n
� �Τ	 
k� �

Det
Xn

i¼1
~A
� �n�i � ~C � ~A

� �n�i
	 
Τ� �

0BB@
1CCA

¼ 1

2
log2

Det ~Σ
� �

Det
Xn

i¼1
~A
� �n�i � ~C � ~A

� �n�i
	 
Τ� �

0BB@
1CCA; ð279Þ

where the steady-state covariance ~Σ in the denominator is given by the infinite sum

~Σ ¼
X1
k¼0

~A n
� �k � Xn

i¼1

~A
� �n�i � ~C � ~A

� �n�i
	 
Τ !

� ~A n
� �Τ	 
k

:

As an alternative to this solution, we can calculate the mutual information between

infinite past and future histories using the additive factors method of Li and Xie

(1996). In this method, the total mutual information is decomposed into additive

components which can be expressed as a ratio of conditional (auto)covariances of

the steady-state process. This method is very appealing as it allows us to interpret

the additive components in terms of the universal learning curve Λ(m) that was
formulated by Bialek et al. (2001, see Eq. 224) and is explained in detail in Section

3.2.4. EMC is simply the discrete integral of Λ(m) with respect to the block length

m, which controls the speed at which the mutual information converges to its limit

(Crutchfield et al. 2010). When we use the block length as a natural order parameter

of the additive components, we can also easily evaluate the speed of convergence. If

convergence is slow, it is an indicator of emergent complexity (see discussion in

Section 3.2.4).

Let

Cm ¼
C ~X ~X 0ð Þ C ~X ~X 1ð Þ . . . C ~X ~X m� 1ð Þ
C ~X ~X 1ð Þ C ~X ~X 0ð Þ . . . C ~X ~X m� 2ð Þ

⋮ ⋮ ⋱ ⋮
C ~X ~X m� 1ð Þ C ~X ~X m� 2ð Þ . . . C ~X ~X 0ð Þ

0BB@
1CCA ð280Þ

be a mp� mp m 2 ℕð Þ Toeplitz matrix (Li and Xie 1996) storing the values of the

autocovariance functions (Eq. 159)
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C ~X ~X τð Þ ¼ E ~Xt � μ ~X

� �
~Xtþτ � μ ~X

� �Th i
¼ E ~Xt

~X T
tþτ

� �� μ ~X μ
T
~X

¼ E ~Xt
~X T
tþτ

� �
of the steady-state process generated by state Eq. 59 (and not Eq. 276) for lead times

τ ¼ 0, 1, . . . ,m� 1. We know from Section 2.9 that, in steady state, the

autocovariance C ~X ~X τð Þ and the autocorrelation R ~X ~X τð Þ (Eq. 160) are equal and that

we have C ~X ~X τð Þ ¼ R ~X ~X τð Þ. Note that the matrix elements C ~X ~X τð Þ are defined to be

p� pblock autocovariancematrices of the corresponding subspaces. Furthermore, let

~Σ μ ¼ Det E
�

~X t � E ~X t
~X t�1

�� , . . . , ~X �1
� �� �

~X t � E ~X t
~X t�1

�� , . . . , ~X �1
� �� �Th i

be the (mean squared) one-step prediction error with respect to the steady-state

process and

~Σ mð Þ ¼ Det E
�

~X t � E ~X t
~X t�1

�� , . . . , ~X t�m

� �� �
~X t � E ~X t

~X t�1

�� , . . . , ~X t�m

� �� �Th i
ð281Þ

be the one-step prediction error of order m (cf. Eq. 66 in Section 2.4). According to

these definitions ~Σ μ can be interpreted as the inherent prediction error of the process

that cannot be underrun, even if we condition our observations on the infinite past to

build a maximally predictive model. ~Σ mð Þ represents the prediction error resulting

from conditioning the observations on only m past instances of the process to build

a maximally predictive model, and not on all instances that were theoretically

possible. In this sense a certain error component of ~Σ mð Þ does not result from the

inherent unpredictability because of limited knowledge or chaotic behavior, but

because of the unpredictability resulting from a limit of the length of the observa-

tion window on the state evolution. Under the assumption that Cm is invertible, the

one-step prediction error ~Σ mð Þ of order m can be expressed as the generalized

variance ratio (Li and Xie 1996):

~Σ mð Þ ¼ Det Cmþ1½ �
Det Cm½ � : ð282Þ

The zeroth-order prediction error can be derived from the autocovariance for zero

lead time, and it holds that:

~Σ 0ð Þ ¼ Det C ~X ~X 0ð Þ� �
: ð283Þ

Following the information-theoretic considerations of a VAR(n) model that were

carried out in Section 4.1 (cf. Eq. 238) it is not difficult to show that, for any

autocovariance matrix representation Cm with m � n, it holds for the one-step

prediction errors that
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~Σ mð Þ ¼ ~Σ nð Þ ¼ ~Σ μ 8m � n :

In other words, due to the limited “memory depth” of the generative VAR(n) model,

conditioning the current observation on sequences larger than the regression order

does not, on average, lead to further reductions of the one-step prediction error in

steady state. Under these circumstances of severely limited procedural memory the

prediction error of order n equals the intrinsic prediction error. As a consequence of
this behavior, higher-dimensional matrix representations than Cn must not be

considered when evaluating the past-future mutual information. An additional

theoretical analysis of the vector autoregression model in the original state-space

coordinates allows us to conclude that the inherent prediction error equals the

determinant of the expectation E[εtεTt ] and that it can be simply expressed as

~Σ μ ¼ Det E εtε
T
t

� �� � ¼ Det C½ �:

Furthermore, in steady state the np� np matrix Cn storing all relevant

autocovariances up to lead time τ ¼ n� 1 equals the steady-state covariance of

the process generated by state Eq. 59, and we have (Eq. 245, Lancaster and

Tismenetsky 1985):

Cn ¼
X1
k¼0

~A k � ~C � ~A T
� �k

;

where ~A is the extended dynamical operator from Eq. 62, and ~C is the corresponding

covariance matrix from Eq. 277. If needed, the autocovariances for smaller lead

times can be easily extracted as block matrices from this large representation. Based

on these theoretic considerations and the material of Li and Xie (1996), the mutual

information between infinite past and future histories can be conveniently

expressed by n additive components as

EMC ¼ 1

2

Xn�1

i¼0

log2 ~Σ ið Þ � log2 ~Σ μ

� � !

¼ 1

2

Xn�1

i¼0

log2
~Σ ið Þ � nlog2 ~Σ μ

 !

