Handling Complexity in Some Typical)
Problems of Distributed Systems L
by Using Self-organizing Principles

Vesna SeSum-Cavié

Abstract Today’s software systems are continuously becoming more complex.
Main factors that determine software complexity are huge amounts of distributed
components, heterogeneity, problem size and dynamic changes of the environment.
These challenges are especially emphasized in distributed software systems. To cope
with unforeseen dynamics in the environment and vast number of unpredictable
dependencies on participating components, employing of self-organization princi-
ples at different levels in the software architecture can be beneficial. This could help
in shifting complexity from one central coordinator component to many distributed,
autonomously acting software components. Swarm intelligence represents a self-
organizing biological system. Therefore, swarm-inspired algorithms play an impor-
tant role in the design of self-organizing software for distributed systems and enable
different kinds of self-organization. This chapter is based on my keynote at IJCCI
2019 with the purpose to provide a brief overview of the significance and power
of swarm intelligence in coping with some typical distributed systems’ problems as
well as findings about how and in which use cases the principles of self-organization
can contribute to reduce software complexity.

Keywords Self-organization + Swarm intelligence - Distributed systems *
Complexity

1 Introduction

Distributed systems develop rapidly and become more and more complex. They
usually contain huge number of heterogeneous and mobile nodes, so heterogeneity
could be identified as one of the main challenges. When integration of multiple
systems is needed, the following issues should be taken in consideration: they differ
in their capabilities in terms of integration, have disparities in data, use and support
different technologies and standards, and they could be on different platforms [16].

V. Sesum-Cavi¢ ((<)

Institute of Information Systems Engineering, Faculty of Informatics, TU Wien, Argentinierstr. 8,
1040 Vienna, Austria

e-mail: vesna@complang.tuwien.ac.at

© Springer Nature Switzerland AG 2021 115
J. J. Merelo et al. (eds.), Computational Intelligence, Studies in Computational
Intelligence 922, https://doi.org/10.1007/978-3-030-70594-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70594-7_5&domain=pdf
mailto:vesna@complang.tuwien.ac.at
https://doi.org/10.1007/978-3-030-70594-7_5

116 V. Sedum-Cavié

Distributed systems are forced to integrate other software systems and components
that are often not reliable, exhibit bad performance, and are sometimes unavailable.
Such software is typically characterized by a huge problem size concerning number
of computers, clients, requests and size of queries, autonomy and heterogeneity of
participating organizations, and dynamic changes of the environment.

Therefore, their complexity' becomes a critical issue. The system complexity
has been widely identified to be an important problem [1, 12]. Ranganathan and
Campbell [16] identifies five aspects of distributed system complexity: task-structure
complexity, unpredictability, size complexity, chaotic complexity and algorithmic
complexity. To cope with huge dynamics and vast number of unpredictable depen-
dencies on participating components, other approaches are demanded. In attacking
complexity, [16] proposes self-configuration and self-repair, high-level programming
and interaction, and hierarchical organization of systems and concepts. A useful
way would be also implementation of autonomously acting components, which are
inspired by nature. These components act in a dynamic, ad hoc way and adapt quickly
and self-subsistent to both changing requirements and dynamically evolving system
states caused through the interplay and contribution of the many components towards
a global goal.

The unavoidable complexity cannot be eliminated, but it can be shifted. Among
some well-known tools in coping with the complexity (e.g., abstraction, decoupling,
decomposition), a self-organizing approach represents one promising way. Certainly,
self-* systems will not be able to adapt to all possible events, but they promise a good
perspective to deal with complexity. Herrmann [9] depicts the necessity for self-*
mechanisms in distributed systems.

1.1 Self-organization

Researchers have experimented with different paradigms in order to achieve the
main properties of self-* systems. Self-* appears in systems without interventions
by external directing influences (instructions from a “supervisory leader” or an order
imposed on them in many different ways—various directives, recipes, templates) and
forms patterns through interactions among their components [3, 10]. Although a func-
tional structure appears and maintains spontaneously, complex systems are not arbi-
trarily regulated, but ordered in a very organized way. This organization is not built
into the system at its origin. It emerges in a sequence of self-organizing processes that
include spontaneous transitions into new states of higher organizational complexity.
Patterns are well organized structures [3] and can refer to an arrangement of objects
bothin space (e.g., a zebra’s coat) and in time (e.g., firefly flashing). A self-organizing
system possesses multiple interdependent components that cooperate in self-initiated
interactions [10] through which an information exchange is done.

