
A Model-Based Framework to Support Complexity Analysis Service for Regression Testing of
Component-Based Software*

Chuanqi Tao1, Jerry Gao2, Bixin Li3

1School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
2School of Computer Engineering, San Jose State University, San Jose, CA, USA

3School of Computer Science and Engineering, Southeast University, Nanjing, Jiangsu, China

Abstract—Today, software components have been widely used in
software construction to reduce the cost of project and speed up
software development cycle. During software maintenance, various
software change approaches can be used to realize specific change
requirements of software components. Different change approaches
lead to diverse regression testing complexity. Such complexity is one
of the key contributors to the cost and effectiveness of software
maintenance. However, there is a lack of research work addressing
regression testing complexity analysis service for software components.
This paper proposes a framework to measure and analyze regression
testing complexity based on a set of change and impact complex-
ity models and metrics. The framework can provide services for
complexity modeling, complexity factor classification, and regression
testing complexity measurements. The initial study results indicate
the proposed framework is feasible and effective in measuring the
complexity of regression testing for component-based software.

Keywords-testing service; component-based software regression test-
ing; software maintenance; regression testing complexity

I. INTRODUCTION

Today, component-based software engineering is a widely used

approach in software construction. Many modern software and web

service systems are constructed based on reusable components,

such as third-party components and in-house built components.

During software maintenance, when a component is updated or

upgraded, it must be retested based on its updated requirements

in its reuse contexts. In addition, it needs to be re-integrated into

a component-based application system. This refers to regression

testing, which is an important phase of software maintenance.

In software maintenance, given a change requirement, com-

ponent developers and maintainers could adopt various change

approaches to realize the update requirements. Different ways to

change components could cause diverse impacts on both compo-

nents and system, thereby result in different retesting complexities

and regression costs. Hence, how to measure, evaluate, and predict

these complexities and costs becomes a challenging issue for test

managers and quality assurance engineers. Complexity measure-

ment is an effective way to address the above issues, and it provides

the useful reference information in cost prediction [1, 2]. There-

fore, it is necessary to measure the complexity of regression testing.

From the perspective of software maintenance, the complexity of

regression testing includes two parts. The first refers to program

maintenance complexity which relates to software changes and

*Supported partially by the National Natural Science Foundation of
China under Grant No.61402229 and No.61202003, and partially Sup-
ported by Doctoral Fund of Ministry of Education of China under Grant
No.20113219120021, and partially by the Postdoctoral Fund of Jiangsu
Province under Grant No.1401043B

*Correspondence to: jerry.gao@sjsu.edu

impacts. The other refers to software re-testing complexity which is

related to test updates, re-test operations, and test suite refreshment.

The paper has two major technical contributions. The first is its

proposed complexity analysis framework based on formal metrics

and graph-based models. It is introduced to evaluate the complexity

of regression testing of component-based software. And the second

is the reported case study experiment, which indicates that the

proposed approach is feasible to apply and practical to use. This

paper is organized as follows. Section II discusses the complexity

measurement framework. Section III reports the results of empirical

study. The related work is provided in Section IV. Conclusion and

future work are summarized in Section V.

II. COMPLEXITY ANALYSIS SERVICE FOR REGRESSION
TESTING

The existing research indicates that complexity can be used

to estimate the cost or effort required to design, code, test, and

maintain software, as well as predict errors or faults that might be

encountered during testing [1, 2]. In addition, complexity measure-

ment provides a guideline and cost indicator for software main-

tenance. Therefore, regression testing analyzers and performers

need a systematic framework service for software regression testing

complexity analysis. The testing service type could cover the whole

regression testing process, such as change management, change

impact analysis, test suite refreshment, testing complexity factor

classification, complexity measurements. This section attempts to

describe the service provided for regression testing complexity

analysis, and then introduces a measurement framework to measure

and analyze corresponding complexity in software components.

A. Classification of Complexity Factors for Regression Testing
The entire regression testing in software maintenance involves

software changes, change impact, and retest. Changes and the

corresponding impacts are an indispensable part of software main-

tenance and evolution. Therefore, the complexity of regression

testing could be categorized into change complexity, impact com-

plexity, and retest complexity. Software changes in a component-

based system occur at different levels. There are five primary

change complexity factors at component level. Internal data and

function changes are commonly-used internal component changes.