¼ 1

2

Xn�1

i¼0

log2 ~Σ ið Þ � 1

2
nlog2Det C½ �: ð284Þ

Each summand1=2 log2
~Σ ið Þ � log2

~Σ μ

� � ¼ 1=2 log2
~Σ ið Þ � log2Det C½ �� �

can be used

to evaluate the local predictability of the process. The corresponding local “over-

estimates” of the intrinsic prediction error allow us to define a universal learning

curve Λ(i) in the sense of Bialek et al. (2001) with respect to block length i as
(cf. Eq. 224)
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Λ ið Þ ¼ log2 ~Σ i�1ð Þ � log2Det C½ �, i ¼ 1, 2, . . . , n ;

where the maximum block length is determined by the autoregression order of the

generative model. As already explained in Section 3.1.4, in light of a learning

curve, EMC measures the amount of apparent randomness at small order i, which
can be “explained away” by considering correlations between sequences with

increasing length iþ 1, iþ 2, . . ..
Returning to state Eq. 276 for informationally separated instances of past and

future histories, we can use the first-order recurrence relation to apply the solution

principles that were introduced at the end of Section 4.1.1 and find a simple

expression for the persistent mutual information EMC(τ) (Eq. 229) as a function

of the lead time τ � 0. Substituting the steady-state covariance and the dynamical

operator in Eq. 254, we can express EMC(τ) as the logarithmic generalized variance

ratio (Ay et al. 2012):

EMC τð Þ ¼ 1

2
log2

Det ~Σ
� �

Det ~Σ � ~A n
� �τþ1 � ~Σ � ~A n

� �T	 
τþ1
� �

0BB@
1CCA; ð285Þ

As one would expect, the steady-state covariances in the numerators of the variance

ratios related to both measures of emergent complexity are equal (Eqs. 279 and

285). We note that for the inherent one-step prediction error it holds that

E ~εt~εTt
� � ¼ ~C ¼ ~Σ � ~A n � ~Σ � ~A n

� �Τ
.

Applying the principles and techniques introduced in Section 4.1.2 and 4.1.3, it

is also not difficult to derive additional closed-form solutions in the spectral basis

and other coordinate systems. We leave this as an exercise for the interested reader.

With the previous complexity considerations of higher-order autoregressive

models of cooperative work in PD projects, it is possible to analyze in detail the

differences between the EMC as originally developed by Grassberger (1986) and

the persistent mutual information EMC(τ) according to Eq. 229, proposed recently

by Ball et al. (2010) as a complexity measure. In order to clarify the differences

between both measures we refer to the seminal work of Li (2006) and evaluate both

the emergent complexity of a strict-sense stationary process {Xt} generated by a

VAR(n) model, and the emergent complexity related to the model in conjunction

with a causal finite impulse response (FIR) filter (see e.g. Puri 2010) of order

m m � 1ð Þ. Each of the output sequences of such a filter is a weighted sum of the

most recent m filter input values:
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yt ¼
Xm
i¼0

bi � xt�i:

The bi’s denotes the filter coefficients. The transfer function of the FIR filter is

denoted byH(z) (cf. Section 4.2.1). It is assumed that the filter has all its roots on the

unit circle. We pass the VAR(n) model outputs xt through the filter to obtain the

output sequence yt. If m � 1, according to Li (2006) it holds that the EMCy related

to the stationary filter output yt is not finite:

EMCy ! 1:

However, the corresponding persistent mutual information EMCy(m) is finite and

equal to the effective measure complexity EMCx of the steady-state process that is

filtered:

EMCy mð Þ ¼ EMCx:

Li (2006) proved these properties for arbitrary stationary Gaussian processes. His

theorems also show that zeros on the unit circle can easily cause EMC to be infinite.

For instance, even for a simple first-order moving average process {Xt} (a so-called

MA(1) process, see Section 4.2.1) generated by state equation

Xt ¼ εt � εt�1

the corresponding effective measure complexity

EMC ! 1

grows over all given limits (Li 2006). Nevertheless, the persistent mutual

information

EMC 1ð Þ < 1

for lead time one is finite. Hence, in cases where we have a transfer function in the

form of a polynomial of degree m that has all its roots on the unit circle, the

persistent mutual information EMC(τ) according to Eq. 229 should be used instead

of the original formulation of the EMC. However, these cases are extremely rare in

project management.
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4.2 Closed-Form Solutions of Effective Measure
Complexity for Linear Dynamical System Models
of Cooperative Work

4.2.1 Explicit Formulation

According to the analytical considerations set out at the beginning of Section 4.1, the

EMC of a linear dynamical system (LDS, see Section 2.9.) as an advanced model of

cooperative work in PD projects, which is defined by the system of equations

Xtþ1 ¼ A0Xt þ εt
Yt ¼ HXt þ νt

with εt ¼ N ξ; 0q;C
� �

and νt ¼ N η; 0 p;V
� �

, can be expressed by the continuous-

type mutual information I[.;.] as

EMC¼ I Y�1
�1; Y1

0

� �
¼
ð
f y�1

�1; y10
� �

log2
f y�1

�1; y10
� �

f y�1�1
� �

f y10
� �dy1�1 : ð286Þ

In contrast to the previous chapters we have not written the multiplication symbol

“�” between a matrix and a vector explicitly in the above equations. We will use this

more compact notation here and in the following chapter to save space and simplify

the interpretation of longer terms. Their meaning should always be clear from the

context.

The function f y�1
�1

� �
designates the joint pdf of the observable infinite

one-dimensional history. Similarly, the function f y10
� �

represents the corresponding

pdf of the observable infinite future.

It is important to point out that if, and only if, the joint pdf of the past f y1�1
� �

and

future f y10
� �

histories of observations reach the same steady state, the evaluation of

the infinite-dimensional integral yields a finite value. Otherwise, the integral will

diverge, as will become clear below. This is possible if the covariance for the initial

state in the infinite past with pdf given by f x�1½ � ¼ xt; μ;Σ0ð Þ equals the one in the
steady state Σ, i.e. the one that satisfies the Lyapunov criterion

Σ ¼ A0ΣAT
0 þ C

from Eq. 27. If the initial state is in steady state, then its expected value is the zero

vector μ ¼ 0.

In what follows we will therefore assume that the hidden Markov process {Xt} is

strict-sense stationary and that in steady state a stable distribution f[xν] is formed.

From the state-space model, the following normal distributions can be deduced in

steady state:
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f xν½ � ¼ N xν; μ;Σð Þ
f xν

��xν�1

� � ¼ N xν;A0xν�1,Cð Þ
f yν

��xν� � ¼ N yν;Hxν,Vð Þ:

Before we proceed, note of the following: if only the observations yt are available, it
is always possible to introduce an arbitrary invertible transform T so that the model

for the observations Yt ¼ HXt þ νt remains unchanged if H0 ¼ HT,X0
t ¼ T�1Xt, as

Yt ¼ H0X0
t þ νt

¼ HTT�1Xt þ νt
¼ HXt þ νt: ð287Þ

For example, one could choose a whitening transform, cf. Eqs. 156, 157 and 158,

X0
t ¼ Λ�1=2

u UTXt for the hidden-state process which leads to a covariance of the

performance fluctuations equal to the identity matrix C ¼ Iq. However, in the

subsequent derivations, we will continue to use a general covariance C to clarify

the interrelationships between the random performance fluctuations and emergent

complexity. Following the notation introduced in Section 2.9, we will use the (long)

vector y1�1 of the stacked variables y1�1, i.e. y1�1 ¼ yT�1; � � �; yT1
� �T

in what

follows. The vectors y�1
�1 and y10 are defined accordingly. We also add subscripts

and superscripts to the quantities V,C,Δt, b to mark the corresponding time step.

