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Abstract

Multilevel modeling (MLM) conceptualizes software models as layered architectures of sub-models that are inter-related by
the instance-of relation. Conceptually, MLM provides benefits in terms of ontological classification. Pragmatically, based
on arguments in knowledge engineering, MLM meaningfully reduces accidental complexity. In this paper, the problem of
accidental complexity in MLM is revisited. The paper focuses on the role of the context of type-instance structures on MLM
architectures. We analyze factors of accidental complexity in multilevel models, suggest quantitative metrics for these factors,
and show how they can be used for guiding MLM rearchitecture transformations. The relevance of the proposed factors and
metrics is shown in an experimental study of type-instance contexts in multiple real-world models.

Keywords Multilevel modeling - Context - Rearchitecture - Accidental complexity - Quantitative measures - Evaluation

criteria

1 Introduction

Multilevel modeling (MLM) is a software modeling school
that advocates multiple levels of ontological classification,
similar to typical conceptualizations in natural domains. The
intent is to enable domain specific meta-types that describe
domain types [1]. Along with the philosophical modeling
arguments, there came pragmatic engineering arguments that
point to reduced accidental complexity [2] when two level
models of type-instance relationships are rearchitected using
multiple models [3-7].

Figure 1 shows an example, taken from [4] of two alterna-
tive models of a type-instance problem, and an alternative
three-level model, following the potency-based approach
(also termed deep instantiation) [8,9].
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The multilevel model consists of two class models, at Lev-
els 2 and 1 (marked on the left corner as L2, L1). The
diagram also shows an instance model at Level O (marked on
the left corner as L.0). Within levels, classes might be related
by the subtyping relation, and between levels they are related
by the instance-of relation, e.g., class PCStan on Level 1,
which is an instance of class ComputerModel on Level 2. In
general, classes and associations can be successively instan-
tiated (and attributes can be successively inherited) down
their level, but a potency mechanism, marked by “@n” sign,
can restrict the number of successive instantiations of classes
and associations, and control inheritance of attributes. For
example, attributes typeld of Producttype and processor of
ComputerModel are marked with potency 1, meaning that
they are static on Level 1. The default potency of an element
is its level and is not marked.

An MLM representation consists of a sequence (or
sequences) of modeling levels. Each level (but the lowest)
is used for modeling its lower levels, or alternatively, ele-
ments in each level (but the highest) function as instances of
elements in higher levels. Overall, the models in a multilevel
representation are inter-related by the instance-of relation
among objects and classes, and maybe further restricted by
inter-level and intra-level constraints. The exact relation-
ship between adjacent levels varies among approaches. Some
approaches do not require any prescribed relationship beyond
the requirement that elements in level i might be instances
of elements in a level higher than i [10]. Other approaches
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Product
isNew: Boolean
pcStan: PCStan mFlat: MFlat
E— isNew=true isNew=true
PCStan PCDel MFlat MCRT
— - — - — . — = - .
M—M_ M—BQQQL._ M—M_ M—MQRL._ pcDel: PCDel CRT: MC|
price =799 price = 1399 price = 530 price = 450 Dol PCDe mMCRLMCRT
processor ="3.1 Ghz" | |processor = "4.5 Ghz"| |size=1911 size=21 isNew=true isNew=true

(1 ()

(a) Class-hierarchy based model and a state

pcStan: ComputerModel pcStan1: Computer
typeld = "PCSstan" isType _|isNew=true
price=799
processor = "3.1 Ghz"
Del:_ComputerModel | - isType | pcDel11: Computer
typeld = "PCDel" isNew=true
ProductType pt isType pr Product price=1399
typeld : String 1 0. |isNew: Boolean processor = "4.5 Ghz"
price : Double
| A | mFlat: MonitorModel isType | mFlat1: Monitor
- |Computer| ‘ Monitor | typeld = "MFlat" isNew=true
ComputerModel MonitorModel price=530
processor : String size :Integer size =19
mCRT: MonitorM | isType mCRT1: Monitor
typeld = "MCRT" isNew=true
price=450
size =21
|
(1 0
(b) Type-instance based model and a state
L2
ProductType
typeld@ 1 : String
price@ 1 : Double
[ 1
ComputerModel MonitorModel
processor@1 : String size@1 : Integer
_L; ____________________________________________________
PCStan:ComputerModel PCDel:ComputerModel MFlat:MonitorModel MCRT:MonitorModel
= "PCStan” = "PCDel" = "MELat" = "MCRT"
r r="3.1 Ghz" r r="4.5 Ghz" size=19 size=21
isNew: Boolean isNew: Boolean isNew: Boolean isNew: Boolean

isNew=true isNew=true isNew=true isNew=true

(c¢) Multilevel model

Fig.1 Multilevel rearchitecting of a class-hierarchy- and a type-instance-based models
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Integrity Constraint

inv differentProductTypes:
self.orderltem->forAll(oi1, 0i2 | 0i1<>0i2 implies oi1.pt <> 0i2.pt)

5 order includes bundle Bundle
Order 1 0.1 price: Integer
isNew(): Boolean
Catal
order atalog pr->forAli(isNew}y  0..1|bun
.1
consistsOf .
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1..* | orderltem 1.* 1.%|pr
Orderlt ProductT .
[OCTTeM | orderltem orders  pt rotuet ype pt isType prod Product
quantity: Integer[~ _ 1 ~|typeld : String 1 0.* 5 :
: price: Integer isNew: Boolean
: getTax(): Integer
Integrity Constraint [ ]
inv quantityConstraint: ComputerModel | | MonitorModel !i
self.quantity= self.order.bundle.pr-> St —— e [ ——
select(prod | prod.pt=self.pt)->size() PLEERENIT S S| [Pk I Seeir | P | | |

Fig.2 The type-instance structure from Fig. 1b extended with context that creates an association cycle. Context classes are marked with light gray

background

require that the model at level i is a partial instance of the
model at level i + 1 [11,12].

The engineering argument in favor of MLM claims that
the two-level models introduce unnecessary accidental com-
plexity. The class-hierarchy-based model (Fig. la) does
not capture the notion of a type as an abstract element,
independently of its instances, and does not support flexi-
ble mechanisms of inheritance and overriding. In addition,
dynamic creation of types requires complex mechanisms of
dynamic model transformations.

The type-instance-based model (Fig. 1b) is conceptually
richer, since it explicitly represents the notion of type. But,
instances of this model include both objects of type elements
and objects of their instances, i.e., an inherent duplication.
The subclasses PCStan, PCDel, MFlat, MCRT are turned
into type instance-objects pcStan, pcDel, mFlat, mCRT,
whose type identity is described by the typeld attribute. This
model introduces unnecessary redundancy of type-instance
relationships, since instantiation relations are duplicated:
There is a built-in instantiation between the elements in a
class model and its instance model, and there is an instanti-
ation relation which is expressed by the isType association
and its links. The instantiation of pcStanli, pcDell, mFlatl,
mCRT] is redundant, since it is already captured by their
isType links. This structure creates models with an excessive
amount of redundant elements, as shown in [4,5]. In addition,
it mixes types and instances as indistinguishable entities on
a single modeling level.

Current studies of multilevel modeling concentrate on
the architecture of the types and instances under consider-
ation, while mostly ignoring their context, i.e., the classes,
associations, and class-hierarchy structures that surround a

type-instance structure'. However, it appears that contexts do
not necessarily fit an ideal multilevel architecture of types and
instances. Figure 2 presents a simplified Supply-chain model,
following [13—15], that extends the type-instance structure
from Fig. 1b with a context of an association cycle”. The con-
text association cycle of the rype-instance structure consists
of client classes Orderltem, Bundle, server class Catalog,
indirect client Order, and the dependent class hierarchies of
ProductType and Product. We see that the associated classes
cannot be placed in the different levels of ProductType and
Product without crossing the multilevel structure. Moreover,
it is difficult to recommend an ideal context-aware multi-
level rearchitecture transformation since context structures
can vary.

In this paper, we study context-aware factors that affect
the quality of multilevel models, like redundancy, level-
compositionality, coupling, cohesion, and understandability.
The factors are inter-related, sometimes overlapping and
sometimes conflicting?. We suggest quantitative syntactic
measures for these factors, like numbers of duplications and
of inter-level dependencies. The measures can be used as
metrics for evaluating accidental complexity in multilevel
modeling. The factors and their metrics are used for con-
structing a set of guidelines for MLM rearchitecting. The
idea is that modelers can prioritize the factors according

1" An exception is a pattern in [5] that suggests a transformation for

client classes of a type-instance pattern.
2 Part of this context appears in [4].