API Function changes are important to component users when

new version is released. Port changes involve the changed caller

functions which invoke functions from callees. These four changes

are adopted as the complexity factors of component changes. Since

software changes involve adding, deleting, and changing, these

three change types are considered the complexity facets of those

2015 IEEE Symposium on Service-Oriented System Engineering

978-1-4799-8356-8/15 $31.00 © 2015 IEEE

DOI 10.1109/SOSE.2015.42

326

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on September 30,2022 at 11:05:20 UTC from IEEE Xplore. Restrictions apply.

four factors above. For instance, we could have added, deleted, and

changed API for a modified component. Correspondingly, compo-

nent impacts also have four complexity factors, which are affected

internal data, internal function, API, and port. Retest complexity

relates to a number of factors, such as testing environment setting,

test case execution, and test result checking. Without regard to these

normal testing complexity factors, retesting complexity is primarily

related to test suite refreshment. Thus, we consider it as the

primary retest complexity contributors. In addition, different test

suite refreshment could result in various complexity. For instance,

adding test cases usually brings more complexity than reusing

test cases. Therefore, at component level, test suite refreshment

basically has four factors, which are added, changed, deleted, and

reused component test cases.

At system level, due to component function and data changes,

we need to pay attention to composition changes, message changes,

and configuration changes. For example, adding a new component

could change the composition relation in a system. Component

function or data changes could cause message-communication

relation changes between components. In addition, configuration

relation could be also changed whenever configurable functions,

environment or structures are changed. Therefore, composition

change, message change, and configuration change can be con-

sidered to be the major complexity factors of system changes.

Complexity factors of system impacts are those affected elements,

such as affected composition and configuration. Similar to compo-

nent level, system test suite refreshment includes added, changed,

deleted, and reused system test cases.

B. A Measurement Framework to Support Regression Testing
Complexity Analysis

In this section, we propose a measurement framework for

regression testing complexity analysis. The framework consists of

two parts: graph-based models and formal metrics.

1) A Graph-based Model: Regression testing complexity de-

pends on diverse complexity factors for software change, impact,

and test suite refreshment, thus it is important to choose an effective

approach to support the complexity analysis. This paper presents

such analytic models in a graphic format as a base to develop well-

defined metrics that enable dynamic visualization, evaluation and

comparison for regression testing complexity. Inspired from the

well-known McCall Quality Assurance Model [3], we propose a

regression testing complexity model named Complexity Graphic
Model (CGM). It is a radar chart-based polygon, in which the

link from the origin vertex to an extreme point represents the

complexity value of one complexity factor. The area of various

polygon indicates the total complexity value.

After determining the primary complexity factors, we can model

those factors in the polygon, and calculate the complexity value

using the proposed metrics. Based on the calculating algorithm for

polygon area in [4], we can derive the formula to formally compute

regression testing complexity (RTC) as follows.

RTC = 1
2
sin 2π

n

∑n
i=1 ai ∗ ai+1 (1)

Where ai represent various complexity factors. For instance,

regarding component changes, the complexity factors refers to

the changed API functions, changed internal functions, changed

internal data, etc. Each complexity factor associates with one link

in CGM, and n denotes the number of complexity factors involved.

The graphic-based models and metrics are specially used for

multi-factors. Since the change, impact, and retesting complexity

refers to a number of factors respectively, this model could provide

a multi-factor complexity in a reasonable manner. Compared to

single linear computation, this model could facilitate comparison

and visualization of the diverse change and impact complexity

of related changed components or system, as well as different

regression testing approaches. We can definitely discover which

regression testing approach is more effective in terms of complexity

comparison in the graphic model. In addition, this model could

also provide a guideline for the development of related regression

testing complexity analysis tools.
2) Complexity Metrics: We discuss the complexity metrics for

component change, impact, and test suite refreshment respectively.

