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Abstract. With the introduction of intelligent and autonomous systems into
factory environments, workplaces where human employees work alongside
digital counterparts will become increasingly informational. We develop a
generic framework for hypothetical workplaces to investigate how complexities
create to uncertainties. Complexity may be explained through the Level of
Abstractions used to model a system, and it is encountered in its dynamic form
as an alteration of information flow between agents in a phenomenological
relationship. Analyzing these systems as ‘information flows’ brings to light the
uncertainity(ies) the workers of the future will have to cope with. We develop
first concepts that can be used to develop heuristics to manage these uncer-
tainties in complex manufacturing environments. These heuristics may also be
useful in creating optimized workplaces that combine the individual abilities of
both humans and machines. The framework proposed in this paper may be
subject for an empirical validation of these heuristics in the future.
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1 Introduction and Motivation

In this paper, we propose a conceptual framework that can help us identify and manage
the causes of complexity and uncertainties in future manufacturing systems [25],
especially in the context of Industry 4.0 [26]. Both uncertainty and complexity have
been dealt with on their own in the past, and it is generally accepted that the complexity
of manufacturing systems is increasing [30], and that this complexity needs to be
reduced if we wish to increase the applicability of such systems [29]. At the same time,
the nature of these systems is also increasingly informational, therefore the exchange
and interpretation of information dominates how humans interact with these systems
[28]. This relationship is not one sided; we need the machines as much as they need us
as humans are the only semantic engines in existence [15], and as long as technology is
designed to serve human needs, the idea that “Man … has the function of being the
permanent coordinator and inventor of machines that surround him” [3] only seems to
be reinforced. “Far from being the supervisor of a group of slaves, man is the
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permanent organizer of a society of technical objects that need him in the same way
musicians in an orchestra need the conductor” [3], the difference being that instead of
interpreting musical notes in a symphony, here one needs to interpret information as it
constitutes complex systems and processes, and these systems and processes tend to be
integrated, simultaneous and decentralized [1].

As we elaborate in this paper, the nature of complexity is the nature of interpre-
tation of information, and the situations and contexts under which this interpretation
occurs creates a multitude of uncertainties. Time and again, incidents throughout
history exemplify the role of complexity in endangering human safety, or in reducing
our sense of security as a new form of technology threatens to replace us. As long as
new technology is created to serve human needs, we believe that the development of
Human Machine Interaction, especially in the context of Industry 4.0 will not be
fruitful without addressing the cause and nature of complexity and uncertainties, as
well as means to address them. At the end of the paper we provide metrics, which aim
to measure these causes and develop heuristics and empirically proven strategies in the
future.

2 Definitions of Key Terms

In order to address complexity and uncertainty, we will draw from various disciplines,
including Philosophy of Technology, Information Science, and the Philosophy of
Information. We apply the terminologies to human computer interaction in general –
but we focus on applications in the manufacturing context. Several key definitions are
defined here to avoid repeating them in further sections.

It has been argued that the nature of human machine interaction is situated [32], for
the scope of our discussion a situation may be ‘determined by a topologically simply-
connected, structured region of space-time’ [19].

Every situation exists in a particular context, which can be described as “the set of
interrelated conditions in which a situation occurs, what can be described, informally,
as the immediate environment of a situation or, topologically, its neighborhood [15].
Hinton defines context as “an agent’s understanding of the relationships between the
elements of an agent’s environment” [20].

In order to comprehend and describe any complex phenomenon, some kind of
abstraction is needed. For our purposes we use Floridi’s method of the Level of
Abstraction (LoA), where a LoA is “a finite but non-empty set of observables”. An
“observable is defined to be a typed variable together with a statement of what feature
of the system under consideration it represents” [17]. Depending on the purpose,
different LoAs may be necessary. For instance the manufacturer of a temperature
sensor may use an LoA that defines its temperature range, data speed, distance range
etc., whereas a system designer may use an LoA that consists of cost, reliability, energy
usage etc.

Since we are also concerned with the semantic interpretation of information in
complex systems, we rely on a formal definition of the notion of ‘semantic information’
as ‘data that is well formed, meaningful, and truthful’, where truthful is used to mean
‘providing true contents about the modeled system’ [15]. This definition requires the
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presence of a rational agent or observer who can verify and validate the correctness of
data with respect to an anterior system. Any given message will be true in a context, at
a LoA for a particular purpose [16].