INote that there are no standard, generally accepted definitions of complexity.

Handling Complexity in Some Typical Problems ... 117

Self-organization in a system appears at different levels (from the lowest level to
the highest one), and each of these levels can exhibit their own self-organization.
Interacting components are constantly changing their state. “Decisions” and conse-
quently changes are local (e.g. in an ant colony, each ant “decides” by its own which
path it will choose). Also, components only interact with their immediate “neigh-
bours”. A mutual dependency implies that changes are not arbitrary: some relative
states are “preferable”, in sense that they will be reinforced or stabilized (like those
paths in an ant colony where there are more pheromone), while others are eliminated.
The components of the lowest level produce their own emergent properties (patterns)
and form the building blocks for the next higher level of organization, with different
emergent properties, and this process can further proceed to higher levels in turn.

Most of dynamic systems are metastable possessing many attractors as alternative
stable positions. A “noise” (fluctuations) in a system allows the system to escape one
basin and to enter another, leading the system to the optimal organization. The basic
mechanism underlying self-organization is the variation that governs any dynamic
system and allows for exploring of different regions in a state space until it happens
to reach an attractor—a preferred position of the system. Thus, increasing variation,
i.e., adding “noise” to the system implies that the exploration of a state space will be
emphasized, accelerated and deepened. Reaching the attractor, the system comes to
the stable state. A further exploration of new state space positions can be continued,
if random changes are introduced, which can cause the system to move towards a new
attractor [10]. Mathematically speaking, itis possible to have several local optima, but
only one global optimum. The self-organization mechanisms have a fully distributed
characteristic in a dynamical system, i.e., it must be distributed over all participating
components.

We cannot “invent” new forms of self-*: it already exists around us. However,
we can learn from biologically-based mechanisms and try to transfer and imple-
ment such mechanisms into software systems. Such systems have the following
advantages over traditional systems: robustness, flexibility, capability to function
autonomously, while demanding a minimum of supervision, and spontaneous devel-
opment of complex adaptations without need for detailed planning. In mapping, soft-
ware agents usually play the role of particular swarm individuals (e.g., ants, bees,
etc.) and “perform” self-* actions characteristic for the respective swarm colony. All
these mechanisms are characterized by a huge number of different environmental
parameters influencing the behaviour of artificial swarms.

Although self-* approach is attractive and promising, proven to cope with
complexity, the starting question is how to determine whether or not to apply princi-
ples of self-organization on a particular use case. First, it is necessary to discern what
kind of complexity exists in a particular problem. According to that information, a
conclusion can be made about what self-* mechanisms or principle could be suitable
for a particular case. For example, if a considered problem possesses programming
complexity (and additionally a system itself is rather heterogeneous, like a distributed
heterogeneous system), then a high level of autonomy and decoupling is necessary
to show some success in coping with this complexity.

118 V. Sedum-Cavié

1.2 Complexity in Application Scenarios

The sources of complexity in the application scenarios presented in Sect. 2.1 are:

1. amount of resources, i.e., the huge amount of distributed components that must
interplay in a global solution,

type of resources, i.e., heterogeneity,

large number of interactions of the various elements of the software,

huge problem size, clients, requests, size of queries etc.,

autonomy of organizations,

dynamic changes of the environment.

SAIRARE o N

According to these sources, different types of complexity can be discerned:
point 1. is a pure computational complexity, points 2. and 3. address program-
ming complexity, point 4. refers to both computational and programming complexity,
whereas 5. and 6. are the consequences of features of complex adaptive system.

In the analysis of computational complexity [8], two well-known types appear:

e time complexity—the length of time it takes to find a solution or complete a
process as a function of the size of input;

e space complexity—the amount of physical storage required for a system to
perform a certain operation, i.e., to solve an instance of the problem as a function
of the size of input.

Every task” can contain subtasks. The order of complexity of the task is deter-
mined through analyzing the demands of each task by breaking it down into its
constituent parts [5]. Tasks vary in complexity in two ways: horizontal (involving
classical information) or vertical, i.e., hierarchical (involving hierarchical informa-
tion). Horizontal complexity is the amount of information in simple quantitative
terms within a task and consists of the number of different responses that have to
be performed [5]. Hierarchical complexity refers to the number of recursions that
the coordinating actions must perform on a set of primary elements. The actions at a
higher order of hierarchical complexity: (a) are defined in terms of actions at the next
lower order of hierarchical complexity; (b) organize and transform the lower-order
actions; (c) produce organizations of lower-order actions that are qualitatively new
and not arbitrary, and cannot be accomplished by those lower-order actions alone
[5].