There are two steps to measure those complexities: a) complexity

metrics for each change (impact or test suite refreshment) factor,

and b) complexity metrics for total change (impact or test suite

refreshment) complexity with multi-factors based on the graphic

models.

Component Change Complexity

First we consider how to use those factors collected and analyzed

to effectively compute the change complexity. Intuitively, the

complexity of changes are proportional to the number of changes

made to the components or system. In addition, the diverse change

factors might result in different change complexity. For instance,

API changes usually lead to more complexity than internal function

changes do. Thereby API changes should be assigned higher weight

than internal function changes.

Moreover, for each change factor, we need to consider the

percentage of changes out of totality for corresponding component

factor to determine the complexity. The percentage can be used as

a balance value for complexity computation. Note that the totality

means the number of items for corresponding component factor

in new version. Hence, the contributors to the change complexity

are the number of changes, the weight, and the percentage of

changes. The Function Point (FP) Model [5] was developed

originally for the effort estimation of a new software project in

the 1970s. Researchers also expanded the method to address the

effort estimation in software maintenance [6]. Motivated from

the concept of FP, we compute the complexity value through

multiplying the number of changes for each factor with weighting

factor and the balanced percentage.

From our experience, adding code in component is more

complicated than changing code. Meanwhile, changing code is

usually more complicated than deleting. Thus, we assigned the

corresponding weights in terms of their diverse contributions to the

total complexity. Also, some changes like API change usually lead

to higher change complexity than other changes, such as internal

data and function. Thereby we give them greater weight value.

Nevertheless, the assigned weight is subjective from our experience

in the case studies, thus, researchers or engineers can adjust the

weights in practice according to their experience. For any change

factor ci, the complexity metric (denoted as Complexcomp(ci))
can be given below.

Complexcomp(ci) = |Fa
comp(ci)| ∗ Wa

comp(ci) ∗ Pa
comp(ci) +

327

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on September 30,2022 at 11:05:20 UTC from IEEE Xplore. Restrictions apply.

Table I

A SAMPLE COMPLEXITY METRICS FOR CHANGE FACTORS

Change Change Number of Weight Percentage of Complexity

Factors Type Changes (value) (value) Changes (value) (value)

Complexcomp(c1)
add 2 4 33.33% 2.667

delete 1 1 16.67% 0.167

Complexcomp(c2) change 2 2 20% 0.800

Complexcomp(c3) add 2 5 22.2% 2.222

Figure 1. A Sample Change Complexity Models of Meta-Controller and
Floor Panel

|F d
comp(ci)| ∗ W d

comp(ci) ∗ P d
comp(ci) + |F c

comp(ci)| ∗ W c
comp(ci) ∗

P c
comp(ci) (2)

Where

• a, d, and c represents added, deleted, and changed respectively.

|F a
comp(ci)| denotes the number of added items. The right subscript

comp for F, W, and P means changes made to a component.

Similarly for deleted and changed items.

• W a
comp(ci), W d

comp(ci) and W c
comp(ci) denotes the corre-

sponding weight value.

• P a
comp(ci), P

d
comp(ci), and P c

comp(ci) represents the percent-

age of added, deleted, and changed items out of the total items

respectively.

Each modified component could have various change factors.

Thus, to measure change complexity with multi-factors, we propose

a metric for regression testing change complexity (denoted as

RTCC(comp)) based on the graphic model CGM. RTCC(comp)

indicates change complexity of each modified component comp.

Assuming there exists n change factors ci(1 � i � n) in

component comp, the metric RTCC(comp) is given below.

RTCC(comp) = 1
2
sin 2π

n

∑n
i=1 Complexcomp(ci) ∗

Complexcomp(ci+1) (3)

Where Complexcomp(ci) denotes the complexity of any change

factor. Note that cn+1 = c1.

Figure 1(a) and 1(b) present the change complexity of two com-

ponents respectively in a graphic model. In the system, the students

changed two components Meta-Controller and Floor Panel. There

are three change factors involved in Meta-Controller. They are

internal data (c1), internal function (c2), and port (c3).

The total change complexity is represented by the area of

the triangle in dark color in Figure 1(a). The detailed change

complexity computation consists of two steps shown as follows.