The functional and informational aspects of complex systems are intertwined. Xing
and Manning [13] propose that complexity is the combination of three basic factors –
quantity of basic information elements in a system, variety of elements, and the re-
lations between elements. Further, they identify two principles, which play a role in
complexity, the first being the principle of observer dependency, which says that
“Complexity only makes sense when considered relative to a given observer” [13]. The
‘observer’ here is similar to the ‘agent’ in the definition of context. The second prin-
ciple is that of “task dependency, that is, the complexity of things depends on the task”.
Deshmukh et al. [22] described two forms of complexity – static complexity owing to
“structure of the system, connective patterns, variety of components, and the strengths
of interactions, and dynamic complexity, described as “unpredictability in the behavior
of the system over a period”. Li and Wieringa [5] proposed a framework of ‘perceived
complexity’ that takes into account the human-machine system complexity, task
complexity, personal factors, and operation and management strategy. ElMaraghay
et al. take an informational approach, where complexity depends on the diversity,
content and quantity of information needed for a task [23].

In the context of Industry 4.0, we view complexity as cyber-physical in nature,
since in these systems information and physical behavior are coupled and participate in
information exchange and feedback. Nonetheless, in our view the final mode in which
complexity is encountered remains informational, since the only way agents can per-
ceive and interact in systems is via an exchange of information.

In Information Science, the effectiveness of this exchange of information is char-
acterized by the notion of relevance which is considered as a “relation between
information or information-objects on the one hand, and contexts which include cog-
nitive and affective states on the other hand, based on some property reflecting a
desired manifestation of relevance [24]. Floridi [15] defines relevance in a purely
informational sense, where an information i is relevant to an agent a w.r.t. domain d in
a context c at a given LoA l iff i satisfies q as an adequate answer. Shutz [8] defined a
stratified, interacting system of thematic (perception of a problem), interpretational
(grasping the meaning of that which is perceived based on stock of knowledge at hand)
and motivational (the purpose of the action) relevances. Regardless of the definition
chosen, one may observe that relevance qualifies information exchange, that is, it
appears only in a dynamic system.

Finally, we define the concept that most concerns us. Uncertainty has been dis-
cussed in various disciplines over centuries, and there are many definitions of uncer-
tainty, but at its core, uncertainty pertains to a lack of information. We use Floridi’s
concept of uncertainty, where “Uncertainty is what a correct answer to a relevant
question erases” [15]. In other words, as long as an agent a does not have a relevant
answer to a query q about domain d in a context c at a level of abstraction l, a is in a
state of uncertainty. According to this definition, uncertainty ties all the concepts
defined into an informational relationship except complexity, whose relationship to
information we discuss in the forthcoming sections.
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3 A Model of Complex Manufacturing Systems

Automation is the first property of manufacturing systems that shows an increased
amount of complexity. The traditional model of automation consists of a hierarchy of
layers, each layer building on the next, where information flow takes place between the
layers. The development of cyber physical systems (CPS) shifts the structure towards a
distributed model [4]. Broy describes cyber physical systems as an onion-layered
model of a ‘system of systems’ [1]. Monostori uses a network model to illustrate an
ecosystem of distributed services [2], and also highlights the roots of CPS: Intelligent
Manufacturing Systems, Holonic Manufacturing Systems, Reconfigurable Manufac-
turing Systems, Digital Factories etc. While a deeper study of the differences between
these systems is outside the scope of this paper, we abstract a general model.

A machine agent consisting of connected components executes a physical process.
A digital model of the said process is constructed by means of information exchange
via sensors and actuators. Process control is exercised through some level of
automation that determines the amount of human machine interaction. Multiple agents
can be linked together through the use of networking, and information processing
between various processes allows for a creation of a node that can then connect to other
nodes creating larger, socio-technical constructs.

The digital model can be considered to be a proxy of the physical process; hence we
end up with two agents of information processing in this model. The machine agent
facilitates information flow in a process and at the same time exchanges information
with a human agent via the use of this proxy, which means that the behavior exists in
two contexts, one of machine agents and the other of human agents (Fig. 1).

4 Defining the Machine and Human Contexts

In this part we define the two contexts in which human machine interaction occur. The
focus here is to define the structural properties of these contexts, in the next section we
look at dynamic behavior.