Example: Consider the action A| of evaluating a 4 b and the action A, of evaluating
(a + b) + c. The horizontal complexity of A; is smaller than the horizontal of A,
since the action of addition is executed less often in A; than in A,. On the other hand,
because A; differs from A, only in how many times addition is executed, but not in
the organization of the addition, both actions have the same hierarchical complexity.

So, in the presented application scenarios (Sect. 2.1), the above mentioned types
of complexity can be observed: programming and computational, in which both time
and space complexity are present; additionally hierarchical complexity is present.

2The notion of task is used here as an example, and could be generalized with the notion of process.

Handling Complexity in Some Typical Problems ... 119

1.3 Measurement of Complexity

Researchers from different areas of science like biology, computer science, finance,
etc., define different measures of complexity for each respective field. Lloyd [14]
present a categorization of complexity measures by defining common questions for
all problems:

1. how hard is to describe?
2. how hard is it to create?
3. what s its degree of organization?

A general form of self-organization measurement does not exist. For example, in
[4], the mechanism of “brood sorting” is used and spatial entropy is proposed as a
measure of self-organization.

In selected use-cases, the measurement of self-organization, i.e., how good the
single contributors (bees, ants, ...) organize themselves is realized by means of
specially constructed functions (e.g., the suitability function in Sect. 3.1). Higher
values of these functions denote the better self-organization in the presented systems.
Computational complexity is tracked in time.

2 Swarm Intelligence in Distributed Systems

Swarm intelligence possesses distributive and autonomous properties and represents
a self-organizing biological system. Every individual in the population makes local
decisions, and acts in a decentralized manner. A communication of “knowledge”
between individuals is done without any supervisor. Therefore, swarm-inspired algo-
rithms play an important role in the design of self-organizing software for distributed
systems. They have a broad spectrum of application areas, support the optimization
and robustness of highly dynamic distributed systems, fast adaptation to changes by
learning from history and enable different kinds of self-organization. For example,
they provide primitives for continued execution when nodes or the network commu-
nication fail, when nodes are added or removed during execution, or even in situations
when the application should be upgraded “on-the-fly” without interrupting execution.

2.1 Some Selected Distributed Systems’ Use-Cases

Some typical distributed systems problems (load balancing, load clustering, infor-
mation placement and retrieval in heterogeneous networks, distributed routing, peer
clustering) have been successfully treated by swarm intelligence.

(1) Load Balancing can be described as finding the best possible workload
(re)distribution and addresses ways to transfer excessive load from busy

120

@

3

“

Fig.

V. Sedum-Cavié

(overloaded) nodes to idle (under-loaded) nodes (Fig. 1). Load Balancing
can take place at local node level allocating load to several core processors
of one computer, as well as at network level distributing the load among
different nodes. Sesum-Cavi¢ and Kiihn [18] explains for the first time how
bee intelligence can be mapped to dynamic load balancing.

Load Clustering deals with clustering of work loads in a computer system.
It tries to make further optimizations of the load distribution based on the
content of the load items (Fig. 2). A single load item can be described as a
task that consists of several attributes (e.g. a certain priority), has a payload, a
dynamic life cycle and is handled by a computer or processor. Among different
clustering and classifying algorithms (K-Means, Fuzzy C-Means, Genetic K-
Means, Hierarchical Clustering, K-Nearest Neighbor, Decision Trees), a usage
of ant intelligence in dynamic load clustering is demonstrated [13].
Information Placement and Retrieval in Heterogeneous Networks. Sesum-
Cavi¢ and Kiihn [17] deals with data placement and retrieval in the internet
(Fig. 3). Unstructured peer-to-peer overlay network technologies are combined
with swarm intelligence (ant intelligence, bee intelligence and slime molds).
It is proven that a good query capability with good scalability can be achieved
by using swarm-based algorithms.