Step 1 complexity metric for each change factor
Complexcomp(c1) = (2 ∗ 4 ∗ 33.33%) + (1 ∗ 1 ∗ 16.67%) = 2.833

Complexcomp(c2) = 2 ∗ 2 ∗ 20% = 0.800

Complexcomp(c3) = 2 ∗ 5 ∗ 22.22% = 2.222

Step 2 total change complexity metrics

RTCC(metacontroller)

=
1

2
sin

2π

n

n∑

i=1

Complexcomp(ci) ∗ Complexcomp(ci+1)

=
1

2
∗ (2.833 ∗ 0.8 + 0.8 ∗ 2.222 + 2.222 ∗ 2.833) ∗ sin(

360

3
)

= 4.478

In Figure 1(b), four change factors are involved in component

floor panel. They are internal data, internal function, port, and

API. Thus, the change complexity is represented by the area of

the quadrangle in dark color.

Component Impact complexity

Whenever any component is changed, its internal data and func-

tion, API interface, and port could be affected. Therefore, they must

be considered the primary impact factors of complexity. We utilize

a similar approach to computing impact complexity for diverse

impact factors. Here we adopt three complexity contributors, i.e.,

the number of impact items, the weight, and the percentage of the

impacts.

For any impact factor Ij , the complexity (denoted as

Complexcomp(Ij)) is measured below.

Complexcomp(Ij) = |Fcomp(Ij)| ∗Wcomp(Ij) ∗ Pcomp(Ij) (4)

Where

• |Fcomp(Ij)| represents the number of impact items.

• Wcomp(Ij) denotes the corresponding weight value.

• Pcomp(Ij) represents the percentage of the impact items out

of totality.

Each affected component could have various impact factors.

Thus, to measure impact complexity with multi-factors, we propose

a metric for regression testing impact complexity (denoted as

RTIC(comp)) based on the graphic model CGM. RTIC(comp)

indicates the impact complexity of each affected component comp.

Assuming there exists n impact factors involved due to components

changes, the computation of RTIC(comp) is given below.

RTIC(comp) = 1
2
sin 2π

n

∑n
j=1 Complexcomp(Ij) ∗

Complexcomp(Ij+1) (5)

The Complexity of Component Test Suite Refreshment

As we mentioned above, the retesting factors primarily depends

on added, deleted, reused, and changed test cases in the test suite.

In [7], testing complexity is measured in terms of the number

of test data required for demonstrating program correctness. We

also take the number of test cases as an important complexity

contributor. In previous work like [8], the authors made assumption

that each test case has uniform cost, in order to simplify their

problem to support cost model analysis. Here, to simplify the

computation, we also assume that all the test cases in the suite are

independent from each other, and each single test case has uniform

complexity. Therefore, the retesting complexity is proportional

to the number of test cases. In addition, different factors may

contribute to complexities differently. For instance, according to

our experience in case studies, adding test cases is usually more

complicated than reusing test cases. Thus, we need to consider a

weight parameter in complexity computation. The weight value is

328

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on September 30,2022 at 11:05:20 UTC from IEEE Xplore. Restrictions apply.

usually determined by engineers subjectively based on their project

experience. Besides, we need to consider the percentage of affected

test cases out of the total size in the test suite. The weight values

can be derived based on empirical data in the case studies.

Hence, for any factor Tk, its complexity for added, delet-

ed, changed, and reused test cases (denoted as Complexa
c (Tk),

Complexd
c(Tk), Complexc

c(Tk), Complexr
c(Tk) respectively) is

measured below.
Complexa

comp(Tk) = |Fa
comp(Tk)| ∗Wa

comp(Tk) ∗ Pa
comp(Tk)

Complexd
comp(Tk) = |F d

comp(Tk)| ∗W d
comp(Tk) ∗ P d

comp(Tk)
Complexc

comp(Tk) = |F c
comp(Tk)| ∗W c

comp(Tk) ∗ P c
comp(Tk)

Complexr
comp(Tk) = |F r

comp(Tk)| ∗W r
comp(Tk) ∗ P r

comp(Tk) (6)

Where |F a
comp(Tk)|, |F d

comp(Tk)|, |F c
comp(Tk)|, and

|F r
comp(Tk)| represents the number of test cases added, deleted,

changed, and reused for factor Tk.