3 Indeed, balancing among conflicting factors while trying to maximize
model quality is the essence of software-modeling dialectics. Like the
dialectics between the conflicting principles of high cohesion and low
coupling.
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to their subjective modeling ideals and use the metrics to
build an MLM quantitative scale of accidental complexity.
We demonstrate our method by constructing our subjective,
quantitative, MLM-quality scale, and apply and compare it
with the pattern of [5]. This scale is currently under imple-
mentation within the multilevel component of our FOML
modeling application [16].

The relevance of the context-aware MLM complexity fac-
tors and metrics is evaluated in an experimental study of
type-instance occurrences in multiple real-world models.
It was found that most real systems include type-instance
structures within complex non-trivial contexts that require
thoughtful MLM rearchitecture. The contribution of this
paper is twofold: (1) study of factors and metrics for
context-aware accidental complexity in multilevel models;
(2) proposed guidelines and advice for context-aware multi-
level rearchitecture of two-level models.

Section 2 describes the MLM paradigm. Section 3 intro-
duces the context-aware factors of MLM accidental com-
plexity with the proposed quantitative measures, and Sect. 4
demonstrates multilevel rearchitecture based on the sug-
gested factors and metrics. Section 5 extends the suggested
MLM transformations to apply also to complex contexts with
class-hierarchy structures. Section 6 presents the results of
the experimental study of real models, and Sect. 7 concludes
the paper.

2 Background on MLM

MLM emerged from ontological classification of natural
domains, like biological ontologies, where classifiers often
concentrate on the hierarchical structure of types as entities
(i.e., consider the type itself as an entity, independently of its
set semantics). A different motivation comes from observ-
ing shortcomings of using the popular Type-Object Pattern
(TOP) in software modeling and in object-oriented program-
ming [17-19].

Two early MLM approaches are the powertype-based
approach [20-22], and the stereotype-based approach. Both
can be expressed as enriched two-level UML models [23].
In the powertype-based approach, a supertype S of a class-
hierarchy structure is associated with a class that denotes its
powertype (or a subset of it), i.e., a meta-type whose mem-
ber objects are the subclasses of S. The stereotype-based
approach relies on the UML stereotype mechanism to mark
classes as domain-specific meta-types.

An axiomatic First Order Logic (FOL) theory for MLM,
entitled MLT* is presented in [24,25]. This theory defines an
ontology-like stratified structure of individuals, types, and
meta-types up to three levels. The theory consists of axioms
and constraints that define and restrict instantiation levels
in a conceptual model, based on the concepts of powertype
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and categorization, and can support modeling elements like
attributes and relationships. Recently, MLT* is compared
with the DeepTelos theory [26] via a common implemen-
tation in the ConceptBase deductive system [27,28].

A different approach to MLM, that does not break the
two-level framework of OMG, is suggested in [29]. In this
approach, termed a superstructure for MLM, the essential
concepts of MLM that include typing, instantiation and spe-
cialization are specified as a UML/OCL class model. The
model, which is implemented in the USE system [30], uses
the standard UML elements of classes, methods, associa-
tions, specialization, and multiplicity, with the redefinition
and union inter-association constraints, and with OCL con-
straints and operations, to specify the syntax of the MLM
domain. This approach shares with MLT* the practice of
embedding the MLM specification in a different, already
defined, language. Interestingly, both approaches use reduc-
tion to SAT solvers, to check soundness [31,32]. Hinkel, in
[33], describes a meta-modeling framework for deep model-
ing, in which the effect of MLM is obtained using structural
decomposition and refinements of attributes and references.

The potency-based approach of [8,9], which is visualized
in the three-level model of Fig. lc, is based on an explicit
level-based syntax. While in the above approaches the level
of an element is derived from an MLM specification, in the
potency-based approach, amodel is specified by explicit dec-
laration of its levels. The levels are merged into a single model
by introducing a new linguistic unit termed clabject that com-
bines the double role of types as instances of types in a higher
level, and as types for objects in lower levels. For example, in
Fig. 1c, PCStan, PCDel, MFlat,and MCRT in Level 1
are clabjects. Clabjects function as the restricted version of
powertypes in [21] (captured by the categorization notion of
MLT). This conceptualization has much in common with the
meta-modeling approach that characterizes Domain-Specific
Modeling Languages (DSML) [6], where the syntax of a
DSML singles out the characteristic elements of a domain.

The potency-based approach gains its name from its
inherent potency mechanism, for controlling instantiation of
model elements along levels. This mechanism has several
versions, which enable convenient flexibility of instantia-
tion relations. More recent discussion of different aspects
of potency in MLM appears in [34,35] and includes finer
distinctions of MLM vitality notions.

Overall, the potency-based approach breaks the two-level
structure of an OMG model, claiming that a sophisticated
architecture of levels that recognizes the dual role of types is
preferable over a two-level framework, in which types and
objects are embedded in a single modeling level. Moreover,
MLM prevents redundant duplication, enables dynamic cre-
ation of types, and supports flexible attribute inheritance and
management.
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The semantics of potency-based multilevel modeling is
formulated by a graph-based theory [10]. In this seman-
tics, multilevel models are viewed as graphs whose nodes
represent types and objects, and whose edges stand for the
typed-by and the conforms-to relations. The graph combines
the elements of all levels. The levels are implicitly defined
by the typed-by and the conforms-to edges in the graph, and
by potency values of nodes. It is unclear how a variety of
class model constraints, such as artributes, qualifiers, and
subsetting, is handled.

Our mediation-based set-theoretic MLM framework [11]
is built on top of standard class models, using mediators that
link class models. A multilevel model consists of multiple
modeling dimensions, where each dimension is composition-
ally constructed from successive levels. A level consists of
a class model and an inter-level mediator. The mediator of
a level is an object model which is a (partial) legal instance
of the next higher level (inspired from Herbrand semantics).
The class model and the mediator of a level form its class
facet and object facet. Common elements of the class and
object facets are the clabjects and the assoclinks of a level.
A level can include external, inter-level dependencies, in the
form of potency assignments, inter-links, inter-associations,
inter-methods and inter-constraints.

The semantics of an MLM dimension is defined composi-
tionally from legal instances of the class models of the levels,
but the instances are restricted to include their level media-
tors, and to further satisfy the inter-level dependencies of their
level. Mediation-based MLM is the only MLM approach in
which the level notion has a first-class citizen status. The
class model of a level is an independent component that can
be independently developed, verified, tested, validated, and
evaluated. Due to its modular component-wise structure, a
dimension enjoys flexible management, with simple reuse
capabilities.

Mediation-based MLLM can be implemented on top of any
class modeling tool that can simultaneously support multi-
ple class and object models. This approach is now being
implemented as an MLM component in our FOML deductive
application [16,36,37], which has this capability (to simul-
taneously run multiple class and object models). The MLM
component uses FOML class modeling as a black box and
extends it with inter-level mediators and dependencies.

MLM modeling is implemented in several tools. Potency-
based MLM is supported by tools like Deeplava [3],
METADEPTH [38], XLM [39], Melanie [40], FMMLx
[41,42]. Telos [43] and F-Logic [44] are knowledge rep-
resentation languages that support unrestricted instance-of
and subtyping chains and therefore are natural candidates
for MLM. ConceptBase implements Telos [43] in a deduc-
tive logic framework, and DeepTelos [45] and [26] extend it
to support multilevel reasoning. Industrial applications that

rely on the MLM capabilities of F-logic are described in [46—
48].

De Lara et al., in [5], present several patterns for rearchi-
tecting two-level modeling structures into multilevel mod-
eling. The patterns focus on improving the modeling of
type-instance structures and of class hierarchies by trans-
formation into multilevel designs. The patterns refer to some
context aspects, but the impact on context classes is not inves-
tigated. Table 1 summarizes the main MLM terminology. For
each notion, we provide a textual explanation and a visual
description when relevant.

The notion of Accidental complexity was introduced in
[2] in order to distinguish between essential complexity,
which characterizes a problem domain, to accidental one, that
results from using weak implementation languages, weak
abstractions, or bad design. This notion is frequently used
in companion with a variety of software metrics, and also
with respect to efficiency of concrete application [49]. In
MLM, the claim is that the explicit modeling of instantiation
reduces accidental complexity since it reduces redundancy
and improves conceptualization. The thesis of [50], which
constructs a broad multilevel framework, compares the pre-
sented framework with two level modeling, using accidental
complexity and several standard OO metrics. Recently, [51]
suggests metrics based on instantiation and specialization
structure, for comparing multilevel representations (includ-
ing two level ones).

Our initial study of context of type-instance structures [52]
singled out few context-dependent structures that affect the
quality of a multilevel model and suggested some measures.
This paper presents continuation, elaboration, and broaden-
ing of the initial structure: It suggests context-aware factors
that affect the conceptual quality and management of a mul-
tilevel model, introduces metrics for measuring these factors,
and provides guidelines for using these factors in MLM rep-
resentation decisions. The relevance of the context-aware
analysis of representational factors is evaluated by an exper-
imental study of their actual occurrence in complex contexts
of conceptual models.