Fig. 1. General model of a digitalized manufacturing system.
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The machine context refers to context in which information flows in a technological
system. We use the LoA concept to describe machine complexity as one resulting from
system of nested LoAs. Manmade systems are typically designed to serve a purpose, and
from their conception to implementation, they go through many different stages, each of
which involves the establishment of a particular LoA. Each “lower” stage is more
specific than the previous, which is, each stage, in order to more precisely define the
system, increases the number and nature of observables involved. For instance, a simple
switch when seen at the most abstract level may consist of only 2 states {on, off}, but the
subsequent stage can consist of electrical {5v, 0v} and mechanical variables {contact, no
contact}, which can then be further described in terms of tolerances, material properties
and so on. The relationship is illustrated through the diagram below (Fig. 2):

The abstracted view at LoA0 is described by two the non-overlapping LoAs, which
are themselves chosen to represent the required observables from a possible space of
observations. This choice itself can rely on many factors, for instance customer
requirements, cost constraints, designer’s level of experience etc. Now, we assume a
system that consists of multiple components, which are chosen to collectively fulfill a
purpose. The highest level of the system can again be abstracted to offer the simplest
definition, but now the system itself consists of multiple LoAs that co-exist in the same
context (Fig. 3):

In this case, a seemingly simple relationship between 2 components at LoA1/LoA2

is behaviorally represented by a Cartesian product of the observables in LoA3 to LoA6.
As a result, the number of possible situations in which a system exists increases, as

Fig. 2. The abstracted view represented by LoAs.

Fig. 3. Extending the LoA relationships to describe a system in more detail.
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does the complete observation space. Since “the model of a system is a function of the
available observables” [18], if a system consists of more observables than are chosen,
there is a discrepancy between the model of the system w.r.t the system itself. The
following possible ‘axioms of the machine context’ can be deduced:

(a) When a component brings in observables that are extraneous to the system at
hand, it models more than what’s needed (“overspecification”)

(b) When a component consists of an insufficient set of observables, it models less
than what is required (“underspecified”).

(c) The chosen LoA determines the model.
(d) In order to have a complete, accurate and precise description of a system a model

is needed where information flows within and in between each LoA is available.
(e) Each component is a system in itself, chosen to model an aspect of reality that, to

the extent of our knowledge, plays a functional role in the system.

Ultimately, information flows are obstructed between nested LoAs if the observer
gets to see only a particular LoA, which hides system description. Interruption of
information occurs when the observables themselves overstate (resulting in ambiguity)
or understate (resulting in errors and exceptions) the possible situations in which a
system can exist. Thus, uncertainty is intrinsic (‘baked into’) any design of systems.

The human context encapsulates the context of the human observer who discovers,
encounters, and interprets information. In the domain of manufacturing systems, Li and
Wieringa note that “the perceived complexity is not only the reflection of objective
complexities, but there are also other factors that affect perceived complexity” [5].
They further classify two factors: personal factors, such as “intelligence, knowledge,
job training, personality, cultural background, and willingness”, and the organizational
factor, that is, the “operation and management strategy that has been designed for the
operator or developed by the operator himself”. Park mentions “aptitude, intelligence,
ability and cognitive style of a qualified operator” along with “domain knowledge” as
some of the factors involved [6]. Pekrun et al. highlight the emotional aspect of
understanding information, which they define as epistemic emotions [7]. We identify
here the following ‘axioms of the human context’:

(f) Some form of a mental model based on domain knowledge and training.
(g) A motivational aspect, which depends on personal goals.
(h) An affective aspect in dealing with information.
(i) A cognitive aspect of the individual to grasp new information and integrate it into

existing knowledge.

5 Information Flows and Meeting of Contexts

In this section we introduce our framework that looks at how an exchange of infor-
mation between these contexts may explain the relationship between complexity and
uncertainty. We follow the phenomenological tradition and make use of Ihde’s [9]
post-phenomenological concepts to explicate the relationship between humans and
technical artifacts in terms of information flows.
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5.1 Information Flow as a Phenomenological Relationship

An information exchange is also a relationship, as long as we are concerned with
mediated relations between humans and technological artifacts, as elaborated by Ihde
[9]. Since most control interfaces are a representation of the actual process, an inter-
pretation is required; hence the relation qualifies as hermeneutic (in a philosophical
sense). This relation is directed from the machine to human context. A second type of
relation that Ihde mentions is one directed from us humans towards machines, the
alterity relation. Since we live in a socio-technical environment, background rela-
tionships shape our environment unconsciously. In case of automated systems the
context is created without an active involvement of the operators. This relation may
gain importance as supply chains and factories become increasingly automated, and is
shown here as a socio-technical context.