Intuitively, the complexity of test suite refreshment depends on

all these factors. Thus, we propose a complexity metric (denoted as

RTTC(comp)) with multi-factors based on our graph-based model.

Note that no more than four factors could be involved in our test

suite refreshment complexity metric computation. Therefore,

When three factors involved in comp, the computation is below.
RTTC(comp) = 1

2
sin 2π

3

∑3
k=1 Complexcomp(Tk) ∗

Complexcomp(Tk+1) (7)

At system level, the complexity metrics approach is similar to

that at component level. The corresponding measurement formulas

can also be expressed through the proposed graphic-based models

and metrics. Thus, we do not discuss the measurement realization

in details here.

III. EMPIRICAL STUDIES

A. Study Subjects and Objectives

We report our case study by applying the proposed complex-

ity analysis service into a component-based elevator simulation

system. We have used two software testing classes and three

master project teams to conduct the controlled experiments in

San Jose State University, California, USA. Now we investigate

if the proposed measurement framework is feasible and potential

to measure the regression testing complexity.

In the new version of the elevator system, some change require-

ments were made: (a) adding a ’floor indicator’ function in the

existing component to show the car id, car type and floor number,

and (b) enhancing the protocol, to support the odd and even

floor service. The students utilized the approach in our previous

work [9] to conduct regression testing. Then they applied the

proposed models and metrics in this paper to perform complexity

computation and analysis. The students have two deliverables. The

first is the updated design document, in which they record the

component and system change and impact, and measure the change

and impact complexity using the proposed metrics. The second

is the retest document, in which they record the added, deleted,

changed, and reused test cases, and measure the complexity of test

suite refreshment. We have three groups of students participated

in the case study. Each group made their own changes to the

component or system in order to meet the change requirements.

Next, we will report the results of the case study and provide some

discussion.

Table II
CHANGE COMPLEXITY RECORD (GROUP 1, 2 AND 3)

Group
UserPanel FloorPanel Algorithm Car

Car Admin Meta
System

No. Controller Console controller

G1 0.78 5.82 - 3.10 0.46 6.23 4.48 10.00

G2 2.24 3.10 4.67 2.59 3.50 1.18 - 6.99

G3 1.36 67.03 1.98 1.86 - 3.11 1.67 8.93

Table III
IMPACT COMPLEXITY RECORD (GROUP 1, 2 AND 3)

Group User Floor
Algorithm Car

Car Admin Meta UserPanel
System

No. Panel Panel Controller Console controller Queue

G1 0.154 - - 0.256 0.091 0.082 0.084 0.941 12

G2 0.712 0.286 - 0.042 1 1.653 1.333 - 1.5

G3 1.82 0.088 8.66 1.133 - 0.27 0.653 - 9.75

B. Study Results and Discussion
Using the metrics proposed in this paper, we measured the

complexity of changes, impacts, and test suite refreshment for

both components and system. Table II presents the results of

change complexity value for each changed component and system.

G1 has the greatest complexity value for component car (3.10),

adminconsole (6.23), and metacontroller (4.48), while G2 gets

the greatest complexity value for component userpanel (2.24) and

algorithm(4.67). G3 has a distinct high complexity (67.03) from the

other groups. This is because G3 accounted the change complexity

of new component floorindicator in floorpanel. At system level,

G1 has the greatest value of system complexity (10).

Table III shows the results of impact complexity value. At

component level, G1 has the lowest impact complexity for most of

the affected components, such as userpanel (0.154), adminconsole

(0.082), and metacontroller (0.084). G2 has the highest complexity

value for floorpanel, carcontroller, admincosole, metacontroller. In

addition, G1 has the highest system impact complexity value (12)

while G2 has the lowest (1.5). The results of test suite refreshment

complexity is shown in Table IV.