The three joint pdf’s in the general definition of the EMC are given for the Gaussian

density model (see Eq. 134 in Section 2.9):

f y1�1
� �¼cy1�1Exp �1

2
y1�1
� �TV1

�1y1�1

� �
2πð ÞΔt1�1q=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DetC1�1

p Exp
1

2
b1�1
� �T C1�1

� ��1
b1�1

� �
ð288Þ

f y�1
�1

� �¼cy�1�1Exp �1

2
y�1
�1

� �TV�1
�1y�1

�1

� �
2πð ÞΔt�1

�1q=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DetC�1

�1
q Exp

1

2
b�1
�1

� �T C�1
�1

� ��1
b�1
�1

� �
ð289Þ

f y10
� �¼cy1

0
Exp �1

2
y10
� �TV1

0 y10

� �
2πð ÞΔt10 q=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DetC10

p Exp
1

2
b10
� �T C10

� ��1
b10

� �
: ð290Þ

Within a direct calculation of the EMC, given by the integral 286, here are two

possible paths: One involves splitting the integral into two parts:
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I Y�1
�1; Y1

0

� � ¼ ð f y�1
�1; y10

� �
log2

f y�1
�1; y10

� �
f y�1�1
� �

f y10
� � dy1�1

¼
ð
f y�1

�1; y10
� �

log2 f y�1
�1; y10

� �
dy1�1

�
ð
f y�1

�1, y10
� �

log2 f y�1
�1

� �
f y10
� �

dy1�1:

The other involves leaving the integral as a whole, computing first the ratio

f y1�1
� �

= f y�1
�1
�
f
�
y10

� �� �
, and then carrying out the integration at the end. The

latter approach will lead to an implicit formulation of the EMC. We will pursue this

in Section 4.2.2.

For now, we will follow the first path, which will lead us to a result for the EMC

in an expressive form given by the (logarithmic) ratio of the product of the

determinants of the covariances of the joint pdfs of the past and future histories

and the determinant of the covariance for the whole history. These covariances are

infinite-dimensional in principle, but we will see, numerically, that low-dimensional

approximations come very close to the asymptotic result. The smallest possible

dimension, i.e. if only two time steps are involved, leads to a simple yet meaningful

approximation, which will be discussed in more detail below.

For the first term we can use the result for the differential entropy of a Gaussian

variable, see e.g. Cover and Thomas (1991),ð
f y�1

�1; y10
� �

log2 f y�1
�1; y10

� �
dy1�1 ¼ �1

2
log2 2πeð Þ pΔt1�1

	 

� 1

2
log2 Det Cy

� �1
�1

	 

:

The second term can be computed as follows:ð
f y�1

�1;y10
� �

log2 f y�1
�1

� �
f y10
� �

dy1�1

¼
ð
f y�1

�1;y10
� �

log2

Exp �1

2
y�1
�1

� �T Cy

� ��1

�1
	 
�1

y�1
�1�1

2
y10
� �T Cy

� �1
0

	 
�1

y10

� �
ffiffiffiffiffi
2π

p pΔt1�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det Cy

� ��1

�1Det Cy

� �1
0

q dy1�1

¼�1

2

ð
f y�1

�1;y10
� � 1

ln2
y1�1
� �TbC y1�1dy1�1�1

2
log2 2πð Þ pΔt1�1

	 

�1

2
log2 Det Cy

� ��1

�1Det Cy

� �1
0

	 

;

with

bC ¼
Cy

� ��1

�1
	 
�1

0

0 Cy

� �1
0

	 
�1

0B@
1CA:
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The integral in the first summand of the above equation yields

1

2

ð
f y�1

�1; y10
� � 1

ln2
y1�1
� �TbC y1�1dy1�1 ¼ 1

2

1

ln2
Tr bC � Cy

� �1
�1

	 

¼ 1

2

1

ln2
pΔt1�1

¼ 1

2
log2e

pΔt1�1 ;

where we used the fact that Cy

� �1
�1 can be partitioned in a 2� 2 block matrix, in

which the upper left block equals Cy

� ��1

�1 and the lower right block equals Cy

� �1
0
, as

can be seen from the block Toeplitz structure of the covariance of the observations.

The matrix product bC � Cy

� �1
�1 then has only ones on the diagonal and it is easy to

evaluate the trace. Finally, by combining the individual results, we obtain

I Y�1
�1; Y1

0

� � ¼ 1

2
log2

Det Cy

� ��1

�1Det Cy

� �1
0

Det Cy

� �1
�1

: ð291Þ

Note that this result has been obtained in a more general context by de Cock (2002),

see Eq. 295. The matrices are infinite dimensional, which makes this result imprac-

tical for direct use. However, we found in simulations that for a moderately small

number of time steps Δt ¼ t2 � t1 þ 1 of either the past or the future (the total

number of time steps involved is then 2Δt), the value for the EMC tends to its

asymptotic value (see Fig. 4.2).

As we have shown in Section 2.10, the likelihood of the observation sequence

ytf gt2t1 is invariant under an arbitrary invertible transform Ψ 2 ℝq�q with Det Ψð Þ
¼ 1 transforming the set of parameters as x0t ¼ Ψxt, π00 ¼ Ψ π0, A

0
0 ¼ Ψ A0 Ψ�1,

C0 ¼ Ψ C ΨT , Π0
0 ¼ Ψ Π0 ΨT , H0 ¼ H Ψ�1 and V 0 ¼ V. Therefore, the system

matrices can not be identified uniquely.

However, the emergent complexity is invariant under this parameter transform,

as easily proved by using the expression for the EMC from Eq. 291:

C0
y ¼ IΔt � V þ IΔt � H0ð ÞC0

x IΔt � H0T� �
¼ IΔt � V þ IΔt � HΨ�1

� �
IΔt � Ψð ÞCx IΔt � ΨT

� �
IΔt � Ψ�THT
� �

¼ IΔt � V þ IΔt � IΔtð Þ � HΨ�1Ψ
� �

Cx IΔt � IΔtð Þ � ΨTΨ�THT
� �

¼ IΔt � V þ IΔt � Hð ÞCx IΔt � HT
� �

¼ Cy:

This general result holds for the covariance of any observation interval, in particular

for Cy

� ��1

�1, Cy

� �1
0
, Cy

� �1
�1, and, therefore, the EMC remains unchanged.