The factors and metrics are defined in terms of syn-
tactic features of multilevel models, i.e., classes, objects,
attributes, levels, inter-relationships like associations, links,
instantiation, specialization, potency values (if exist), and
their characterization as intra- or inter-level. The definitions
apply to all MLM approaches, independently of whether they
support an explicitly declared or a computed level feature.

We adopt the conventional visual description for multi-
level models, where levels are marked as horizontal layers
(as in Fig. 1c), classes, objects, associations, links, and spe-
cializations are visualized as in class and object diagrams,
and clabjects and assoclinks have combined visualizations
that capture their double roles. The visualization of these
syntactic MLM elements is shown in Fig. 3.
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Table 1 Basic MLM terminology

Term Description Visualization

Level A level stands for a collection of modeling elements u
from Class and Object models. Levels are marked by - -
numeric values. Elements of a level can be instances of ATA B1B
elements in higher levels. — _____________

Clabject A class which is an instance of a class on a higher-level. ATA

Clabject class-facet

Clabject as a class

Clabject object-facet Clabject as a class-instance object
ATA H M b

Assoclink An association which is a link of an association on a = Joa 1. :

higher-level.
Potency A numeric assignment to level elements. It specifies the @2

number of successive instantiations (or inheritance for

attributes) of an element. Exact definition varies.
Leap potency A numeric assignment to level elements. It specifies @ (2)

instantiation with a leap, n levels below. Exact

definition varies.

Lo

Object level The lowest level in a multilevel sequence of levels. Its

elements are objects and links. - -

Inter-level dependency

A dependency between elements from different,

possibly unadjacent, levels: associations, links,

methods constraints.

Inter-level association

Inter-level link

Inter-level method
level

Inter-level constraint
level

An association between classes from different levels

A link between objects or clabjects from different levels

A method code that references an element from another

A constraint that references an element from another

Visualization of entities distinguishes between objects,
classes, and clabjects. Objects do not have a class role,
classes do not have an object role, and clabjects have a
double role: Classes and objects. In the implicit level speci-
fication approaches, the objects are leaves of specialization—
instantiation chains and classes are roots of such chains.
Clabjects are intermediate nodes. In the potency-based
approaches, a 0-valued member of a class is an object, but
not a class, since the 0-valued potency stops the instantiation
chain.*

4 Some publications assume that O-potency value of a “class” C points
that C is an abstract class. This situation contradicts the declared potency
intention, since the set semantics of classes implies that all instances of

@ Springer

Visualization of relations between entities distinguishes
between links, associations, and assoclinks. Links are
instances of associations and do not have an association role,
associations do not have a link role, and assoclinks have a
double role: Associations and links. A link can relate two
objects, or an object with a clabject, or even two clabjects. A
link with a clabject refers only to the object facet of the clab-
ject. In the potency-based approaches, a 0-valued instance of
an association must be a link. A relationship between enti-

Footnote 4 continued

subclasses of C are also instances of C. 0-potency for a class member
means that it belongs only to the object facet of a level, and not to its
class facet.
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| r

| alA | | atA | b1:B

a) an object a) a link between two objects
(a) (a) j

| r

| A | | AtA | b1:B
(b) aclass (b) a link between a clabject and an object
| AtA | | AtA | : B1:B
(c) a clabject (c) alink between two clabjects

(1) MLM entities (2) MLM links

Fig.3 Visualization of MLLM entities and relations

ties that reside on two different levels is inter-level, i.e., an
inter-association or inter-assoclink or inter-link.

3 Factors and metrics for evaluating
accidental complexity in MLM

The term Accidental Complexity (AC) was first used by
Brooks [2] as a way to capture non-essential complexity,
caused by a language or a tool for implementation, and is not
an essential characteristic of the solved problem. This con-
cepthas been used in the study of MLM for arguing that MLM
reduces accidental complexity of modeling type-instance
relationships [4,5]. The argument is, roughly, that MLM
directly models the problem domain and avoids needless
duplication. However, when surrounding context in a model
is considered, MLM rearchitecting might not be straightfor-
ward, and there are multiple alternatives, each with its own
pros and cons.

In this section, we identify context-aware factors of multi-
level models, which might affect their complexity in different
respects. The factors are defined in terms of general MLM
terminology, like levels, instantiation, subtyping, associa-
tion, and avoid approach-specific terminology like potency
marking, categorization, or level-mediation. Hence, they are
general to all MLM approaches. Note that the /evel notion
exists in all approaches: In some representations, it is explicit
in the syntax, while in others it is implicitly computed.

For most factors, we suggest quantitative measures for
numerical estimation of the “amount” of factor occurrence.
The quantitative measures form a set of metrics for evaluating
the quality of multilevel models. The factors and measures are
motivated and demonstrated on the simplified Supply-chain
model from Fig. 2 that includes a context of an association
cycle. Examples of factors and metrics that deal with inter-
level dependencies might include data objects on Level LO

r
A 01 1 B

(@) an association between two classes

r
ATA 01 1* B

(b)an association between a clabject and a class

- ri:r -
AT:A 01 1 B1:B

(c) an assoclink

(3) MLM assoclink and associations

that are interlinked with elements on higher levels. Contexts
with class-hierarchy structures are introduced later on in the
paper, in Sect. 5.

3.1 Redundancy

Redundancy can be measured by duplication of elements.
This is the main argument for the accidental complexity in
the type-instance structure in Fig. 1b. The claim is that the
instantiation relation is duplicated, and the instance classes
Computer and Monitor are redundant. The multilevel model
in Fig. 1c is considerably smaller since instances of a type-
class are combined with their instance-classes, into clabjects.

Redundancy can still arise in a multilevel rearchitecture of
the context, usually, when a superclass is removed, in favor
of direct instantiation of a type class in a higher level, as in
Fig. lc. In that case, the remodeling of the context can create
redundancy and stability problems.

Redundancy due to a missing abstraction barrier:

Consider the MLM remodeling in Fig. 1c. The Product class-
hierarchy is removed from Level 1, in favor of four concrete
instance clabjects of ProductType, so to remove repeated
characterization via instantiation and class specialization.
But, this MLM architecture removes an abstraction barrier,
implying loss of visibility of the subclasses via the removed
superclass. Therefore, previously inherited client-access fea-
tures must be provided for each subclass. Figures 4 and 5
show two cases of such redundancy.

In Fig. 4, Level L1 includes four instance clabjects of
ProductType: PCDel, PCStan, MFlat, and MCRT, and the
Product class hierarchy is removed. Client class Bundle of
Product in Fig. 2 is also positioned on Level L1. Since the
abstraction barrier superclass Product is removed, associ-
ation contains is duplicated four times, and method isNew
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L2
ProductType

typeld@ 1: String
getTax(): Integer

L1 ; '
pctan->forAll(isNew) and Integrity Constraint
pcdel->forAll(isNew) and inv atLeastOneProduct:
mcrt->forAll(isNew) and pctan->size()>0 or
mflat->forAll(isNew) pcdel->size()>0 or

mcrt->size()>0 or
mflat->size()>0
0.*
podel 1 bun
PCDel:ProductType PCStan:ProductType Bundle

typeld="PCDel" typeld="PCStan" pcstan bun —

isNew: Boolean isNew: Boolean 0.* 0.1 _pnce - Integer

getTax(): Integer getTax(): Integer isNew(): Boolean

bun{0.1 bun|0.1
MFlat:ProductType MCRT:ProductType

typeld="MFlat" typeld="MCRT" mcrt

isNew: Boolean isNew: Boolean 0.*

getTax(): Integer getTax(): Integer

mflat
0.*

Fig.4 Duplication of client associations and method code due to a lost superclass

of Bundle needs to iterate over the four associations, with
duplicated code fragments. Moreover, a new constraint,
atLeastOneProd, is needed, to ensure that a bundle is not
empty. The overall duplication toll is 6, as there are 3 redun-
dant associations and 3 duplicated code fragments.

Figure 5 shows a different case, where a missing abstrac-
tion barrier causes redundancy in instantiation of a class on
a higher level. In this case, client class Orderltem of Pro-
ductType in Fig. 2 is positioned on Level L2 (as suggested
in [5], see Fig. 10). In addition, there is an integrity con-
straint that puts an upper bound on values of the quantity
attribute of instance clabjects of Orderltem that reference
an instance clabject of ComputerModel. On Level L1, since
the Computer super class is removed, the instance clab-
jects of Orderltem must be duplicated for their referenced
Product clabjects (since the pt property on Level L2 has
multiplicity 1), and the constraint must be duplicated for
the two Orderltem clabjects, OiPCDel, OiPCStan, that ref-
erence clabjects PCDel, PCStan. The duplication toll is 4, as
there is one clabject duplication, 2 association duplications,
and one constraint duplication. In general, the removal of an
abstraction barrier causes also stability problems, which are
discussed in Subsect. 3.2.
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Redundancy of singletons

The traditional handling of singletons in object-oriented soft-
ware involves inherent redundancy: A single member object
of the singleton class represents the class. The representative
object is redundant, as its content duplicates the class con-
tent. In MLM, where classes and objects can be unified into
clabjects, singletons create unnecessary redundancy. Single-
tons can be viewed as a special kind of clabjects, having
themselves as their only instances. References to singletons
are links to clabjects, i.e., object-clabject or clabject-clabject
links, as shown in Fig. 3. Sure enough, this might create cross-
level dependencies, and it is up to a modeler to determine
priorities: duplication or potential cross-level relationships.