C. Empirical Validation
We need to perform a validation to indicate the effectiveness

of the proposed complexity analysis approach. Complexity is a

primary maintenance and testing cost driver. Therefore, we inves-

tigate the effectiveness through an initial comparison between the

Table IV
TEST COMPLEXITY RECORD (GROUP 1, 2 AND 3)

Group UserPanel Floorpanel Algorithm System

G1 21.14 82.30 - 146.60

G2 15.03 19.05 53.10 122.80

G3 13.20 136.20 29.10 71.50

Table V
COMPLEXITY AND ACTUAL EFFORT RECORD

CC CE IC IE TC TE

G1-UserPanel 0.78 7 0.15 3 21.14 17

G1-FloorPanel 5.82 16 - - 82.30 20

G1-Algorithm - - - - - -

G1-System 10 18 12 20 46.60 35

G2-UserPanel 2.24 22 0.17 2 15.03 12

G2-FloorPanel 3.10 25 0.29 3 19.05 15

G2-Algorithm 4.67 28 - - 53.10 32

G2-System 6.99 37 1.50 6 122.80 46

G3-UserPanel 1.36 15 1.82 21 13.20 11

G3-FloorPanel 67.03 52 0.09 1 136.20 45

G3-Algorithm 1.98 17 8.66 21 29.10 31

G3-System 8.93 49 9.75 42 71.50 37

(Note: CC: component complexity; CE: component effort; IC: impact complexity; IE: impact effort;

TC: test complexity; TE: test complexity.)

329

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on September 30,2022 at 11:05:20 UTC from IEEE Xplore. Restrictions apply.

complexity and the actual effort.

In the empirical studies, we recorded the actual effort of the

entire regression testing. The actual effort includes change, impact,

and test refreshment cost. The three study groups reported their

actual effort. Actual efforts were collected from the empirical study

results and measured in person-hour. The change effort is measured

by the time spent on change identification. We take the time spent

on modifying the code after changes as the actual impact effort.

Testing effort is measured in terms of test suite refreshment, which

includes the time for test execution, test coverage analysis, and test

result checking. Table V shows the sample for the record of the

complexity value and actual effort in three modified components

and the system.

From Table V, we discover that more complexity usually leads

to more effort. The effort made to regression testing is generally

proportional to the complexity. For instance, G3 has the greatest

change complexity value for component floorpanel among those

three groups, and it also has the biggest effort recorded. G1 makes

the least change complexity in component userpanel and its effort

is also the lowest. However, the testing effort seems not always

proportional to the complexity. For example, Group 3 recorded

more test complexity than Group 1 at system level. But those two

groups reported the similar testing effort: 35 and 37. Due to the

complex external testing environment, the precision of complexity

value could be affected in practical use. Thus, we need to refine the

testing complexity analysis and metrics in future work to enhance

the precision of the proposed complexity model.

Our effort record and comparison indicates the complexity

metrics is an important indicator for the regression testing cost.

Through the effort comparison, we can initially conclude that the

proposed complexity measure framework is effective to support

complexity analysis and metrics. Note that cost analysis and

indicator is not the research presented in this paper. We only try

to verify the effectiveness of our approach through actual effort.

To study the correlation between complexity and effort, further

statistical analysis such as regression analysis could be performed.

In addition, well-defined cost indicator can be developed to check

the effectiveness of the complexity measurement approach.

D. Observations and Lessons Learned
This section summarizes our observations and lessons learned

from the case study. Based on the same change requirement, those

groups made diverse changes, which cause different impacts and

test suite refreshment. This leads to the distinguish regression

testing complexities.

Observation 1- For a changed component, its test suite refresh-
ment complexity is not always proportional to change and impact
complexity.

In Table II, the component change complexity value for com-

ponent algorithm reported by G2 and G3 is 4.67 (27% of total

change complexity) and 1.98 (3% of total change complexity).

In Table III, the component impact complexity reported by G3

is 8.66 (69% of total impact complexity), but G2 does not report

any impact complexity. Thus, G3 reports more total change and

impact complexity than G2. Nevertheless, we find that the test suite

refreshment complexity value reported by G2 (53.10) in component

algorithm is greater than G3 (29.10) shown in Table IV. We analyze

that they used different testing methods to generate new test cases.