Surprisingly, the smallest possible value Δt ¼ 1, i.e. if we consider that just
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EMC 1ð Þ ¼ 1

2
log2

Det Cy

� ��1

�1
Det Cy

� �0
0

Det Cy

� �0
�1

leads to a result that is very close to the asymptotic value (see Fig. 4.2). In this case,

which we can call a first-order approximation, a very simple closed-form expres-

sion for the EMC can be derived. The covariances for a single time step are given by

Cy

� ��1

�1
¼ Cy

� �0
0
¼ I1 � V þ I1 � Hð ÞCx I1 � HT

� �
¼ V þ HCxHT

¼ V þ HΣHT:

For two time steps we have

Cy

� �0
�1

¼ I2 � V þ I2 � Hð ÞCx I2 � HT
� �

¼ V 0

0 V


 �
þ H 0

0 H


 �
Σ ΣAT

0

A0Σ V


 �
HT 0

0 HT


 �
¼ V þ HΣHT HΣAT

0 H
T

HA0ΣHT V þ HΣHT


 �
:

The determinant of covariance of the two time steps can be simplified using a

formula for the determinant of block-matrices,

Fig. 4.2 Calculated values of log10(EMC) for five different, randomly chosen system matrices A0

and H and varying number of time steps Δt

264 4 Model-Driven Evaluation of the Emergent Complexity of Cooperative Work. . .



Det Cy

� �0
�1

¼Det VþHΣHT
� �

Det VþHΣHT�HΣAT
0 H

T VþHΣHT
� ��1

HA0ΣHT
	 


;

and we obtain the following first-order approximation for the EMC:

EMC 1ð Þ ¼ 1

2
log2

Det V þ HΣHT
� �

Det V þ HΣHT � HΣAT
0 H

T V þ HΣHT
� ��1

HA0ΣHT
	 


¼ �1

2
log2Det Ip � HΣAT

0 H
T V þ HΣHT
� ��1

HA0ΣHT V þ HΣHT
� ��1

	 

:

ð292Þ

Interestingly, this approximate result can be derived if one starts from the assump-

tion that the Markov property holds in steady state for the observable process, and

we have

f y�1
�1;y10

� �¼ f y�1½ � f y�1þ1

��y�1
� �

... f y�1jy�2½ � f y0jy�1½ � f y1jy0½ �... f y1jy1�1½ �
f y�1

�1
� �¼ f y�1½ � f y�1þ1

��y�1
� �

... f y�1jy�2½ �
f y10
� �¼ f y0½ � f y1jy0½ �... f y1jy1�1½ �:

Hence, the expression for the EMC reduces to

I Y�1
�1; Y1

0

� � ¼ ð
 p

� � �
ð
 p

f y�1
�1; y10

� �
log2

f y0jy�1½ �
f y0½ � dy�1

�1dy10

¼
ð
 p

� � �
ð
 p

f y�1
�1; y10

� �
log2 f y0jy�1½ �dy�1

�1dy10

�
ð
 p

� � �
ð
 p

f y�1
�1; y10

� �
log2 f y0½ �dy�1

�1dy10

¼
ð
 p

ð
 p

log2 f y0jy�1½ �dy�1dy0

ð
 p

� � �
ð
 p

f y�1
�1; y10

� �
dy�1 . . . dy�2dy1 . . . dy1


 �
�
ð
 p

log2 f y0½ �dy0
ð
 p

� � �
ð
 p

f y�1
�1; y10

� �
dy�1 . . . dy�1dy1 . . . dy1


 �
:

Exploiting the relations for the marginal probability densities, we obtain:

I Y�1
�1; Y1

0

� � ¼ ð
 p

f y�1, y0½ �log2 f y0jy�1½ �dy�1dy0 �
ð
 p

f y0½ �log2 f y0½ �dy0
¼
ð
 p

f y�1½ �dy�1

ð
 p

f y0jy�1½ �log2 f y0jy�1½ �dy0 �
ð
 p

f y0½ �log2 f y0½ �dy0:

The probability density for the observable variable Yt can then be expressed as:
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f yt½ � ¼
ð
p

f yt; xt½ �dxt

¼
ð
p

f ytjxt½ � f xt½ �dxt

¼
ð
p
N yt;Hxt,Vð ÞN xt; μ;Σð Þdxt:

In order to solve the above integral, it is useful to apply the following transforma-

tion formula for normal distributions:

N y;Hx;Vð ÞN x; μ;Σð Þ ¼ N y;Hμ; Sð ÞN x; μþW y� Hμð Þ,Σ�WSWT
� �

with

S ¼ HΣHT þ V and W ¼ ΣHTS�1:

Hence, we obtain:

f yt½ � ¼ N yt;Hμ,HΣHT þ V
� �

:

For the calculation of f y0
��y�1

� � ¼ f y�1; y0½ �= f y�1½ �we insert the hidden states x�1

and x0 and exploit the Markov property

f y0
��y�1

� � ¼ ð
q

ð
q

f y�1; y0; x�1; x0½ �
f y�1½ � dx�1dx0

¼
ð
q

ð
q

f x�1

��y�1

� �
f x0jx�1½ � f y0jx0½ �dx�1dx0:

Because of Bayes theorem

f x�1

��y�1

� � ¼ f y�1jx�1½ � f x�1½ �
f y�1½ � ;

we find

f y0
��y�1

� �
¼ 1

f y�1½ �
ð
q

ð
q

f x�1½ � f y�1jx�1½ � f x0jx�1½ � f y0jx0½ �dx�1dx0

¼ 1

f y�1½ �
ð
ℝq

ð
ℝq

N x�1;μ;Σð ÞN y�1;Hx�1,Vð ÞN x0;A0x�1,Cð ÞN y0;Hx0,Vð Þdx�1dx0:

First, we transform the first two Gaussians as:
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N x�1; μ;Σð ÞN y�1;Hx�1,Vð Þ ¼ N y�1;Hμ,HΣHT þ V
� �

�N x�1; μþW y�1 � Hμð Þ,Σ�WSWT
� �

;

with

S ¼ HΣHT þ V andW ¼ ΣHTS�1:

The first Gaussian on the right hand side cancels f y�1½ �. The second Gaussian on the
right hand side together with the third GaussianN x0;A0x�1,Cð Þ from the previous

expression for f y0
��y�1

� �
yields:

N x0;A0x�1,Cð ÞN x�1; μþW y�1 � Hμð Þ,Σ�WSWT
� �

¼ N x0;A0 μþW y�1 � Hμð Þð Þ, A0 Σ�WSWT
� �

AT
0 þ C

� �N x�1; x�1;C
0ð Þ

with some inconsequential mean x�1 and covariance C0. After integration with

respect to x�1 we have:

f y0
��y�1

� �¼ð
ℝq

N x0;A0 μþW y�1�Hμð Þð Þ,A0 Σ�WSWT
� �

AT
0 þC

� �N y0;Hx0,Vð Þdx0:

Again, by transforming the two Gaussians we can carry out easily the integration

with respect to x0 and obtain:

f y0
��y�1

� � ¼ N y0;HA0 μþW y�1 � Hμð Þð Þ,H A0 Σ�WSWT
� �

AT
0 þ C

� �
HT þ V

� �
:

Using the fact that the differential entropy of a multivariate Gaussian distribution

N x; μ;Cð Þ is given by

�
ð
q
N x; μ;Cð Þlog2N x; μ;Cð Þdx ¼ 1

2
log2 2πeð Þ pDet C½ �;

we arrive at the known first-order approximation from Eq. 292 for the EMC:

EMC 1ð Þ ¼ 1

2
log2Det HΣHT þ V

� �� 1

2
log2Det D½ �;

with

D ¼ V þ HΣHT � HΣAT
0 H

T V þ HΣHT
� ��1

HA0ΣHT :

It is evident that in the case ofH ¼ I andV ¼ 0f gIq, we obtain the same result as we

did for the VAR(1) model (see Eq. 246).
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For small covariance V, i.e. if the eigenvalues of HΣHT
� ��1

V lie inside the unit

circle, we can expand

HΣHT þ V
� ��T ¼ HΣHT

� ��1
Ip þ HΣHT

� ��1
V

	 
�1


 HΣHT
� ��1

Ip � HΣHT
� ��1

V
	 


and arrive at an approximate expression for D:

D ¼ H A0H
�1H�TΣ�1H�1VHΣA0 þ C

� �
HT þ V:

Assuming furthermore V ¼ σ2v
� �

Ip, we obtain:

D ¼ H σ2v
� �

A0H
�1H�TA0 þ C

� �
HT þ σ2v

� �
Ip:

Following the procedure from Section 4.1.2, we can also express the first-order

approximation for the EMC as the signal-to-noise ratio:

EMC 1ð Þ ¼ �1

2
log2Det Ip � HA0ΣHT HΣHT þ V

� ��T
HΣTAT

0 H
T HΣHT þ V
� ��1

h i
¼ 1

2
log2 Det Ip � HA0ΣHT HΣHT þ V

� ��T
HΣTAT

0 H
T HΣHT þ V
� ��1

h i	 
�1

¼ 1

2
log2Det Ip � HA0ΣHT HΣHT þ V

� ��T
HΣTAT

0 H
T HΣHT þ V
� ��1

	 
�1
� �

¼ 1

2
log2Det

X1
k¼0

HA0ΣHT HΣHT þ V
� ��T

HΣTAT
0 H

T HΣHT þ V
� ��1

	 
k" #

¼ 1

2
log2Det Ip þ

X1
k¼1

HA0ΣHT HΣHT þ V
� ��T

HΣTAT
0 H

T HΣHT þ V
� ��1

	 
k" #
:

ð293Þ

The above derivation is based on the von Neumann series generated by the operator

HA0ΣHT HΣHT þ V
� ��T

HΣTAT
0 H

T HΣHT þ V
� ��1

. The von Neumann series gen-

eralizes the geometric series (cf. Section 2.1). The infinite sum represents the

signal-to-noise ratio.

The closed-form solution from Eq. 286 also allows us to develop homologous

vector autoregressionmodels for linear dynamical systems. For t ! 1 thesemodels

generate stochastic processes with equivalent effective measure complexity, but the

state variables are completely observable. In this sense, the homologous models

reveal all correlations and dynamical dependency structures during the observation

time and do not possess any kind of crypticity (Ellison et al. 2009). To make this

possible we usually have to use a higher dimensionality p > q. We start by focusing

on homologous VAR(1) models with dynamical operator Ah
0 and covariance matrix

Ch that are defined over a p-dimensional space ℝp of observable states Xh
t :
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Xh
t ¼ Ah

0X
h
t�1 þ εht t ¼ 1, . . . , T ;

with

εht 	 N 0 p;C
h

� �
:

Assuming that the performance fluctuations represented by the homologous model

are isotropic and temporally uncorrelated, i.e. εht 	 N 0 p, σ2v
� �

Ip
� �

and

E εht εhs
� �Th i

¼ Chδts, we can construct a dynamical operator Ah
0 representing a

large variety of cooperative relationships. The preferred structure of relationships

must be determined in the specific application context of complexity evaluation.

According to the analysis in Section 4.1.1 only two constraints must be satisfied:

(1) Ah
0 must be diagonalizable and (2) for the weighted sum of eigenvalues λi(Ah

0), it

must hold that (cf. Eq. 251):

�1

2

Xp
i¼1

log2 1� λi A
h
0

� �2	 

¼ 1

2
log2

Det Cy

� ��1

�1Det Cy

� �1
0

Det Cy

� �1
�1

¼ 1

2
log2Det Cy

� ��1

�1Det Cy

� �1
0
� log2Det Cy

� �1
�1

	 

:

ð294Þ

It is evident that the most simple homologous model can be constructed by setting

the autonomous task processing rates as diagonal elements of Ah
0 to the same rate a,

i.e. Ah
0 ¼ Diag a; . . . ; a½ �. For this structurally non-informative model, the

corresponding stationary stochastic process communicates the same amount of

information from the infinite past to the infinite future, if

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�

1
p log2Det C yð Þ�1

�1Det Cyð Þ1
0
�log2Det Cyð Þ1�1

� �q
:

The above equation also holds for homologous models with non-isotropic fluctua-

tions, because all tasks are processed at the same time scale.

Finally, we can develop a homologous model that is defined over a

one-dimensional state space. This model is termed an auto-regressive moving

average (ARMA) model and is characterized by the following linear difference

equation (see e.g. Puri 2010):

Yt ¼
Xp
i¼1

aiYt�i þ
Xq
j¼1

biUt� j:

The input of the model is Gaussian white noise with variance σ2 ¼ 1, i.e.