P2P Streaming. Further, the previous use case 3 is extended to streaming
in fully decentralized P2P networks [19]. It addresses need to create a P2P
application which combines video on-demand streaming and user collaboration

% e 7|
e
T,

client5 =

.~ -_ ~—
-chentl) ©
- -
chent 2 .
~ client 6
I
f-- -

. server 1 server 3
client 3
o
O
_ server 2 current load status
LT of server 2
client 4
1 Dynamic load balancing

Handling Complexity in Some Typical Problems ... 121

® -
- ©
'_ cllentl 0 ' : @ clients '-

@]
clle_nt 2 client 6
' ’
E_Eh server 1 server 3
client 3
® 0
® @
current load status
of server 2
client 4
Fig. 2 Dynamic load clustering
source of '- lg -
" l e
mformatlon 5| = -

”
.

.
-
-
.
-

~—-
~
IM

=/ 1= .
retrieval of —x_,_ .g_

E lg“ \ information
Ig ‘ request
matched
requester of

e S e information

Fig. 3 Information retrieval

122 V. Sedum-Cavié

client 6 client5

'- - - .< : -

a)
o pm
stlrjgapm client 1\\ / client 4

| H—
streaming -

server

Fig. 4 P2P streaming

(Fig. 4). P2P applications that support the streaming delivery method rely
on hybrid approaches, and therefore, are not fully decentralized. Besides ant
intelligence and bee intelligence, the lookup mechanism used includes usage of
a slime mold intelligence that is adapted for this use case as well as bark beetle
intelligence [21] that represents designing a new simple, effective swarm-based
algorithm.

(5) Distributed Routing. Sesum-Cavi¢ et al. [20] presents modelling of the life-
cycle of cellular slime moulds and bee-behaviour based on the foraging mech-
anism of honey bees in order to create fully distributed routing algorithms for
unstructured P2P networks (Fig. 5). A modelling and adaptation of slime mould
intelligence is done for the first time for routing in unstructured P2P networks.
Bee intelligence was already applied to the routing problem in general [22].
However, in [20], another type of mapping and adaptation is proposed.

2.2 Algorithm Recommendation for Selected Use Cases

The selected problems numbered in Sect. 2.1 were treated by using different
approaches and types of algorithms (conventional and swarm intelligent). The
details of specific adaptations and implementations can be found in [13, 17-21].
The obtained results proved the significance of usage swarm intelligence approach
in complex, dynamical distributed systems’ problems. In this subsection, a kind
of recommendation algorithms for selected use cases is presented as a sum-up of
obtained results (Table 1).

Handling Complexity in Some Typical Problems ... 123

Fig. 5 Distributed routing

3 An Illustration: Bee Algorithm for Dynamic Load
Balancing

For sake of illustration, a mapping and adaptation of bee algorithm for dynamic
load balancing [18] is shortly reviewed. As this scenario refers to unstructured
P2P networks, a formalization of P2P network model is presented. Further, some
theoretical concepts of the presented bee algorithm are discussed.’

3.1 Bee Algorithm

In a honeybee colony, bees have different roles: foragers, followers, and receivers. A
functioning of a bee colony relies on two main strategies: (*) navigation—searching
for nectar in an unknown landscape; a forager searches for a flower with good nectar
and after finding and collecting, it returns to the hive and unloads the nectar, and (*)
recruitment—a forager performs the so-called “waggle dance”, i.e., it communicates
the knowledge about the visited flowers (quality, distance and direction) to other bees
(Fig. 6). A follower randomly chooses to follow one of the foragers and visits the

3More details incl. benchmarking results can be found in [18].

124

V. Sedum-Cavié

Table 1 A sum-up for algorithm recommendation in selected use-cases

Scenario Recommended algorithm(s) or | Metric
combination of algorithms
Load balancing — Both combinations Absolute execution time

BeeAlgorithm/Sender and
MinMaxAS/MinMaxAS
were equal good in the chain
topology

— Both combinations
BeeAlgorithm/Sender and
MinMaxAS/RoundRobin
were equal good in the ring
topology

— Both combinations
BeeAlgorithm/BeeAlgorithm
and GA/AntNet were equal
good in the star topology

— A combination
RoundRobin/BeeAlgorithm
was the best in the full
topology

— Bee algorithms play a
significant role in almost each
topology, as the best obtained
results in each topology are
based on bee algorithms
either used inside subnets or
used between subnets or both

Load clustering

— From the group of clustering
algorithms, Hierarchical
Clustering obtained the best
results, whereas from the
group of classification
algorithms the Ant-Miner
algorithm was the best

— The combination of the
Hierarchical algorithm with
any other, except the Genetic
K-Means algorithm, leads to
a good execution time. The
best result was delivered by
the combination of the
Hierarchical and Fuzzy
C-Means algorithm. The
Hierarchical Clustering
showed the best results in a
small network with only one
client that supplies load. For
large and more complex
networks, an intelligent
approach with an appropriate
similarity function will help

Absolute execution time

(continued)

Handling Complexity in Some Typical Problems ...