Based on this post-phenomenological approach, in Fig. 4 we consider the paths of
information exchange in between the different contexts, and use them to construct the
key points of this paper. Case 1 illustrates an ideal information flow that is well defined
in its path and relationships between the different LoAs. A non-ideal information flow
exists in the following situations:

(a) Proliferated Flow: In a normal scenario, the quantity of information can be
represented by the number of different interfaces an agent is interacting with. In
special scenarios, it is seen as a case of ‘LoA intrusion’ - the underlying LoAs are
revealed unintentionally, often with a higher degree of information flow and

Fig. 4. Modeling the different contexts and information flows.

Addressing Uncertainties in Complex Manufacturing Environments 109



variety – information overload is a typical example. A possible case is a situation
where the information in the socio-technical environment is transferred directly to
the machine context, for instance intelligent systems responding to the market
conditions. Case 3 represents such an ‘information jump’.

(b) Inhibited Flow: Represented as a case where information is sought but not
received, or the case where the human agent intends to convey what is considered
to be relevant to the situation but the information is rejected by the machine
context. This can be seen as Case 2.

(c) Interrupted Flow: Any natural or man-made component is subject to unavoid-
able failure due to wear, or due to programming errors. In the former, information
flow may stop entirely, while the latter creates an exception. For example,
information flow in Case 2 depicts a case where a machine’s internal state results
in an exception that is redirected back to the human context.

(d) Alterity Flow: In any form of human-artifact interaction, humans tend to project
anthropomorphic properties onto objects [10]. In a factory environment the
cognitive and affective state of an operator can play a role in how the information
is interpreted and reacted to.

In terms of human-machine interaction, all the cases above manifest themselves as
issues of “relevance” as defined previously. The agent expects a particular response to a
query in the context of solving a problem, and if data is directed at an agent, it will not
be relevant unless it fulfills a purpose for the agent – as Schutz mentions, at a thematic,
interpretational or motivational level [8]. Similarly, data received at the machine
interface is accepted only if it fits into the algorithmic purpose of the interface. A hu-
man agent inevitably has cognitive and affective states involved in the flow of infor-
mation, influenced both by the background and the human-machine interaction in a
particular context.

5.2 Relating Information Flows to Uncertainty

Here we elaborate on the various forms of uncertainties as induced by the characteristics
of information flows. Some of these have already been discussed in literature [11, 12]:

(a) Proliferation Induced. Proliferation here is meant in the sense of the inopportune
spatio-temporal nature of information explosion in. For instance, volume induced
overload is a major topic of research, shown to increase uncertainty through
“numerosity (the number of separate elements to be dealt with), diversity (the
range of information sources and media), and inter-dependence (the complexity of
causal relationships between the information elements)” [11]. In the temporal
sense, acceleration can also induce temporal uncertainty since information can
flow near instantly, may be present at the same time at different devices, and may
require time bound intervention by operators. An alarm flood is a typical example.
Network behavior may exhibit both the effects simultaneously, for instance,
product placement on social media platforms can create fluctuating patterns in
product demand, translating to production uncertainties.

(b) Inhibition Induced: To inhibit, according to the Merriam Webster dictionary
means to “prevent or slow down the activity or occurrence of something”. A lack
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of information either in the desired quantity or at the desired time is generally
classified to create three different forms of uncertainties. First, epistemic uncer-
tainty, where the information is not relevant or accurate enough to explain system
behavior, second, alethic uncertainty, where the truthfulness of information
cannot be verified – without a sufficient knowledge of the system that can act as a
proxy to the system under observation, and thirdly, skill uncertainty, where on one
hand more and more information is inhibited in everyday operation due to
automation, and on the other hand more variety of operations are introduced to be
carried out by the same workforce. The irony in the classic paper “Ironies of
Automation” [31], can also be understood informationally as the scenario in
which an informationally inhibited system breaks down, exposing the underlying
complexity and resulting in an information overload.

(c) Interruption Induced. Also known as aleatory uncertainty, which represents the
unknowns in any system, which may result in component failures. This form of
uncertainty is the focus of predictive statistical models and anomaly detection
algorithms.