G3 adopted basis path-based testing, while G2 used branch-based

testing. Via checking the internal code of algorithm, we find that

the internal changes involve more branches. This also gives us the

implication that different testing methods might result in different

retesting complexities.

Observation 2- Some changes made to components might cause
less impacts at component level, but cause more impacts on the
entire system.

For example, a total of change complexity for components and

system for G1 is 20.87 and a total of impact complexity is 1.61.

Those values are 17.28 and 5.03 for G2. However, G1 reported

more system change and impact complexity than G2. This is the

case that component changes cause less complexity on components,

but cause more on the system. The results also indicate that

component changes not only bring impacts on components, but

also affect the entire system.

Observation 3- Change factors play an important role in impact
complexity at component level.

For instance, the total component change complexity for G1 and

G2 is 20.87 and 17.28, but the corresponding impact complexity

is 1.61 and 5.03 respectively. Thus G1 reported more component

change complexity than G2, but reported less component impact

complexity. Based on our analysis, G2 added and changed more

APIs for different components, thereby results in high impact

complexity. Hence, different change factors and types could cause

various impacts.

Observation 4- At component level or system level, the complex-
ity of test suite refreshment is proportional to the sum of change
and impact complexity.

For example, at component level, the sum of change and impact

complexity is 22.49, 22.31 and 89.63 for those three groups

respectively. As a result, the complexity of test suite refreshment

is 103.44, 87.18 and 178.5 respectively. At system level, the sum

of change and impact complexity value from each group is 22,

8.49, and 18.68. The complexity of test suite refreshment is 146.4,

122.8, and 131.5 respectively. In summary, the complexity of test

refreshment is proportional to both change and impact complexity.

From the case study, we conclude that various changes cause

diverse impacts and test suite refreshment, thus leading to different

regression testing complexity. For example Group 3 added a new

component floorindicator, which results in a high change complex-

ity. The component change complexity (77.01) is three times higher

than Group 2 (17.28). Therefore, to reduce the regression testing

complexity, we should avoid to create new components when it is

not necessary. Overall, change factors play an significant role in

change and impact complexity. Some factors cause more impacts,

and some cause less. The specific changed components also affect

impacts. That indicates different component change could cause

various impacts. In general, core components or complex com-

ponents changes could bring more impacts. Component changes

can bring impacts at both component level and system level. For

instance, API changes, message changes, and port changes affect

system significantly. Test suite refreshment complexity is related

to change and impact complexity. As we mentioned, the more

changes and impacts brought to the system usually cause more

test complexity at both component level and system level.

330

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on September 30,2022 at 11:05:20 UTC from IEEE Xplore. Restrictions apply.

IV. RELATED WORK

There are a variety of software complexity measurement, such

as McCabe’s Cyclomatic complexity, McClure’s Control Flow

Metric, function-oriented metrics, lines of code, etc [10]. Most

of the existing research work focuses on complexity measurement

in software maintenance, evolution as well as faults and effort

prediction. For instance, Kemerer et al. summarized the application

of complexity measurement in software maintenance [11] in

early research. They attempted to explore the relationships among

software complexity and various important aspects of software

maintenance. They concluded that software maintenance complex-

ity measurement correlates with changes, effort and errors. Hassan

discussed complexity metrics that are based on the code change

process, which includes fault repairing modifications, general main-

tenance modifications, and feature introduction modifications [2].

The empirical study shows the change complexity metrics are

better predictors of fault potential than other predictors. Kafura

and Reddy applied a total of seven code metrics and structure

metrics to the experience of maintenance activities performed on

a system with successive versions [12]. The study results indicate

that these proposed metrics were able to identify the complexity

of maintenance. Nikora and Munson proposed an approach to

measuring software evolution [1]. They utilized several metrics

such as the number of nodes and edges in control flow graph.

They indicated that structural measurements of a systems structural

evolution can serve as useful predictors of the number of faults

inserted into a system during its development. They also found

that various changes result in the different introduction of faults

into the system.