Table 1 (continued)

125

Scenario

Recommended algorithm(s) or
combination of algorithms

Metric

Information placement and
retrieval

— Random/AntNet algorithm is
better than
Random/MinMaxAS; the
possible reason for that could
be the fact that
Random/AntNet better
supports dynamic processes

— Bee algorithm obtained the
best results especially on
large instances

Absolute execution time

P2P streaming

— Bark Beetles algorithm,
Physarum Polycephalum
algorithm, Gnutella flooding,
k-Walker, AntNet and
Dd-slime mold algorithms
are compared

— Absolute time: for small
replication rate (2%), all
network sizes, Physarum
Polycephalum algorithm
outperforms the other
algorithms; for bigger
replication rate (16%), all
network sizes, Bark Beetles
algorithm outperforms the
other algorithms

— Average message per node:
for all replication rates, all
network sizes, Bark Beetles
algorithm outperforms the
other algorithms

— Success rate: for small
replication rate (2%),
network sizes of 50 and 100
nodes, Bark Beetles
algorithm has comparable
success rate as Gnutella; for
bigger replication rate (16%),
all network sizes, Bark
Beetles algorithm has 100%
success rate

Absolute execution time,
success rate, and average
messages per node

(continued)

126

Table 1 (continued)

V. Sedum-Cavié

Scenario

Recommended algorithm(s) or
combination of algorithms

Metric

Routing in P2P

— Slime Mold routing
algorithm (SMNet)
outperformed all other
benchmarked routing

Data packet delivery ratio,
average data packet delay,
average data packet hop count,
and routing overhead messages

algorithms (AntNet,
BeeHive, Gnutella,
k-Random Walker) regarding
the average delivery delay of
data packets with growing
amount of network nodes and
data packet traffic

— Bee routing algorithm
(BeeNet) took the overall
second place right after
SMNet

Fig. 6 A honeybee colony
in nature [2]

“advertised” flower. Foragers and followers can change their roles in the next step
of navigation. A receiver processes the nectar in the hive.

A software agent plays the role of bee and resides at a particular node. A node
consists of exactly one hive and one flower in its environment. A task is one nectar
unit in a flower. Following situations are possible: (*) there are more nectar units in a
flower, (*) a flower is empty (in that case, it is not removed from the system). A new
task can be put at any node in the network. A hive has k stationary bees (receivers)
and | outgoing bees (foragers and followers). Initially, all outgoing bees are foragers.

Handling Complexity in Some Typical Problems ... 127

Foragers scout for a “partner” node of the node that they belong to, i.e., a particular
resource for load balancing to get or put work load from/to it. Further, they inform
and recruit followers. Thus, the main actors are foragers and followers as receiver
bees process tasks at their node and have no influence on the algorithm itself [18].

The goal is to find the best partner node (determined by means of a suitability func-
tion) by taking the best path (here defined as the shortest path). A navigation strategy
determines which node will be visited next and is realized by a state transitions rule
[23]:

Loy 1 - 11/, 17
> Loy - 1/g, 1

JEA; (1)

P(t) = (1)

where d; is the heuristic distance between 7 and j, « is a binary variable that turns
on/off the arc fitness influence, and S is the parameter that controls the significance
of a heuristic distance, and p;;(?) is the arc fitness from node i to node j at time ¢ and
is calculated in the following way: p;;= 1/k, where k is the number of neighbouring
nodes of node i in case of forager, whereas in case of follower [23]

" A if j € Fi(?)
i (1) = 1-MAONFEOL - p
moamne o i 7 ¢ Fi@)

VjieAi), 0=xa=<1 (2

where A;(?) is the set of allowed next nodes, i.e., the set of neighbouring nodes of
node i, and F; (t) is the set of favoured next nodes recommended by the preferred
path.