(d) Human Induced. While it may be possible to generally categorize patterns of
human behavior, as is the focus of the study of human decision-making under
uncertainty, the exact decision that a human operator will take under a given
situation in a context is still somewhat uncertain due to the variety of psycho-
logical and physiological factors involved. The term Volitional uncertainty
encapsulates the fact that human decision making is uncertain, as is our cognitive
ability to understand information in a given situation, and secondly, motivational
and affective uncertainties arise because moods and motivations cannot always be
predicted accurately. These are active areas of research in cognitive science, but
for the scope of our paper it suffices to identify this uncertainty.

6 Concepts to Manage Uncertainty and Complexity

In this part we propose concepts that can be used to further develop heuristics to
manage complexity and uncertainty. As described in Fig. 4, a complex system consists
of the physical process and its modeled digital representation in various LoAs, the
highest level of which is presented to the user (LoA0), both for the physical process and
its digital twin. Interaction with the system takes place at the system boundary, where
multiple devices may allow information exchange (shown as green arrows). The human
agent interacts with the system based on a mental model of this system, either learned
beforehand or via interaction with this system. The socio-technical context influences
both the design of systems and the actors who take part in this interaction.

The proposed concepts are based on causes of uncertainties as identified in
Sect. 5.2, and the axioms developed in Sect. 4, and categorized under the three
interacting parts of as shown in Fig. 4, that is, the System, the Agent, and the Infor-
mation Flow itself. In order to establish a scale to numerically assess the level of
complexity and uncertainty in a given scenario of human machine interaction, we
assign a value to different, measurable aspects of each component. Using these metrics,
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we also aim to classify the effects of different kinds of uncertainties on human and
machine agents. While we may want to reduce some forms of uncertainty and com-
plexity, other forms may be beneficial, even necessary, in the Human-Machine-
Interaction loop. We hypothesize that our research will suggest that complexity and
uncertainties need not always be avoided or reduced, but optimized, meaning that it
may be desirable to aim for an optimal solution instead of a perfect one based on the
effect these forms of complexity and uncertainty have on operators.

We would also like to state that the list here is not exhaustive, there may be more
factors involved, and the list will be updated in the course of our research (Table 1).

7 Conclusion and Future Work

In this paper, we presented a conceptual framework that bridged the domains of
complexity, information and uncertainty. While complexity is tied to the Level of
Abstractions used to model or explain a system, it is encountered in its dynamic form as
an alteration of information flow targeted at or discovered by agents in a

Table 1. Metrics to measure the degree of complexity and uncertainty.

Name of Concepts Description Value

Machine Context
Closeness between
desired LoA and
presented LoA

System observables at the
interface LoA vs. user’s
expected observables.

Presented Observables divided by
Desired Observables

Number of
interaction devices

Points of information exchange Scale from Low to Medium to High

Variety of interaction
devices

Types of information exchange Scale from Low to Medium to High

Information Exchange
Openness of
Information
exchange

How much design information
is available?

All/Some/Interface only

Degree of
Connectivity

Number and types of
connection nodes.

Isolated/Networked/Cyber-Physical

Human Context
Subjective stock of
knowledge

Classification of user level Expert/Novice/Beginner

Motivational Level Motivation as a component of
information relevance and
interpretation

Scale from Low to Medium to High

User Stress Levels Interaction induced stress. Scale from Low to Medium to High
Separation between
design and use

Design involvement of the
users

Designers are Users/System
assembled from off the shelf
components/System purchased
designed and assembled
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phenomenological relationship. We elaborated on the two contexts, the human and the
machine context, which contain respectively the human and machine agents within
which this relationship exists. We also identified properties of these contexts that we
then used to develop concepts to quantify and relate the nature of information flow in
the system to the amount of complexity and uncertainty of a complex manufacturing
system. To make our investigation empirical, the next step will be to conduct empirical
studies and develop testable hypotheses regarding the interdependencies of these
metrics. These findings can lead us to heuristics that can be used to visualize and adjust
information flows to select the optimal design strategy as well as hardware, software
and UI techniques for developing manufacturing systems. With this technique it may
also be possible to analyze ‘soft’ concepts like ‘responsibility’, ‘job descriptions’ and
‘spheres of influence’ in the workplaces of the future.
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