Figure 6 shows these options. Figure 6a, shows the dupli-
cation caused by creating the representative Catalog object,
while Fig. 6b shows the cross-level dependency, created by
the getTax methods of the ProductType instance clabjects,
that trigger the computeTax method of the Caralog class on
Level L2.

Refinement

Sometimes, depending on subject domain and concrete
requirements, an unnecessary repetition turns into a desirable
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Fig.5 Duplication of clabjects and assoclinks on Level L1 due to lost superclass and a multiplicity constraint on Level L2
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Fig.6 Singleton duplication vs. inter-level dependencies

refinement. For example, in Fig. 7, client class Bundle from
Fig. 2 is positioned on Level L2 and has two Bundle instance
clabjects on Level L1, BundleDel and BundleStan, each with
its own bundle regulations. We see that the redundancy of
the Orderltem client clabjects in Fig. 5 turns into a desir-
able refinement that enables distinction between two kinds
of bundles. Overall, isomorphic MLM architectures might
yield undesirable redundancy in one model, while enabling
desirable refinement in another model.

3.2 Level instability

A software model is stable if a local change does not
cause propagation of multiple local changes, or some global

L2

ProductType
typeld@ 1: String
getTax(): Integer

«Singleton»
Catalog
1* computeTax(name): Integer

belongsTo

belongsTo

belongsTo Catalog.computeTax(typeId)BI

PCStan:ProductType
typeld="PCStan"
getTax(): Integer

PCDel:ProductType
typeld="PCDel"
getTax(): Integer

(b)

changes. Model stability is an evolution aspect that reflects
dependency (coupling) relationships among model elements.
In general, lower coupling implies greater stability. In MLM,
there is an inherent (built-in) level coupling between adjacent
levels, since the instance facet of a level class model is a par-
tial instance of its immediate higher level (see [11], and also
Sect. 2). Hence, lower levels always depend on higher levels:
Changes in a level class model affect its direct and indirect
instances.

Our discussion of MLM instability identifies typical syn-
tactic coupling-structures that might increase the inherent
MLM level coupling, such as (1) inter-level dependencies
like inter-level associations and links, inter-level method calls
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Bundle

price : Integer
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0.*
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ProductType
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BundleDel:Bundle
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Context BundleStan
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inv minPrice:
self.price>1200
mFlat < |MFlat:ProductType MCRT:ProductType 0.2
1.3 |typeld="MFlat" typeld="MCRT" mCrt

Fig.7 Refinement of clabjects and assoclinks

(as in Fig. 6b) and inter-level constraints; (2) explicit type-
object dependencies; and (3) missing abstraction barriers.

Upward and downward level-coupling

Upward level-coupling characterizes cases where a level
might be affected by changes in multiple higher levels.> This
factor might be caused by a variety of upward inter-level
dependencies. For example, assignment of leap potency to a
class that is associated (directly or not) with a class with a
smaller potency value creates upward level coupling. To see
this, consider again Fig. 2 and the pattern of de Lara et al. [5]
in Fig. 10 that suggests putting client classes of Product on
Level L2, with a leap potency value 2.

Following this pattern, Bundle is on Level L2 of the
rearchitected MLM model, with leap potency 2, e.g., Bun-
dle@(2), and Bundle and contains are instantiated directly
on Level L0, and bundles are linked to concrete monitors or
computers in Level LO.

5 Reminds the Divergent Change software smell [53] that describes
cases where a software element can be affected by changes in multiple
places in the code.
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If class Order is placed on Level L2 with potency 1 (like
Orderltem), its instances reside on Level L1, and bundles on
Level O are linked to orders on Level L1, implying that a
state of Level LO instantiates multiple classes in Levels L1
and L2. A change in either of these levels might affect Level
0. If Order on Level L2 has, like Bundle, leap potency 2, then
the order of a bundle resides on level 0, but its order-items
reside on Level 1, implying again, dependency of Level LO
on Levels L1 and L2. These remodeling options are shown
in Fig. 8.

Figure 9 shows how changes in Levels L1 and L2 of a
model based on Fig. 8a affect Level LO. Evolution is marked
by a cross-out line in the left diagram and a correction in the
right one. On Level L2, a previous maximum multiplicity
value of 2 for the bundle property is modified to 1. The change
implies removal of at least one Bundle object from Level
LO. On Level 1, the type of the “id” attribute of the PCDell
clabjecthas changed from Integerto String,implyinga
necessary change in the attribute value of the PCDell object
on Level LO.

Downward level-coupling is dual to upward level-coupling.
It characterizes cases where a change in a single level might
affect multiple lower levels (reminds the dual software smell
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Fig.9 Level instability due to upward level coupling

to Divergent Change®). For example, in the models in Fig. 8,  and LO. Upward and downward level-couplings are not nec-
changes to elements in Level L2 might affect both Levels L1 essarily symmetric, since an inter-level dependency might be
single directed, like directed associations or method calls.

6 Shotgun Surgery is the software smell characterizing cases where a
change in one place implies multiple changes in the code.
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Altogether, possible metrics for upward or downward
level-coupling are (1) existence of association sequences
between classes with different (leap) potency values; (2)
explicitinter-level dependencies—associations, links, method
calls, constraints.

Type-object mixture

The dynamics of change of (what is considered as) “data” or
“objects” is usually way more intensive than change of types.
For example, in the simplistic Supply-chain model of Fig. 2,
concrete products, bundles, orders and order-items, con-
stantly change between states, while product types usually
stay stable, e.g., while new computer brands are not fre-
quently introduced, new computers and monitors are bought
on a daily or even by the hour basis. Indeed, in MLM the
unification of classes and objects as clabjects invites also
type dynamics, but still the expected pace of object-change
is much higher.

Type-object mixture can create level instability due to
intensive object changes. For example, in Fig. 8a and 8b,
0iPCDel on Level 1, which is an instance of Orderltem on
Level L2, is linked, directly or indirectly, to data orders and
bundles on Level LO. Hence, changes on Level LO imply
changes on Level 1, implying constant instability of Level
L1, which is a level of types.

Type-object mixture can be identified by levels with mix-
ture of types and objects, and by the level-instability metrics
that were described above, mainly explicit type-object depen-
dency forms and associations between classes with different
(leap) potency values.

Missing abstraction barrier

Figure 4 shows duplication of associations and code frag-
ments, due to the loss of the abstract superclass Product.
Hence, the Bundle class tightly depends on changes in the
concrete Product clabjects: Addition or removal of a Prod-
uct clabject implies addition or removal of an association
and changes in the code of the isNew method and the atLeas-
tOneProduct constraint. This tight dependency increases the
instability of Level L1.

MLM Compositionality

Compositionality is a desirable feature in software, since
the syntax, semantics, management, and understanding of a
composite code/model can emerge from those of the com-
ponents. In MLM, where a model can be composed of
levels, compositionality depends on the approach and on the
amount of inter-level dependencies. The MLM approaches in
[25,26] are not syntactically compositional; potency-based
approaches as in [8,38,41] assume a level-based composi-
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tional syntax; and the mediation-based framework in [11]
has also level-based compositional semantics and manage-
ment. Metrics for compositionality are those of the upward
and downward coupling factors, i.e., syntax forms that
imply inter-level dependencies (beyond the built-in inherent
level-dependency in MLM): Reduced inter-level dependency
implies increased compositionality.

3.3 Understandability, conceptualization, and client
visibility

Understandability and conceptualization are qualitative fac-
tors of model quality that to a great extent depend on
subjective judgment of users. Understandability refers to the
capability of users to estimate the suitability of models to
requirements, and conceptualization refers to the ability of
a model to capture and account for relevant domain con-
cepts. Both factors are highly important for maintenance and
reuse but difficult to estimate, since they depend on cognitive
capabilities and experience of users. Client visibility is acom-
parative factor that reflects existence of abstraction barriers
like class hierarchies and interfaces.

Understandability

Understandability and readability of software models have
been intensively studied [54,55]. These factors are affected
by size and structure of models, as well as by usage of mod-
eling elements with complex or unclear semantics [55-59].
MLM introduces instantiation as a new modeling element,
and its syntactic and semantic integration with other stan-
dard OO modeling elements poses a new understandability
challenge. It was already noted that the view of a level in a
multilevel architecture should be restricted to three, i.e., data,
model, meta-model [47]. Our cooperation with the develop-
ers of the Ink language [60] shows that working with MLM
requires appropriate training.