During the recruitment, bees communicate using the following parameters: path
(distance), and quality of the solution. Therefore, fitness function f; for a particular
bee i can be derived as [18]:

1
fi=— 3)

H;
where H; is the number of hops on the tour, and § is the suitability function. The
colony’s fitness function f .oy is the average of all fitness functions (for n bees):

1 n
fco]nny = ; Zi:l fl (4)

If bee i finds a highly suitable partner node, then its fitness function, f; obtains a
good value. After a trip, an outgoing bee determines how “good it was” by comparing
its result f; with f /0y, and based on that decides its next role [15].

Therefore, two following situations can occur [18]:

128 V. Sedum-Cavié

e if a bee of an under-loaded node searches for a suitable task belonging to some
overloaded node, then this bee carries the information about how complex a task
the node can accept;

e if a bee of an overloaded node searches for an under-loaded node that can accept
one or more tasks from this overloaded node, then it carries the information about
the complexity of tasks this overloaded node offers and compares it with the
available resource of the current under-loaded node that it just visits.

In both cases, the complexity of the task should be compared with the available
resources at a node [18]. For this purpose, the following notions are introduced: task
complexity c, host load /4 and host speed hs, whereas As is relative in a heterogeneous
environment, hl represents the fraction of the machine that is not available to the
application, and c is the time necessary for a machine with 4s = 1 to complete a task
when il = 0. We calculate the argument x = (¢/hs)/(1 — hl) of suitability function §
and define it as § = §(x). For example, when an under-loaded node with high resource
capacities is taking work from an overloaded node node, a partner node offering
tasks with small complexity is not a good partner as other nodes could perform these
small tasks as well. Taking them would mean wasting available resources.

3.2 P2P Network Model

A formalized description of a P2P overlay network 20 is closely related to the defi-
nition of a unique identifier of each P2P node. Since P2P overlay networks operate
above the physical layer, this unique identifier must not be the physical host address.

Let a P2P overlay network be represented by a graph Gpyp= (Vpap, Epap), where
the nodes v € Vpyp of the graph represent nodes in a P2P network and the links e €
Ep,p represent connections between these nodes. Nodes vy, v, € V pyp are neighbours,
if and only if 3 (v{, v2) € Epyp. Eachnode v; € Vpyp, i =1,...,n,n =1Vpyp lhasa
physical address y,; and a logical unique identifier x;, which is known to all nodes, but
only neighbours are able to map the logical identifier x to the physical host address
y and therefore, exchange packets directly:

mic. x,) = {ye if ee neighbouijs(c)
Xe otherwise
where ¢, e € Vpyp.
Intelligent swarm agents (e.g., bees) may know the physical address y, of their
source node in addition to the logical identifier x,, and therefore, may return directly
to their source.

Handling Complexity in Some Typical Problems ... 129

3.3 Convergence

References [0, 11] investigate the convergence of Bee Colony Optimization algorithm
and prove that the current best solution converges to one of the optimal solutions
(with the probability one) as the number of iterations increases.

We provide a convergence in value of the bee algorithm from Sect. 3.1. For this
purpose, pre-assumptions and formalization are taken from [7]:

1. Gpop= (Vpap, Epyp) is a graph of n nodes and links between these nodes (nodes
are not necessarily fully connected in the load balancing scenario);

2. S, f, @), where S is the set of candidate solutions, f is the objective function, @
is the set of constrains that defines the set of feasible solutions; the goal is to
find an optimal solution s,,,; © is the finite set of states of the problem, 6 =<
VisVjseers Voo >, |0 is the number of nodes in a sequence, |0]< n; ©®7 is the set
of feasible states, @ C @;

3. forthe time being, static scenarios in this theoretical explanation are considered.

The probability rule of navigation strategy in construct solution phase could be
described as:

Fi;(p)

= 5
ZJ'EAI’ Fij(p) ()

P(cpy1 = jlxn) =

where F; is some non-decreasing function, Fj;(z) = z"‘nf}.

A recruitment phase represents the exchange of knowledge about the path length
(distance, which is expressed as the number of hops) and quality of the solution
(measured by some similarity function, §). This phase is described by Eq. 3.