So far, we have not discovered a research paper regarding com-

plexity measurements of regression testing for component-based

software. According to our survey, a related topic to complexity

is cost-effectiveness. Several papers have addressed this issue. For

instance, Leung and White et al proposed a well-known regression

testing cost model [13]. Malishevsky et al. enhanced Leung and

White’s model through considering the cost of omission of faults

and rate of fault detection [8]. Those cost models for regression

testing above are primarily used for evaluation of various regres-

sion testing strategies. Researchers also proposed some prediction

models for cost-effectiveness of regression testing. For example,

Rosenblum et al. and Harrold et al. proposed a prediction for cost-

effectiveness [14, 15].

V. CONCLUSIONS AND FUTURE WORK

This paper has presented an approach to complexity measure-

ment for regression testing of component-based software. We

proposed a graphic model and several metrics for the complexity

measurement, which consists of both maintenance and retesting

complexity. A case study is conducted to compare the complexity

of regression testing using the data from three independent groups.

The case study results indicate the approach is feasible, and can

visually compare the regression testing complexity. Currently, we

are working on a cost model for regression testing of component-

based software. The model will associate with the complexity

analysis. We attempt to predict regression testing cost using the

models through empirical studies. In addition, we are developing an

automated tool for regression testing complexity and cost analysis.

ACKNOWLEDGEMENT

We thank the students of SJSU’s CMPE 287 course who par-

ticipated in our study, and the support of Computer Engineering

Department in San Jose State University of California.

REFERENCES

[1] A. P. Nikora and J. C. Munson. An approach to the measure-

ment of software evolution. Journal of Sosftware Maintenance
And evolution: Research and Practice, 17(1):65–91, 2005.

[2] A. E. Hassan. Predicting faults using the complexity of

code changes. In International Conference on Software
Engineering, pages 78–88, 2009.

[3] J. A. McCall. Factors in software quality. Springfield, VA:
National Techniacal Information Service, 1-3, 1977.

[4] A. Fournier and D. Y. Montuno. Triangulating simple

polygons and equivalent problems. ACM Transactions on
Graphics, 3(2):153C174, 1990.

[5] A. J. Albrecht. Measuring application development pro-

ductivity. In Joint SHARE/GUIDE and IBM Application
Development Symposium, pages 83–92, 1979.

[6] Y. Ahn, J. Suh, S. Kim, and H. Kim. The software main-

tenance project effort estimation model based on function

points. Journal of Software Maintenance And Evolution:
Research And Practice, 15(2):71–85, 2003.

[7] K. C. Tai. Program testing complexity and test criteria. IEEE
Transactions On Software Engineering, 6(6):531–538, 1980.

[8] A. G. Malishevsky, G. Rothermel, and S. Elbaum. Modeling

the cost-benefits tradeoffs for regression testing techniques.

In Proceedings of the International Conference on Software
Maintenance, pages 204–213, 2002.

[9] C. Q. Tao, B. X. Li, and J. Gao. A model-based approach to

regression testing of component-based software. In Interna-
tional Conference on Software Engineering and Knowledge
Engineering, pages 230–237, 2011.

[10] R. S. Pressman. Software engineering: A practitioner’s

approach. Mc Graw Hill, 2008.

[11] C. F. Kemerer. Software complexity and software mainte-

nance: A survey of empirical research. Annals of Software
Engineering, 1(1):1–22, 1995.

[12] D. Kafura and G. R. Reddy. The use of software complexity

metrics in software maintenance. IEEE Transactions On
Software Engineering, 13(3):335–343, 1987.

[13] H. K. N. Leung and L. J. White. A cost model to compare

regression test strategies. In Proceedings of International
Conference on Software Maintenance, pages 201–208, 1991.

[14] D. Rosenblum and E. Weyuker. Using coverage information

to predict the cost-effectiveness of regression testing strate-

gies. IEEE Transactions on Software Engieering, 23(3):146–

156, 1997.

[15] M. J. Harrold, D. Rosenblum, G. Rothermel, and E. Weyuk-

er. Empirical studies of a prediction model for regression

test selection. IEEE Transactions on Software Engieering,

27(3):248–262, 2001.

331

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on September 30,2022 at 11:05:20 UTC from IEEE Xplore. Restrictions apply.