The clarity and understandability of a multilevel model
are affected by syntactical features like the number of levels
and number of constraints. Explicit intra-level or inter-level
visual dependencies, e.g., multiplicity constraints on associ-
ations, are clearer than implicit text constraints or implied
dependencies, e.g., level dependency via leap potency.

Cohesion is a software quality factor that estimates how
much elements in a component (class, module) belong or
relate to each other. It reflects the strength of the component
as a conceptual unit. High cohesion improves robustness,
reliability, reusability and understandability. In MLM, where
the rype-instance relation is built into the level architecture,
it seems that mixture of types and objects in a single level
increases incohesion. For example, in the two versions of
Fig. 8, Level L2 includes ProductType, with its types-of-
types semantics, together with classes Bundle, Order, and
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Orderltem which have simple type semantics. This creates
semantic incohesion which reflects on lower levels. In Level
L1 of both versions, the object 0iPCDel (not a clabject) is
linked to the PCDel class. This mixture creates level incohe-
sion that causes other problems of coupling, compositionality
and instability.

Suggested metrics for understandability include number
of levels, number of non-built-in constraints, number of inter-
level dependencies, and mixture of potency values in a level,
which is likely to introduce level incohesion.

Conceptualization and client visibility

MLM supports the type-instance relationship as a built-
in, first class citizen concept, and enables flexible control
of attribute and association inheritance over instantiation
and specialization hierarchies. In standard OO modeling,
attribute inheritance can be stopped only by using static
attributes, and association inheritance can be overridden via
mechanisms like the UML redefinition constraint, which
does not remove the unused overridden association. In con-
trast, MLM attribute and association inheritance can be
stopped by the potency mechanism.

On the other hand, MLM rearchitecture often removes
superclasses, in order to avoid duplication of inheritance via
instantiation and specialization. But this step might remove
necessary abstractions, and reduce client visibility. We have
already seen that it can cause increased redundancy and level
instability. Altogether, MLM might increase conceptualiza-
tion in one direction, while reducing abstraction and client
visibility in another.

3.4 Metrics for quantitative evaluation of the
identified MLM complexity factors

In this subsection, we define possible metrics for measuring
the MLM complexity factors. In order to enable comparison
and combination of metrics, we suggest possible normaliza-
tion computations, that eliminate the impact of overall size
parameters of models, and shift the value ranges of metrics
to the [0..1] interval. Normalization rules are metric specific.

Some metrics refer to potency marking, due to its pop-
ularity, and are relevant only in potency-based approaches.
In addition, although no metric refers to the LO data level in
MLM, inter-level dependencies between data objects in an
L0 instance and elements in higher levels in the model might
affect the overall accidental complexity evaluation.

1. Duplication metrics: Intended to measure redundancy
of modeling elements in a level. Possible normalization
is by dividing the number of counted elements by the
maximal number of such elements in a level.

(a) Number of duplicated classes or objects in a level
(#dup_clsObj): InFig. 5, #dup_clsObj(L1) = %, and
over the two level model, itis #dup_clsObj(L1_L2) =
&l =o0.1.
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(b) Number of duplicated associations or links in a level
(#dup_assocLnk):

In Fig. 4 #dup_assocLnk(L1) = %, and in Fig. 5
#dup_assocLnk(L1) = % =0.5.

(c) Number of duplicated attributes (#dup_att):

Attribute duplication is a byproduct of class duplication,
but it deserves a separate metric because duplication of
classes with multiple attributes has a higher redundancy
rate. In Fig. 5 #dup_att(L1) = §.

(d) Number of duplicated methods or constraints (#dup_
methConst): In Fig. 4 #dup_methConst(L1) = % =
0.5, and in Fig. 5 #dup_ methConst(L1) = %

(e) Number of duplicated method or constraint fragments
(#dup_methConst Frag): In Fig. 4 #dup_methConst
Frag(L1) = 332 = 0.75.

(f) Number of singleton class-object duplications (#dup_
sglT Cls Obj): Measures redundancy due to duplication
of singleton classes by their single objects. Possible nor-
malization is by dividing by the overall number of classes

in a model. In Fig. 6a, #dup_sglT ClsObj(L1_L2) =
1

2. ievel instability metrics: The metrics in this category
identify relationships between elements that differ in
some aspects, and the difference causes model insta-
bility. Normalization rules are metric specific.

(a) Number of intra-level associations between classes with

different potency values (#diff Pot_assoc):
This metric can just count such associations, or also con-
sider the difference in potency values. Leap potency
increases the instability. Possible normalization is by
dividing by the overall number of associations in a level.
In Fig. 8a, #diff Pot_assoc(L2) = %.

(b) Number of inter-level dependencies (#intL_assoc,
#intL_Ink, #int L_methConst). Can be normalized
using division by the overall number of elements of the
same kind in the model. In Fig. 8a, #intL_Ink(LO_L1_
L2) = % (normalized over associations and links),
and in Fig. 6b, #intL_assoc(L1_L2) =
#intL_methConst(L1_L2) = 2 = 0.5.

(c) Number of inter-level dependencies of a class (#int L_
cls Dep): This metric measures class instability. It can be
normalized over the overall number of class dependen-
cies. In Fig. 6b, #intL_clsDep(L1.PC Del) = % =1.

(d) Object-type mixture in a level (mx_objTp) or Num-
ber of object-clabject links in a level (#Ink_objTp):
mx_objTp can be normalized over the number of lev-
els in a model, and #Ink_objTp can be normalized
over the overall number of associations and links in

2
2 and
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a level. In Fig. 8a, mx_objTp(LO_L1_L2) = % and
#lnk_objTp(L1) = 1.
(e) Maximal potency difference in a level (pt_diff):
This is also a metric for understandability: Greater
potency difference in a level decreases its understand-
ability. pt_diff can be normalized over the maximal
potency of a level. In Fig. 8a, pt_diff(L2) = %

3. Understandability metrics:

(a) Number-of-levels-in-a-model (#lvls): The clarity of the
intended semantics of an element rapidly decreases as
the number of levels below its level increases.

(b) Number of classes with leap potency in a level (#cls_
Ip Pot): Leap potency decreases understandability, since
it causes irregular dependency between non-adjacent
levels. #cls_Ip Pot can be normalized over the number
of classes in a level. In Fig. 8b, #cls_Ip Pot(L2) = % =
0.5.

In addition to the MLM metrics above, there are, of course,
standard OO accidental complexity metrics like dependency
of a class on multiple other classes, or associated textual
(non-visual) constraints.

4 MLM rearchitecture based on the
accidental complexity factors and metrics

This section concentrates on the role that the accidental com-
plexity factors and metrics can play in the construction of
multilevel models. We already noted that factors might have
conflicting effects on accidental complexity. For example,
level cohesion and understandability might reduce MLM
stability and MLM restructuring might increase duplication
of context classes and associations. Our approach is that a
modeler should first determine his/her modeling ideals and
develop a multilevel model in light of these decisions, with
quantitative estimation of the resulting accidental complex-
ity.

We present two alternative MLM transformations for the
two-level type-instance-based model in Fig. 2 and analyze
and quantify the resulting accidental-complexity metrics.
The context-aware analysis of accidental complexity in
MLM is mainly comparative. The MLM body of real sys-
tems is still evolving and is not sufficiently rich to present
clear evidence and support for absolute estimation of high
or low complexity. Therefore, the quantitative evaluation of
accidental complexity should be considered comparatively.
This section helps in comparing the accidental-complexity
values of various metrics, following the two MLM transfor-
mations.
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4.1 MLM rearchitecture following De Lara et al. [5]

De Lara et al. present a pattern for multilevel rearchitecting
of client classes of a type-instance structure, as shown in
Fig. 10.

The pattern puts all client classes in level 2, i.e., the level
of types of types, but with different potency kinds and values.
Client classes of the Type class receive a standard potency of
1, while client classes of the Instance class receive a leap
potency value of 2. Therefore, TypeLevelClass is instanti-
ated on Level 1, while InstanceLevelClass is instantiated on
Level 0.

Figure 11 shows an MLLM rearchitecture of Fig. 2, follow-
ing this pattern.’

Class Orderltem, being a client class of ProductType,
appears on Level 2, the level of types of types, with potency
value 1. Class Bundle appears on Level 2 with leap potency
(2), and class Order is (arbitrarily) positioned on Level
2, with Orderltem. Level 1, the level of types, includes 4
instance clabjects of ProductType, with two instances of
Orderltem (the orders association requires at most a sin-
gle instance of Orderltem for each) and one instance of
Order. Bundle is instantiated on Level O (leap potency 2),
and according to [5], the potency O of the pr property of the
contains association marks instantiation on Level 0.8 There-
fore, the Bundle instance on Level 0 is linked to the instances
of the Product clabjects, and to the Order object on Level 1.
Note that the latter is a simple kind of inter-link that relates
objects on adjacent levels.