In the following, a new result is derived as the consequence of the similar result
that considers convergence of one group of Ant System Algorithms in which, for
example, Min-Max Ant System belongs to 7. Therefore, the next corollary is inspired
and based on one theorem from 7 that proves convergence in value of Min-Max Ant
System. The theorem says that when using a fixed positive lower bound on the
pheromone trails finding the optimal solution is guaranteed for this specific group of
algorithms. The next proof is based on some specifics of the bee algorithm and some
general issues that could be found in the proof of convergence in value of Min-Max
Ant System as well 7.

Corollary: If P(k) is the probability that the bee algorithm finds an optimal solution
at least once within the first & iterations, then lim P (k) = 1.

k— 400

Proof From Eq. 2, it follows that the arc fitness p for a follower bee belongs pe{ H s
A}, where A is the probability of choosing the preferred path and / is the number of
neighbouring nodes of a particular node. If the case for a forager bee is added, that
means pe{ H, A, } }. So, for the given network values of arc fitness can have a finite
number of values and it values stay in some closed interval [0,min, Pmax]- The lower
bound is positive and fixed for the given network. Therefore, any feasible choice

130 V. Sedum-Cavié
from Eq. 1 for any partial solution x; is made with the probability:

o
Prmin

Dmin =
m (n - l)prcr{lax + pglin

(6)
Any solution (incl. the optimum solution) can be generated with the probability:

a m
pmin

0 7

s ((n— 1>p;ﬁax+pf,2m> ” @

where m is the maximum length of a sequence. From this fact, it follows that P(k) =1
—(1-p)*. For every arbitrarily small & > 0, P(k) > 1 —¢. That means:k lim P(k) = 1.
—+00

The corollary explains the following. In the bee algorithm, the values that are
assigned to arcs are the values of arc fitness, p;;. Some of these values will be
implicitly reinforced by learning of the other hive mates via waggle dance (i.e.,
a recruitment process). The fact how “strong” is the recruitment of a particular bee
depends on the values of suitability function and the path length. The higher the value
of suitability function and the lower the path length, the stronger the recruitment is.
The bee algorithm forces the best-so-far solution, and uses implicit maximum value
of 0yax (Which is directly implied by f 4 from the best-so-far solution). Further, the
value of A is initialized to the upper limit (Ay), so the minimum value p,,;, will be
reached in:

a 1=k , for any case
T—1 y

(b) =20 for the case with fully connected nodes.

n—1°~

Also, any feasible solution can be constructed with a nonzero probability. If we
assume that connection (i, j) does not have the largest probability to be chosen (i.e.,
1-1

J does not belong to set F;), then the probability of choosing this connection is = .

4 Conclusion

An extreme and raising complexity characterizes nowadays distributed systems. Self-
* approaches represent a promising way to cope with complexity. However, self-
organization in different forms already exists around us, from nature to social and
economic organizations. Especially inspiring self-organization forms are those ones
that could be found in nature, e.g., different types of swarm intelligence. Thus, swarm-
intelligent algorithms significantly contribute to the design of self-organizing soft-
ware for distributed systems. In this chapter, some typical distributed use cases, which
are successfully treated by swarm intelligent approaches, are shortly overviewed
(incl. the list of the most successful swarm-based algorithms applied in these use
cases). As an illustration, one use case is selected—dynamic load balancing, and

Handling Complexity in Some Typical Problems ... 131

an application of bee intelligence onto this problem is reviewed. In order to explain
better the behaviour of bee algorithm, its theoretical aspects are discussed.

Future work includes:

standardizing methodology for a fair evaluation of algorithms in distributed
systems’ use cases;

a theoretical evaluation of swarm-intelligent algorithms, an explanation of “why
specific methods work well on specific problems” and the analysis of algorithm’s
behavior. Although this is a challenging task, for certain metaheuristics, theoret-
ical work regarding convergence is partially established with some encouraging
results, whereas for many others, no theoretical background exists.

References

© N

10.

11.
12.
13.
14.
15.
16.

17.