U 	 N 0; 1ð Þ. This model is notated ARMA( p, q) in the literature (note that in
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this notation the variable q does not denote the dimensionality of the observation

vectors Yt; it denotes the number of inputs Ut� j driving the process). It is evident

that an ARMA( p, q) model can be rewritten as either a VAR( p) model of order

p (Section 2.4) or an LDS( p, 1) model (Section 2.9) (see e.g. de Cock 2002). It is

not difficult to show that for a stable and strictly minimum phase ARMA( p, q)
model the effective measure complexity is given by

EMC ¼ 1

2
log2

Y p,q

i, j¼1
1� αiβ j

�� ��Y p

i, j¼1
1� αiα j

�� ��Yq

i, j¼1
1� βiβ j

�� ��
¼ 1

2

Xp, q
i, j

log2 1� αiβ j

�� ���Xp
i, j

log2 1� αiα j

�� ��þXq
i, j

log2 1� βiβ j

�� �� !
;

where the variables α1, . . ., αp denote the roots of the polynomial a zð Þ ¼ z p þ a1
z p�1 þ . . .þ a p and β1, . . ., βq the roots of the polynomial b zð Þ ¼ zq þ b1z

q�1 þ . . .
þbq (see e.g. de Cock 2002). These polynomials are the results of the z-transform of

the difference equation of the ARMA( p, q) model. The well-known transfer func-

tion H(z) from control theory is the quotient of these polynomials. Since the poly-

nomials are real, the roots are all real or come in conjugate pairs. Hence, for the

poles α1, . . ., αp and the zeros β1, . . ., βq of the transfer function H(z) of the homol-

ogous ARMA( p, q) model, it must hold that

1

2

Xp, q
i, j

log2 1� αiβ j

�� ���Xp
i, j

log2 1� αiα j

�� ��þXq
i, j

log2 1� βiβ j

�� �� !
¼ 1

2
log2Det Cy

� ��1

�1Det Cy

� �1
0
� log2Det Cy

� �1
�1

	 

:

4.2.2 Implicit Formulation

Interestingly, the sophisticated closed-form solution of EMC from Eq. 286 that was

obtained through the evaluation of the infinite-dimensional integral of the

continuous-type mutual information (Eq. 286) can also be written in a structurally

rich implicit form. This form is based on the seminal work of de Cock (2002). The

implicit form is especially easy to interpret because its independent parameters can

be derived from solutions of fundamental equations. In order to derive the implicit

form of de Cock (2002) we work with the “forward innovation model” from Section

2.9 (Eqs. 164 and 165):

X f
tþ1 ¼ A0X

f
t þ Kηt

Yt ¼ HX f
t þ ηt:

According to de Cock (2002), the effective measure complexity can be expressed as
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EMC ¼ I Y�1
�1; Y1

0

� �
¼ �1

2
log2Det Iq � Σ f G�1

z þ Σ f
� ��1

h i
: ð295Þ

The covariance matrix Σ f is the solution of the Lyapunov equation (cf. Eq. 167)

Σ f ¼ A0Σ f AT
0 þ KSKT:

In the above Lyapunov equation

K ¼ G f � A0Σ f HΤ
� �

CYY 0ð Þ � HΣ f HΤ
� ��1

is the Kalman gain (Eq. 169) and

S ¼ CYY 0ð Þ � HΣ f HΤ:

is the covarianceStþ1jt (Eq. 168) of the single-source performance fluctuations ηt for
t ! 1. Hence, we have the following algebraic Riccati equation for Σf (van

Overschee and de Moor 1996):

Σ f ¼A0Σ f AT
0 þ G f �A0Σ f HΤ

� �
CYY 0ð Þ�HΣ f HΤ
� ��1

G f
� �T�HΣ f HΤ
	 


: ð296Þ

The additional covariance matrix Gz from Eq. 295 satisfies the Lyapunov equation

Gz ¼ A0 � KHð ÞTGz A0 � KHð Þ þ HTS�1H: ð297Þ

An important finding of de Cock (2002) is that the inverse aggregated covariance

matrix G�1
z þ Σ f

� ��1
is the solution of another Lyapunov equation

Σb ¼ A0Σ
b
A

T

0 þ KSK
T

¼ AT
0 Σ

b
A0 þ KSK

T
;

which is related to the backward innovation representation of the corresponding

backward model (Eqs. 178 and 179):

X
b
t�1 ¼ A0X

b
t þ Kηt

Yt ¼ HX
b
t þ ηt:

Substituting the Kalman gain K (Eq. 181) and the fluctuations covariance

S ¼ E ηtη
T
t

� �
(Eq. 182) in the Lyapunov equation for the backward innovation

representation leads to the following algebraic Riccati equation for the back-

ward state covariance matrix:
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Σb ¼ AT
0 Σ

b
A0 þ HT � AT

0 Σ
b
G

	 

HT � AT

0 Σ
b
G

	 

CYY 0ð Þ � GTΣb

G
	 
�1


 �T

¼ AT
0 Σ

b
A0 þ HT � AT

0 Σ
b
G

	 

CYY 0ð Þ � GTΣb

G
	 
�T

HT � AT
0 Σ

b
G

	 
T
¼ AT

0 Σ
b
A0 þ HT � AT

0 Σ
b
G

	 

CYY 0ð Þ � GTΣb

G
	 
�1

H � GTΣb
A0

	 

:

ð298Þ

Hence, the most intuitive solution is obtained (de Cock 2002):

I Y�1
�1; Y1

0

� � ¼ �1

2
log2Det Iq � Σ f G�1

z þ Σ f
� ��1

h i
¼ �1

2
log2Det Iq � Σ fΣb

h i
: ð299Þ

According to Sylvester’s determinant theorem, this solution can equivalently be

expressed based on the signal-to-noise ratio SNR ¼ Gz Σ f
� ��1
	 
�1

, and we have:

I Y�1
�1; Y1

0

� � ¼ �1

2
log2Det Iq � ΣbΣ f

h i
¼ 1

2
log2Det Iq þ GzΣ f

� �
¼ 1

2
log2Det Iq þ Σ f Gz

� �
:

The standard numerical approach to solve the forward Riccati Eq. 296 is to solve

the generalized eigenvalue problem

AT
0 � HT CYY 0ð Þð Þ�1G f 0

�G f CYY 0ð Þð Þ�1 G f
� �T

Iq

 !
W1

W2


 �
¼ Iq �HT CYY 0ð Þð Þ�1H

0 A0 � G f CYY 0ð Þð Þ�1H


 �
W1

W2


 �
Λ

and compute the covariance matrix Σf as

Σ f ¼ W2W
�1
1 ;

see, e.g. van Overschee and de Moor (1996). The complementary backward Riccati

Eq. 298 can be tackled by solving

A0�G CYY 0ð Þð Þ�1H 0

�HT CYY 0ð Þð Þ�1H Iq


 �
W1

W2


 �
¼ Iq �G CYY 0ð Þð Þ�1HT

0 AT
0 �HT CYY 0ð Þð Þ�1 G f

� �T
 !

W1

W2


 �
Λ

and computing the covariance matrix Σb as
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Σb ¼ W2W
�1
1 :

It is evident that the same numerical function can be used in the preferred

programming language to solve the above generalized eigenvalue problems.

This function must be called for the forward Riccati equation with the argument

(A0,H,G
f,CYY(0)), whilst for the backward Riccati equation the argument must be

(AT
0 , (G

f)T,HT,CYY(0)).