Analysis of accidental complexity in the MLM rearchi-
tecture of Fig. 11 points to occurrence of three accidental-
complexity factors which are summarized below, and quan-
tified by the metrics in Table 2.

1. Redundancy: Method getTax () is duplicated four
times in the concrete Product clabjects on Level 1.

2. Level instability: There is upward and downward cou-
pling due to a variety of potency values on Level 2, and
objects on Level O that instantiate classes on multiple lev-
els. There is a compositionality problem due to the leap
potency on Level 2 and the inter-level links, and there is
an object-type mixture on Level 1.

3. Conceptualization and Understandability: The leap
potency creates an understandability problem. The inap-
propriate placement of Order, Orderltem, and Bundle on
Level 2 (types of types), and the object-type mixture on
Level 1, creates level incohesion.

7 The integrity constraint quantityConstraint onthe Orderltem
class is removed since it requires an MLM constraint language [11,16,

61].
8 Indeed, an ambiguous semantics of the potency labeling.
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Fig. 10 The pattern of [5] for MLM rearchitecting of a type-instance structure with context
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Fig. 11 Application of the type-instance rearchitecting pattern of [5] (appears in Fig. 10) to the type-instance structure in Fig. 2
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Table 2 Accidental complexity

in Fig. 11 Metric

Value

#duplicatedmethodsorconstraints

#dup_methConst(L1) = %

#intra — levelassociationsbetween

classeswithdif ferentpotencyvalues

#inter — levellinks

#object — clabjectlinksinalevel
Maximalpotencydifferenceinalevel

#classeswithleappotencyinalevel

#diff Pot_assoc(L1_L2)
#intL_Ink(LO_L1_L2) =
#lnk_objTp(L1) = 3
pi_diff(L2) = }
#cls_IpPot(L2) = %

3
1

o= ||

4.2 Context-aware MLM rearchitecture

Context classes of a type-instance structure might be inter-
related in complex and challenging ways. In complex con-
texts, every multilevel rearchitecture of context classes might
reveal some accidental-complexity factors, while avoiding
others. There is no silver bullet transformation that min-
imizes all accidental-complexity factors. Modelers should
determine their ideals and try to reduce accidental complex-
ity of their goal factors.

Our context-aware MLM rearchitecture advice follows
two directives:

1. Conceptualization and Understandability, with emphasis
on level cohesion: These factors are essential for reliabil-
ity, robustness, and reuse. In order to follow these factors,
the MLM transformation determines the level of classes
by their intended semantics, rather than by their context
associations. This approach is based on a faithful view
of reality and yields level cohesion. The level of a class
is determined by the question: “What is its semantically
intended level,” i.e., Level 2, the level of types of types,
or Level 1, the level of types of objects, or Level 0, the
level of objects.

2. Client visibility: This factor is essential for achieving
abstraction and encapsulation and affects all accidental-
complexity factors. Therefore, breaking a class-hierarchy
structure between several levels should be carefully con-
sidered, and the impact on client classes should be
studied. Figure 12 shows the MLLM transformation advice
for class-hierarchy structures that have client classes:

Following these ideals, Classes Orderltem, Order, Bun-
dle, in Fig. 13, are positioned on Level 1, since they have an
intended semantics of types. Class Product is not removed
(as in Fig. Ic), but appears on Level 1, as a superclass of
the four Product clabjects. These placements increase under-
standability and visibility but add an inter-level link.”

 Asin Fig. 11, the integrity constraint quantityConstraint on
the Orderltem class is removed since it requires an MLM constraint
language [11,16,61].
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Class Catalog is positioned on level 2 with potency 1, since
it stands for a set of product models and does not have two lev-
els of instantiations. Indeed, it is associated only with types
of products, and not related to concrete products. Its instance
objects on Level 1 are linked to product types, thereby creat-
ing mixture of object and types incohesion. But as catalogs
are not linked to objects on Level 0, there is no level insta-
bility.

Analysis of accidental complexity in the MLM rearchi-
tecture of Fig. 13 points to occurrence of two accidental-
complexity factors which are summarized below, and quan-
tified by the metrics in Table 3.

1. Redundancy: The inclusion of the Product superclass on
Level 1 introduces the duplication that MLM modelers
try to avoid: The concrete product clabjects specialize
Product and are also instance clabjects of ProductType
subclasses.

2. Level instability: The only source of instability is the
inter-level links from Orderltem on Level 1 to Product-
Type on Level 2, and from the Orderltem objects on Level
0 to their concrete Product types. The object-type mix-
ture on Level 1 (object catStan) is relatively static.

The context-aware multilevel rearchitecture in Fig. 13
gains in our priority factors of understandability and client
visibility. In particular, preserving the Product class as an
abstraction barrier above concrete Product classesin Level 1,
removes the otherwise unavoidable duplication of methods,
associations, code fragments and constraints (as in Fig. 4).
Note that the pattern in Fig. 10 which is implemented in
Fig. 11, requires special multilevel semantics to the associa-
tion between the Product client class Bundle on Level 2, and
the ProductType class. Our advice is to avoid coupling-based
rearchitecture transformations like the pattern in Fig. 10, and
follow factors that reflect the modeler’s preferences.
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ProductType

ProductType prod pd| ProductClient | ) T T T T T ST oo oo oo oo oo oo oo
L1 Product:ProductType prod pcl| ProductClient

’ ProductA ‘ ’ ProductB ‘

L2

’ ProductA ‘ ’ ProductB ‘

Fig.12 The MLM transformation for rearchitecting a class-hierarchy structure that has a client class

L2
P T 1.* .1
roduct. ype 0. Catalog@ 1
pt\| typeld@ 1: String belongsTo -
1 price@ 1: Integer
[ 1
ComputerModel MonitorModel
orders processor@ 1: String size@ 1: Integer
L1 | Order (1 includes 0.1 Bundle bun
Integrity Constraint order bundle Pnce. Integer 0.1
inv differentProductTypes: 1 order N isNew(): Boolean
self.orderltem-> pr->forAll(isNew)=y
forAll(oi1, 0i2 | 0i1<>0i2 implies 0i1.pt <> 0i2.pt) consistOf contains
0.* .
orderltem 1.* | orderltem |- N I:od::ct.ProductType
Orderltem s _?W' _OIO ean pr
catStan:Catalog@ 0 quantity: Integer get ax[(; nteger 1.7
belongsTo I I I ,
9 PCStan:ComputerModel| [PCDel:ComputerModel| [MFlat:MonitorModel| | MCRT:MonitorModel
typeld="PCStan" typeld="PCDel" typeld="MFlat" typeld="MCRT"
ice=799 ce=1398 ice=530 ice=450
processor = "3.1 Ghz" processor = "4.5 Ghz" size =19 size=21
Lo T TTTTTTTTTITT T o ;d;r; ____________ c:rd_ e:s __________________
=N t mFlat:MFlat MCRT:MCRT | |oiMFlat:Orderltem -
= 0iMCRT:Orderltem . orComProd:Order
ISTewmtrue isNew=true isNew=true quanity=1 - consists 06
quanity=1
pcStan:PCStan
isNew=true consistsOf ’ includes
contains
- bun:Bundle
contains -
price=980
Fig. 13 Context-aware multilevel rearchitecting of the type-instance structure in Fig. 2
tl'abl.e3 Accidental complexity Metric Value
in Fig. 13
#intra — levelassociationsbetween
. . . 1
classes with different potency values #diff Pot_assoc(L1_L2) =
#inter-level associations #intL_assoc(L1_L2) = %
#inter-level links #intL_Ink(LO_L1_L2) = %
#object-clabject links in a level #lnk_objTp(L1) = %
Maximal potency difference in a level pt_diff(L2) = %
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Order 1 includes 0.1 Bundle
order bundle| price: Integer
1€ order isNew(): Boolean
1 [bun
consistsOf Catalog contains
Virtual NonVirtuaI| P
belongsTo A =
Product
1..* [ orderltem 1.% 1..*% ? ? N rc; UCI
Orderltem | orderltem orders pt ProductType ) ISTew: Boolean
- . 1 - pt isType prod | getTax(): Integer
quantity: Integer O.. typeld : String 1 0.~
price: Integer 4
[ ]
[ ZF | |Computer| | Monitor | (Software
ComputerModel MonitorModel SoftwareModel |
processor : String | | size: Integer version : String

Fig. 14 A class-hierarchy context added to the type-instance structure from Fig. 2. The new context classes are marked with dark grey background

5 MLM rearchitecture of models with
type-instance and class-hierarchy
structures

A class-hierarchy context for a type-instance structure refers
to a hierarchy structure that includes one or both classes.
Naturally, the tendency in rearchitecting is not to break class
hierarchies between modeling levels, since it means major
semantic changes, i.e., replacing subtyping by membership
[11], and loss of visibility for client-classes. It is desirable
to classify ancestors, descendants, and siblings on the same
level. Figure 14 shows a complex class-hierarchy context
for the type-instance structure from Fig. 2. The model is
deliberately planned to present complex interaction of fype-
instance and hierarchy relationships.'?