. Asprey, W, et al.: Conquer system complexity: build systems with billions of parts. In: CRA

Conference on Grand Research Challenges in Computer Science and Engineering, pp. 29-33
(2002)

Barth, F.: Insects and Flowers: The Biology of a Partnership. Princeton University Press,
Princeton (1982)

Camazine, S., Deneubourg, J., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-
Organization in Biological Systems. Princeton University Press, Princeton (2003)

Casadei, M., Menezes, R., Viroli, M., Tolksdorf, R.; Self-organized over-clustering avoidance
in tuple-space systems. In: IEEE Congress on Evolutionary Computation (2007)

Commons, M.L., Goodheart, E.A., Dawson, T.L.: Psychophysics of stage: task complexity
and statistical models. In: International Objective Measurement Workshop at the Annual
Conference of the American Educational Research Association (1997)

Davidovic, T., Teodorovic, D., Selmic, M.: Bee colony optimization part I: the algorithm
overview. YUJOR 25(1), 33-56 (2015)

Dorigo, M., Stiitzle, T.: Ant Colony Optimization. MIT Press (2004)

Fortnow, L., Homer, S.: A short history of computational complexity. Bull. EATCS 80, 95-133
(2003)

Herrmann, K.: MESH Mdl — a middleware for self-organization in ad hoc networks. In: 23rd
International Conference on Distributed Computing Systems (2003)

Heylighen, F.: The science of self-organization and adaptivity. In: Kiel, L.D. (ed.) Knowledge
Management, Organizational Intelligence and Learning, and Complexity. The Encyclopedia
of Life Support Systems. EOLSS Publishers, Oxford (2001)

Jaksic-Kriiger, T., Davidovi¢, T., Teodorovié, D., et al.: The bee colony optimization algorithm
and its convergence. Int. J. Bio-Inspired Comput. 8(5), 340-354 (2016)

Kephart, J., Chess, D.: The vision of autonomic computing. IEEE Comput. 36(1), 41-50 (2003)
Kiihn, E. Marek A., Scheller, T., Sesum-Cavié, V., Vigler, M.: A space-based generic pattern
for self-initiative load clustermg agents. In: 14th International Conference on Coordination
Models and Languages (2012)

Lloyd S.: Measures of complexity: a nonexhaustive list. IEEE Control Syst. (2001)

Nakrani, S., Tovey, C.: On honey bees and dynamic server allocation in the internet hosting
centers. Adapt. Behav. 12, 223-240 (2004)

Ranganathan, A., Campbell, R.H.: What is the complexity of a distributed computing system?
Complexity 12(6), 37-45 (2007)

Sesum-Cavi¢, V., Kiihn, E.: A swarm intelligence appliance to the construction of an intelligent
peer-to-peer overlay network. In: 4th International Conference on Complex, Intelligent and
Software Intensive Systems (2010)

132 V. Sedum-Cavié

18. Sesum-Cavi¢, V., Kiihn, E.: Self-organized load balancing through swarm intelligence. In:
Next Generation Data Technologies for Collective Computational Intelligence. Studies in
Computational Intelligence, vol. 352, pp. 195-224. Springer (2011)

19. §e§um—éavié, V., Kiihn, E., Kanev D.: Bio-inspired search algorithms for unstructured P2P
overlay networks. Swarm Evolut. Comput. 29, 73-93 (2016). Elsevier

20. éeéum—éavié, V., Kiihn, E., Zischka, S.: Swarm-inspired routing algorithms for unstructured
P2P networks. In: Int. J. Swarm Intell. Res. IJSIR 9(3) (2018). Article 2

21. Sesum-Cavié V., Kiihn E., Fleischhacker L.: Efficient search and lookup in unstructured P2P
overlay networks inspired by swarm intelligence. IEEE Trans. Emerg. Top. Comput. Intell. (in
press)

22. Wedde, H.F,, Farooq, M., Zhang, Y.: BeeHive: an efficient fault-tolerant routing algorithm
inspired by honey bee behaviour. Ant Colony Optim. Swarm Intell. 83-94 (2004)

23. Wong, L.P., Low, M.Y., Chong, C.S.: A bee colony optimization for travelling salesman
problem. In: 2nd Asia International Conference on Modelling & Simulation, pp. 818-823
(2008)

	 Handling Complexity in Some Typical Problems of Distributed Systems by Using Self-organizing Principles
	1 Introduction
	1.1 Self-organization
	1.2 Complexity in Application Scenarios
	1.3 Measurement of Complexity

	2 Swarm Intelligence in Distributed Systems
	2.1 Some Selected Distributed Systems’ Use-Cases
	2.2 Algorithm Recommendation for Selected Use Cases

	3 An Illustration: Bee Algorithm for Dynamic Load Balancing
	3.1 Bee Algorithm
	3.2 P2P Network Model
	3.3 Convergence

	4 Conclusion
	References