Similar to the canonical correlation analysis of the basic VAR(1) process in

Section 4.1.3, we can diagonalize the forward and backward state covariance

matrices obtained by solving the algebraic Riccati Eqs. 296 and 298 simultaneously

and bring them in a form called “stochastic balanced realization” (Desai and Pal

1984). A stochastic balanced representation is an innovations representation with

state covariance matrix equal to the canonical correlation coefficient matrix for the

sequence of observations. Let the eigendecomposition (cf. Eq. 22) of the product of

the state covariance matrices Σ fΣb
be given by the representation

Σ fΣb ¼ MΛ2
MM

�1

Λ2
M ¼ Diag λi Σ fΣb

	 
h i
1 � i � q,

where the eigenvector matrix M is picked as

M ¼ U
Σ
bΛ�1=2

Σ
b UΣ fΛ

1=2
M
.

The matrices U
Σ
b and Λ

Σ
b can be specified by the eigendecomposition of Σb as

U
Σ
bΛ

Σ
bU�1

Σ
b ¼ Σb

;

and for UΣ f it holds that

UΣ fΛ2
MU

�1
Σ f ¼ Λ

1=2

Σ
bU�1

Σ
b Σ fΛ

1=2

Σ
b.

Furthermore, let the forward state that is subject to the simultaneous diagonaliza-

tion of the state covariance matrices be

Xd
t ¼ TX f

t

and the corresponding backward state be

X
d
t ¼ T�1X

b
t

with the coefficient of the similarity transformation
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T ¼ MT;

then in steady state it holds for the expectations (Desai and Pal 1984) that:

E Xd
t X d

t

� �Th i
¼ ΛM ¼ E X

d
t X

d
t

	 
T� �
:

Hence, the stochastic balanced representation allows us to make the dependency of

the effective measure complexity on the eigenvalues of the product of the state

covariance matrices Σ fΣb
explicit:

I Y�1
�1; Y1

0

� � ¼ �1

2
log2Det Ip � Σ fΣb

h i
¼ �1

2
log2Det Iq � Λ2

M

� �
¼ �1

2
log2

Yq
i¼1

1� λi Σ fΣb
	 
	 


¼ �1

2
log2

Yq
i¼1

1� ρi
2

� �
¼ �1

2

Xq
i¼1

log2 1� ρi
2

� �
: ð300Þ

In the last line of the above equation the ρi’s represent the canonical correlations,
which were already introduced in Section 4.1.3 (cf. Eq. 265) to analyze emergent

complexity based on a reduced number of independent parameters. In other words,

the eigenvalues of Σ fΣb
are simply the squares of the canonical correlation

coefficients between the canonical variates. However, it is important to note

that in contrast to Section 4.1.3 the infinite random sequences representing the past

Xpast ¼ XT
�1 � � � XT

�2 XT
�1

� �T�
and future X fut ¼ XT

0 XT
1 � � � XT

1
� �T

histories of the hidden state process are not the subject of the canonical

correlation analysis, but rather the canonical correlations between the pair

Y T
�1 � � � Y T

�2 Y T
�1

� �T
, Y T

0 Y T
1 � � � Y T

1
� �T	 


of past and future histories

of the observation process {Yt} are considered to evaluate complexity explicitly. Due

to the potentially higher dimensionality of the state space of the hidden state process

q > pð Þ, all q complexity-shaping summands log2 1� ρi
2ð Þ that can give rise to

correlations between observations of the project state must therefore be considered.

The reduced dimension of the observation process is usually not sufficient, because

apart from organizationally retarded cases not only the p but also the q leading

canonical correlations are non-zero. The observation process is not necessarily Mar-

kovian and therefore the amount of information that the past provides about the future

usually cannot be “stored” in the p-dimensional present state. However, because of
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strict-sense stationarity of the state process, all ρi’s are less than one. The canonical

correlations ρi’s should not be confused with the ordinary correlations ρij and ρ0ij,
which were introduced in Chapter 2.

As an alternative to the use of the stochastic balanced representation of Desai

and Pal (1984), a minimum phase balancing based on the scheme of McGinnie

(1994) could be carried out. The minimum phase balancing scheme allows us to

find a forward innovation form of the LDS model in which the state covariance

matrix Σf (Eq. 296) and the covariance matrix Gz (Eq. 297) are equal and diagonal.

Let

ΛP ¼ Diag σi½ � 1 � i � q

be this diagonal matrix and σi the minimum phase singular values of the dynamical

system. Under these circumstances, we simply have

I Y�1
�1; Y1

0

� � ¼ �1

2

Xq
i¼1

log2 1� σi
2

� �
: ð301Þ

A structurally different implicit formulation for the EMC can be obained when we

compute the integral in formula 286 directly. Plugging the results for the joint pdfs
of the past, the future and the whole observation sequence into the general expres-

sion for the EMC from Eq. 286, the ratio of the whole pdf to the ones of the past and
the future histories is given by:

f y1�1
� �

f y�1�1
� �

f y10
� � ¼ cy1�1

cy�1�1cy10
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det C�1

�1
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Det C10
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Det C1�1
p

�Exp 1

2
b1�1
� �T C1�1

� ��1
b1�1 � 1

2
b�1
�1

� �T C�1
�1

� ��1
b�1
�1 � 1

2
b10
� �T C10

� ��1
b10

� �
¼ c1 � Exp 1

2
y1�1
� �TBy1�1

� �
: ð302Þ

The constant c1 is defined accordingly. As we can write

bt2t1 ¼ I � HTV�1
� �

yt2t1 ;

we defined the covariance matrix

B ¼ I � V�1H
� � C1�1

� ��1 � C�1
�1

� ��1
0

0 C10
� ��1

" # !
I � HTV�1
� �

:

Inserting Eq. 302 into the general Eq. 286 leads to
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I Y�1
�1; Y1

0

� � ¼ ð f y�1
�1; y10

� �
log2c1Exp

1

2
y1�1
� �TBy1�1

� �
dy1�1

¼
ð
f y�1

�1; y10
� �

log2c1dy
1
�1 þ 1

ln 2

ð
f y�1

�1; y10
� �

y1�1
� �TBy1�1dy1�1:

Using the fact that the joint pdf is normalized to one and some well-known results

for Gaussian integrals, we obtain

I Y�1
�1; Y1

0

� � ¼ log2c1 þ
1

ln 2
Tr B V1

�1 � B1
�1

� ��1
h i

; ð303Þ

where

B1
�1 ¼ I � V�1H

� � C1�1
� ��1

I � HTV�1
� �

:

Using the Woodbury matrix identity (Higham 2002, Eq. 148)

Aþ UCVð Þ�1 ¼ A�1 � A�1U C�1 þ VA�1U
� ��1

VA�1;

we can calculate

V1
�1 � B1

�1
� ��1 ¼ I � V�1

� �� I � V�1H
� � C1�1

� ��1
I � HTV�1
� �	 
�1

¼ I � V�1
� ��1 � I � V�1

� ��1
I � V�1H
� �

� �C1�1 þ I � HTV�1
� �

I � V�1
� ��1

I � V�1H
� �	 
�1

� I � HTV�1
� �

I � V�1
� ��1

:

Using the identities A� Bð Þ�1 ¼ A�1 � B�1 and A� Bð Þ C� Dð Þ ¼ AC� BD, we
find

V1
�1 � B1

�1
� ��1 ¼ I � V þ I � Hð Þ C1�1 � I � HTV�1H

� ��1
I � HT
� �

¼ I � V þ I � Hð Þ C2ð Þ1�1
� ��1

I � HT
� �

:

We note that the above expression equals the inverse of the covariance of the

observed states y1�1.