The natural advice for hierarchy context structures that
involve exactly one of the ProductType or the Product classes
is to put the hierarchy structure either on Level 2 or 1, respec-
tively. Figure 15 shows a rearchitecture transformation that
captures this advice. With respect to the NonVirtual super-
class of classes Computer and Monitor in Fig. 14, it means
that NonVirtual should be positioned on Level 1, together
with its subclasses, as shown in Fig. 17.

Mixed hierarchy structures like the Virtuality structure in
Fig. 14 present a cohesion modeling problem, since the super-
class denotes a set that includes a type class ProductType and
its member class Software. Apart from the cohesion problem,
the classes of such a structure cannot be classified according
to the previous advice. For example, in Fig. 17, Virtual should
be on Level 2 (together with ProductType), while its subclass
Software is on Level 1. But subclassing relationships cannot
cross a level boundaries.

10 For simplicity, method text and constraints are removed.
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In complex type-instance hierarchy interaction, our advice,
which is described in Fig. 16, is to replace the subclass
relationship by a reference. Indeed, it changes the intended
semantics, butit seems the right clean solution to the cohesion
and to the MLM transformation problems. This transforma-
tion is applied in the MLM rearchitecture in Fig. 17.

Proposed guidelines for MLM rearchitecture

The analyses of accidental-complexity factors in the above
examples show that there is no single best transformation.
The desired MLM transformation depends on one’s values
and ideals. The ideals that we adopt, ordered by their priority,
are (1) understandability and conceptualization; (2) client
visibility; (3) redundancy; and (4) level instability.

Following these ideals, we suggest the following trans-
formation guidelines.!! The guidelines identify interaction
structures between a type-instance structure and its context
classes and suggest a transformation, which is subject to the
intended semantics of the context classes.

1. Classes that are directly or indirectly associated with
the Instance class, in a type-instance structure: For each
such class, determine whether its intended instantiation
semantics is like that of Instance, i.e., a type of objects.
In that case, put it on the level of the Instance class and
preserve the association structure. Classes Orderltem,
Order, and Bundle in Fig. 13 are such classes. If there
is an association cycle between the Instance and the Type
classes, this advice creates an inter-level association.

I This is not a refactoring since replacing subtyping or association by
type membership changes the semantics.
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SuperProductType SuperProduct
ProductType pt prod Product

SuperProductType

’ i

ProductType

SuperProduct

i

Product:ProductType

Fig.15 The MLM transformation for rearchitecting a simple class hierarchy structure of the fype-instance relationship
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ProductType | pt isType prod| Product
ProductA
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ProductType |pt suger; Super L2
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ProductType

ProductType |pt

Super

/]\super

Product prod

7

ProductA

pt

Product

N

()

Fig. 16 The MLM transformation for rearchitecting a mixed class hierarchy structure of the type-instance relationship

2. Classes that are directly or indirectly associated with
the Type class, in a type-instance structure: Such
classes, like Catalog in Fig. 14, join the Type class, in
the same level (see Fig. 17), provided that: (1) they are
not already positioned in a different level, following the
advice of previous entry; (2) their intended instantiation
semantics is like that of Type, i.e., a type of types or a
type of virtual objects. Otherwise, they are positioned
according to their intended semantics.

3. Sibling (through hierarchy) classes of transformed
classes: Sibling classes would better reside on the same
level in the MLLM architecture (to enable client visibility
of hierarchy classes). For example, for Fig. 13, the advice
of this step is to classify sibling classes of say, Order or
Bundle together, on the same level.

4. Ancestor or descendant classes of transformed classes:
In principle, ancestor and descendant classes should go
together. In cases of deep class-hierarchy structures, or if
hierarchy structures include classes that are already clas-
sified on different levels, more heuristic advice is needed,
to balance accidental-complexity factors with modeling
ideals.

6 Type-instance contexts in real models

In previous sections, we have studied factors of MLM
accidental complexity, suggested metrics for their quanti-
tative evaluation, and ended with general guidelines for
MLM rearchitecture of standard two-level models. The MLM
complexity factors emphasize the major role of inter-level

@ Springer



536 M. Balaban et al.
L2
belongsTo 0..1+ | Catalog@ 1
1.*
pt ProductType pt hasVirtuality vir y—
1 St '
typeld@ 1: St
g/r‘i);e@(%: |mer£|;ne$ regulation=www.regulation.gov
[ T ] vir
ComputerModel MonitorModel SoftwareModel
processor@ 1: String| | size@ 1: Integer, version@ 1: String
L1
d Bundl
orders Order |1 includes 0.1 'Iutn ©
1 order bundle !ance. n‘eger
order isNew(): Boolean
. bun|1
consistsOf contains hasVirtuality
1..* |orderltem 0.1
orderltem Orderltem pr
0.* r—m— Product «Abstract»
- quantity: Integer isNew:Boolean RlopMinl
@@ getTax(): Integer| A
belongsTo 4
[ I | | os
PCStan:ComputerModel| [PCDel:ComputerModel| |MFlat:MonitorModel| | MCRT:MonitorModel 0OS:SoftwareModel
typeld="PCStan" typeld="PCDel" typeld="MFlat" typeld="MCRT" version=Win10
r r="3.1 Ghz" r r="4.5 Ghz" ize =1 size=21
LO orders orders
consistsOf ComProd:Ord
pcDel:PCDel | | mFlatMFlat | [mCRT:MCRT| [oiMFlat:Orderltem| [ 0iMCRT:Orderitem |———————«@{°T0M=ro&ACeE
isNew=true isNew=true isNew=true quanity=1 quanity=1
| consistsOf ? includes
pcStan:PCStan
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Fig. 17 Context-aware multilevel rearchitecting of the type-instance and class-hierarchy structure in Fig. 14

interaction in determining MLM complexity. A model with
little inter-level interaction has reduced accidental complex-
ity. Yet, as shown by the running example of the paper,
when a type-instance structure is embedded within a complex
context that involves an association cycle and/or a complex
class-hierarchy structure, inter-level interaction is unavoid-
able. An MLM rearchitecture of such models must admit
some amount of inter-level interaction. The role of modelers
is to find a desired balance of MLLM decisions, so to minimize
accidental complexity according to their modeling ideals.
In this section, we check whether complex MLM con-
texts arise in real-world models. Otherwise, if all (or most)
real-world two-level models are “well structured,” i.e., the
context classes of the Type class in a type-instance structure
are not related to those of the Instance class, then MLM mod-
eling is rather simple, and most accidental complexity factors
do not arise. Figure 18 sketches four structures of complex
type-instance contexts that enforce inter-level MLM interac-
tion. First, we investigate type-instance contexts in real-world
models and then study their occurrence in a model from the
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Umple repository [62] and suggest an MLM rearchitecture,
following the guidelines from previous section.

6.1 Investigation of type-instance contexts in
Real-World Models

Our study of the relevance of the context-aware MLM
accidental-complexity factors consists of investigation of
contexts in which type-instance structures occur in real mod-
els (and meta-models) in different domains. The models were
collected from a variety of sources, including the data pro-
vided in [5],!? the ATL meta-model Zoo [63], the Umple
repository [62], and the models in [64—66].

Table 4 summarizes the models under investigation, their
domains, their size in terms of number of classes (c), asso-
ciations (r)'3, and identified rype-instance occurrences. A
large number of identified occurrences is marked as > 5.

12 This paper points to a site that lists fype-instance occurrences in
meta-models, http://miso.es/multilevel/multi-level-patterns.htm.

13" Sizes of ATL models are taken from [5].
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Fig. 18 Four structures of
complex type-instance contexts
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Table 4 Type-instance context occurrences in selected meta-models

(d)

A dashed line denotes zero or more association or class-hierarchy relations; a * label
denotes zero or more relations and a + label denotes at least one relation

Name Domain Size number of occurrences
ANT [63] Enterprise/Process Model 48¢, 28r >5
ACME [63] Software Architecture 16¢, 13, r >5
ProMARTE [63] Software Architecture 180c, 142r 2
Agate [63] Enterprise/Process Model 69c, 123r >5
SWRC 1 [63] Bibliographic data 55¢, 68r >5
SCADE [63] Systems/Software 106¢c, 231r >5
Cobol Meta model [63] Programming language 13c, 22r >5
ifc2x3 [63] Information Modeling Language 699c, 592r >5
Umple [62] Manufacturing Plant Controller 11c¢, 5r 2
Umple [62] Organization Decision making 14c, 12r >5
Business Activity RBAC [66] Business Activity 6c, 13r >5
Open Cloud Computing Interface [65] Software Architecture Domain 25c, 34r >5
ArchiMeDeS [64] Software Architecture 25¢, 34r >5

We have analyzed these models and found that most mod-

els include type-instance occurrences that are embedded in

complex contexts, following the structures in Fig. 18. This
analysis supports our claim that context-aware accidental
complexity has a central role in MLM.

()

Below, we list some such small contexts. A context is

presented as a sequence of classes, where consecutive classes

(b)

are related by an association (denoted by a line) or by subclass

(=) or a superclass (>) relation:

(©)

1. The ANT model [63]: Context paths for type class

TaskDef and instance class NewTask demonstrate

TaskDef M

Target—.Proj ec
TaskDef M

context structures (b) and (d),

NewTask <X Task—
t—TaskDef;

NewTask <X Task—

Target—Java—Project—TaskDef;

TaskDef M

NewTask < Task >

PredefinedTask > ClassPath— FileSet—
Path—Project—TaskDef;
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AssemblyLine | aLine proclluctRun prod ProductType

number:String I description:String

ProductRun
timePeriod:String

disjoint

—@{ numUnits:String

| BMXBicycleModel | | BMXWheeIModeI|

Bin self.prt=self.bin.in
keptin bin - bin :
= |1d:String 1 bmxConsOf
part
1 bProd [* [*  whole
tP
ot isTvoe BMXProduct ohotProd
< 1 = | serialNumber:String runProd
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inv sameProd:
self.astep.robot->forAll(r | r.robotProd=self.rnProd)
inv sameType:
self.nrProd.prt->asSet()=Set{self.prodT()}
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inv sameType:
BMXWheel.allnstances().prt->
asSet().size()=1

Integrity constraint
inv sameType:
BMXBicycle.allinstances().prt->
asSet().size()=1

Fig. 19 A model of the Manufacturing Plant Controller in [62]

2. The ProMARTE model [63]: Context path for type
class Classifier and instance class Instance
Specif icat%on demonstrates context structure d.

ClassifierwInstanceSpecific
ation < AnnotatedModelElement >
Classifier;

3. The SCADE [63]model: Context path for type class
AnnNoteType and instance class AnnNote
demonstrates context structure a. AnnNoteType
isTypeOf AnnNote—AnnAttvalue—
AnnAttDefinition— AnnAttGroup—Ann
NoteType;

4. The Manufacturing Plant Controller [62] model:
Context path for type class Product Type and instance
class Product, demonstrates context structure a.

isTypeOf
ProductType ——— BMXProduct—
ProductRun—ProductType;

5. The Organization Decision Making [62] model: Con-
text path for type class DecisionType and instance
class Decision; demonstrates context structure a.

. isTypeOf
DecisionType ————
DecisionByBody—DecisionMakingBody
—ApprovallLevel—DecisionType;

6. The Open Cloud Computing Interface [65] model:
Context path for type class Kind and instance class
Entity demonstrates context structure a. Kind

Decision—
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isTypeOf Entity—Mixing—Action—
Kind;

7. The Business Activity RBAC[66] model: Context
path for type class TaskType and instance class
TaskInstance demonstrates context structure a.

isTypeOf

TaskType ————TaskInstance—

Subject—Role—TaskType;

6.2 Type-instance and MLM Rearchitecture of a
two-level model from Umple [67-69]

The Umple repository [62] presents a model of a Manu-
facturing Plant Controller that constructs several types of
mechanical devices. It has assembly lines that can be used,
each, in the manufacturing of any of its products. Figure 19
presents a simplified class model of the plant. The class model
includes a type-instance structure within a complex context
of association cycles.'*

14 For the sake of visual simplicity, the two complex constraints
on class BMXProduct are omitted: (1) if pr € bmxPr.part,
then pr.prt € bmxPr.prt.tPart; (2) for every set Prts
of parts of a BMXProduct object bmxPr, such that Prts
objects share a common productType prtTp, the size of Prts
is given by the requiredNumber attribute of the BillOfMate-
rialLineltem of the link (bmxPr.prt, prtTp); ie., |Prts| =
(bmx Pr.prt, prtTp).BillOf Material Lineltem.required Number.
Proper formulation of this constraint requires definition of auxiliary
functions within a local computation scope
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Fig.20 MLM rearchitecting of the class model in Fig. 19

Figure 20 presents the result of applying the guidelines 2.

for MLM transformation from Sect. 5 to the class model in
Fig. 19, extended with a partial initial state in Level 0. The
guideline preferences put the conceptualization and under-
standability factors (with preservation of client visibility) in
the first place, followed by redundancy and then stability.

1. Instance related classes: Class BMXProduct is posi-
tioned on Level 1. Classes ProductRun, AssemblyStep,
Robot, and Bin that are directly or indirectly associated
with BMXProduct are positioned in Level 1 because they
describe concrete objects in the plant, i.e., they are types
of objects.

Type related classes: Class ProductType is positioned on
level 2, with potency 2. Classes BillOfMaterialLineltem
and AssemblyLine are directly associated with Product-
Type and are not already positioned on Level 1.

BillOfMaterialLineltem becomes redundant in MLM
since its intention is to restrict the size of tpart-twhole
aggregations between products, based on their types. Size
restrictions on associations in class models are specified
by multiplicities. Therefore, BillOfMaterialLineltem is
removed, and the bmxWconsOf association on Level 1
species the required number of parts for its bmxw prop-
erty. AssemblyLine describes concrete objects in a plant,
i.e., represents a type of data objects on Level 0. There-
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Table5 Accidental complexity in the MLM rearchitecture of the model
from Umple in Fig. 20

Metric Value

#inter — levelassociations #intL_assoc(L1_L2) = %

#inter — levellinks #intL_Ink(LO_L1_L2) = %

fore, it is positioned in Level 1, implying an inter-level

association between AssemblyLine and ProductType.

Sibling classes: None.

4. Ancestor and Subclasses: Classes BMXBicycle, and
BMXWheel, the Product subclasses are positioned on
Level 1. Class BMXProduct is not removed, because there
are client classes, and there is a need to preserve their
visibility, for example, references and operations of Pro-
ductRun and Robot objects. Classes BMXBicycleModel
and BMXWheelModel, the subclasses of ProductType,
are positioned on level 2, with potency 2, because they
describe types of types. (Their instances are virtual.)

hed

Constraints in the multilevel model Constraint same-

Prod of class ProductRun, being an intra-level constraint,
stays as is. Constraint sameType of class BMXProduct
requires an MLM constraint language and is not listed. Inter-
estingly, the MLM structure already accounts for the two
sameType constraints of the BMXProduct subclasses, since
the built-in memberships of BMXBicycle and BMXWheel
guarantee that their objects have the same product type.
Therefore, these constraints are removed. Similarly, the com-
plex constraints on BMXProduct are redundant, since the
required number of parts is specified by the multiplicity con-
straints of the whole-part associations between BMXProduct
subclasses.
The multilevel model admits some inter-level associations
and links, but all are directed from a level towards its adja-
cent higher one. Therefore, in terms of instability, it is always
aless stable (more dynamically changing) level that depends
on a more stable one (downward level coupling). The lev-
els are cohesive (no mixture of linked objects and classes),
and there is no redundancy. Altogether, there is only a level-
instability accidental complexity, measured by the metrics in
Table 5.

7 Conclusion and future work

In this paper, we focused on contexts of type-instance struc-
tures, and their role in determining the accidental complexity
of a multilevel model. We identified multiple factors of acci-
dental complexity in MLM and showed that they arise in
structures with complex context. We provided quantitative
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metrics for these factors and used them to compare acci-
dental complexity of MLM transformations, along different
parameters of a multilevel model.

We have shown that there are complex MLM contexts in
which no silver bullet can remove all accidental-complexity
factors. Therefore, modelers need their subjective MLM
scales for balancing conflicting accidental-complexity fac-
tors. We suggested guidelines for MLM rearchitecture
transformation that maximizes understandability and client
visibility.

The relevance of this context-aware analysis of MLM
accidental complexity is validated by an experimental study
of type-instance occurrences in multiple real-world models.
We found that most models include complex contexts with
type-instance occurrence. Finally, we have demonstrated the
application of the suggested MLM rearchitecture transfor-
mation to a real model that is taken from the UMPLE site.

In the future, we plan a user study of the conceptualiza-
tion and understandability factors in MLM. We think that
experiments in the design, understanding, and application
of MLM models are needed in order to clarify their use-
ful aspects. Such experiments will also help in the practical
design and evaluation of accidental complexity metrics. In
addition, we continue to develop the MLM component of
our FOML tool [16] and plan on using it in an industrial
project we are involved in.
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