The first part of the constant c1 can be evaluated directly:

c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Det Σ
Det C

r
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det C�1

�1
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Det C10
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Det C1�1
p ; ð304Þ

whereas the second part containing the determinants can be solved as follows: first,

we observe that we have
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det C�1

�1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det C10

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det ~C 1

�1

q
;

where the covariance ~C 1
�1 is given by

~C 1
�1 ¼

0 � � � 0

C�1
�1 0 ⋮

A 0 0

0 C10

0BBBBBB@

1CCCCCCA

¼

B1 A
AT B ⋱

⋱ ⋱ ⋱
⋱ B A

AT BΔt A
B1 A
AT B ⋱

⋱ ⋱ ⋱
⋱ B A

AT BΔt

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
:

~C 1
�1 differs from C1�1 given by

C1�1 ¼

B1 A
AT B ⋱

⋱ ⋱ ⋱
⋱ B A

AT B A
AT B A

AT B ⋱
⋱ ⋱ ⋱

⋱ B A
AT BΔt

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
only in three blocks in the center. If we introduce a vector et ¼ 0� � �010� � �0ð ÞT
which has only a one at the position corresponding to time step t, then eie

T
j is a

matrix that has zeros everywhere except at postion i, j. Accordingly, eie
T
j

	 

� A is a

block-matrix where only the block i, j contains the matrix A. With these prerequi-

sites we can write
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~C 1
�1 ¼ C1�1 þ e0e

T
0

� �� BΔt � Bð Þ 0

�AT B1 � B


 �
;

where e0 is chosen to select the central four blocks of ~C 1
�1. Using the identity for

Kronecker products

AC� BD ¼ A� Bð Þ C� Dð Þ

we get

~C 1
�1 ¼ C1�1 þ e0 � BΔt � Bð Þ 0

�AT B1 � B


 �
 �
eT0 � I2q
� �

:

Using Sylvester’s determinant theorem, which states that for matrices A 2 ℝm�n,

B 2 ℝn�m,X 2 ℝm�m it holds that

Det X þ ABð Þ ¼ Det Xð ÞDet In þ BX�1A
� �

;

we obtain

Det ~C1
�1

� �¼Det C1�1
� �

Det I2qþ eT0 �I2q
� � C1�1

� ��1
e0� BΔt�Bð Þ 0

�AT B1�B


 �
 �
 �
:

In the second term of the right determinant, only the central blocks of C1
�1

contribute. They are denoted as

C1�1
� ��1
	 


i¼ �1,0f g, j¼ �1,0f g
:¼ X0 X1

XT
1 X0


 �
:

Note thatC1
�1 is symmetric and that the blocks along the diagonal are contant in the

asymptotic regime. Finally, we getffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det C�1

�1
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Det C10
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Det C1�1
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det I2q þ X0 X1

XT
1 X0


 �
BΔt � B 0

�AT B1 � B


 �
 �s
: ð305Þ

Using the fact thatB1 � B ¼ Σ�1 � C�1,BΔt � B ¼ �AT
0 C

�1A0, andA
T ¼ �C�1A0

an expression for the constant c1 in terms of the system matrices then reads:
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c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Det Σ
Det C

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det I2q þ X1 � X0A

T
0

� �
C�1A0 X1 Σ�1 � C�1

� �
X0 � XT

1 A
T
0

� �
C�1A0 X0 Σ�1 � C�1

� �
 �
 �s
: ð306Þ

Next, we turn to the second term in the expression for the EMC, Eq. 303. The matrix

B consists of the difference of C1�1
� ��1

for the whole time axis and C�1
�1

� ��1

þ C10
� ��1

for the past and the future of the observed process. Evidently, the matrix

for the whole time history C1�1
� ��1

coincides with the one for the past C1�1
� ��1

at

least from the infinite past until a certain point of time in the past, where the later

matrix elements are still in the asymptotic regime. For later times until t ¼ �1, the

matrix C�1
�1

� ��1
is characterized by the transition regime due to the transient phase

in the recursions for Nj. This is illustrated in Fig. 4.3 where the transition regimes

are shown in yellow. Similarly, the matrix corresponding to the future observations

C1
0

� ��1
deviates significantly from the one for the whole time history only in the

beginning and up to some finite point in time in the future (we assumed that the

whole process is in steady state and that the covariances of the initial states are

equal). Furthermore, the matrix elements decay exponentially in the direction

perpendicular to the diagonal. Therefore, the contributions to the sum in Eq. 303

only come from the finite area enclosed by the red lines in Fig. 4.3.

Altogether, in order to numerically compute the EMC given the system matrices,

one has to calculate the invers matrices of C and C2 for some sufficiently large order

Δt, where the asymptotic regime has been reached in the center. The corresponding

matrix elements can then be plugged directly into the final result.

Fig. 4.3 Structure of

inverses of C1�1, C�1
�1, and

C10 : only in the area

enclosed by the red lines do

the inverses differ and

contribute to the EMC
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Using some of the results obtained so far, we can now simplify the general result

Eq. 286: We use the results for the normalization of the joint pdf, which we obtained
by integrating over the hidden states. The ratio of the normalization constants of the

joint pdf’s was denoted as

c1 ¼
cy1�1

cy�1�1cy10
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det C�1

�1
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Det C10
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Det C1�1
p :

Alternatively, the ratio can be expressed directly in terms of the determinants of the

corresponding covariances:

c1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det Cy

� ��1

�1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det Cy

� �1
0

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det Cy

� �1
�1

q : ð307Þ

Therefore, we can finally write the closed-form solution as

I Y�1
�1;Y1

0

� �¼ log2c1

¼ log2

ffiffiffiffiffiffiffiffiffiffiffiffi
Det Σ
Det C

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det I2qþ X1�X0A

T
0

� �
C�1A0 X1 Σ�1�C�1

� �
X0�XT

1 A
T
0

� �
C�1A0 X0 Σ�1�C�1

� �� �
 �s
¼ 1

2
log2

Det Σ
Det C

Det IqþX0 Σ�1�C�1
� �� �

�Det Iqþ X1�X0A
T
0

� �
C�1A0�X1 X0þ Σ�1�C�1

� �� ��1
X0�XT

1 A
T
0

� �
C�1A0

	 

:

ð308Þ
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