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Abstract

This paper evaluates perception of complexity in a novel explanatory model that

relates product performance and engineering effort. Complexity is an intermediate

factor with two facets: it enables desired product performance but also requires effort

to achieve. Three causalmechanisms explain howexponential growthbias, excess com-

plexity, and differential perception lead to effort overruns. Secondary data from a

human subject experiment validates the existence of perception of complexity as a

context-dependent factor that influences required design effort. A two-level mixed

effects regressionmodel quantifies differences in perception among 40 design groups.

Results summarize how perception of complexity may contribute to effort overruns

and outline future work to further validate the explanatory model and causal mecha-

nisms.
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1 INTRODUCTION

Complex engineering projects face a sustained risk of significant

effort overruns on cost and schedule. Overruns of 20%–40% rou-

tinely occur across diverse domains such as defense acquisition,1 Earth

and space science missions,2 software,3 and infrastructure and pub-

lic works projects4 and overruns exceeding 100% are not uncommon.

Effort overrunsdestabilize planning exercises, generatewaste fromde-

scoping or canceling programs, and generally threaten objectives that

depend on timely and affordable product deployment.

The systems engineering and design community points to complex-

ity as a technical driver for cost growth.5,6 Existing literature describes

and measures complexity as a nonfunctional attribute correlated with

design effort.7–9 However, this analytical perspective leaves a gap to

understand how underlying socio-technical mechanisms contribute to

effort expenditures and overruns in system design.

For example, Flyvbjerg et al.10 explains overruns in infrastructure

projects through human factors of delusion and deception rather than

complexity itself. Delusion arises from errors in heuristics or biases

associated with human decision making. The planning fallacy tends to

underestimate task completion times even when past estimates are

known to be overly optimistic. Similarly, the anchoring and adjustment

effect biases estimates by focusing on the first possible value and only

considering insufficient adjustments from it. Deception arises from

flawed decision-making practices that reinforce localized objectives.

The principal-agent problem considers misaligned behavior between

the principal responsible for a decision and the agent acting on his or

her behalf where issues such as self-interest, asymmetric information,

accountability, and risk preferences influence strategic behavior.

The objective of this paper is to study how two facets of complexity

that expose human factors can explain potential sources of effort over-

runs. Descriptive complexity, the subject of most existing engineering

literature, provides an objective measure of an intrinsic property that

is correlated with engineering effort. Meanwhile, perception of com-

plexity characterizes its subjective effect on outcomes that is depen-

dent on an individual’s abilities. A new explanatory model of complex-

ity in engineering design helps to understand how human limitations

to perceive complexity during design activities can contribute to effort

overruns via three proposedmechanisms. Secondary data from a prior

human experiment validates the hypothesized relationship between

complexity and effort for a class of simplified parameter design tasks.

Results show perception of complexity varies across design groups

as a central model construct that could contribute to effort overruns.

Conclusions summarize how the explanatory model of complexity can
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222 GROGAN

contribute to future studies relating design performance, complexity,

and effort.

2 COMPLEXITY IN SYSTEMS ENGINEERING
AND DESIGN

Complexity is a long-studied construct that captures diverse perspec-

tives from disciplines ranging from cognition to quantum physics. It

is also a defining characteristic of complex systems as a research

area in systems engineering and design. Complex systems are typ-

ically described by a set of characteristics—numerous components,

self-organizing behavior, emergent properties that are not fully

explained by hierarchical decomposition, and adaptation to environ-

mental changes—thatmakedesign difficult relative to currentmethods

and processes.9

Complexity science strives to understand and mitigate challenges

of designing complex systems.8 In particular, research on complexity

metrics aims to measure an otherwise abstract quantity and causally

associate its value with design outcomes such as cost or schedule.

Early work in the software domain develops computational complex-

ity metrics based on product attributes such as the number of pro-

gram statements or paths through a program.11,12 More recent work

adapts complexitymetrics to physical systems using functional decom-

position or information content approaches to quantify complexity in

design.13–17

While quantitative metrics are an important part of managing com-

plexity, one must also understand how complexity contributes to

outcomes like engineering effort. Darcy et al.18 makes a distinction

between internal and external attributes of design artifacts. Complex-

ity metrics are internal attributes that describe the design artifact

itself. In contrast, cost, schedule, and required resources are external

attributes of the design process that carrymoredirectmanagerial inter-

est. Schlindwein and Ison19 explore similar ideas about descriptive and

perceived facets of complexity. Descriptive complexity is an objective

measure of an intrinsic, observable property while perceived complex-

ity captures an observer’s subjective perspective about it. This point

raises questions about whether complexity, as measured by a metric,

impacts all observers in the same way. Theoretical and empirical rela-

tionships between complexity and effort are of clear importance but

are under-studied in literature due, in part, to challenges in data collec-

tion.

To summarize, causal linkages of existing work seek to: (1) define

an instrument to measure complexity C for a design artifact and (2)

associate the measured value to design outcomes such as engineer-

ing effort, that is, E ∝ C. While substantial work investigates complex-

ity metrics in (1), the association between complexity and effort in

(2) has received less attention. The central argument in this paper is

that perception of complexity is a measurable factor of individuals that

influences the relationship between complexity (internal) and effort

(external). Furthermore, differential perception of complexity is an

unexplored factor that may contribute to effort overrun on engineer-

ing projects.

This work asks: how do human limitations to perceive complex-

ity during design activities contribute to effort overruns? There has

been some initial discussion of perception of complexity in literature,20

but it remains a new concept to be explored. The following section

presents an explanatory model that relates desired performance and

required effort with complexity as an intermediate factorwith descrip-

tive and perceived facets. While the proposed relationships remain

conjectures at this point, evidence from analysis of secondary data

evaluates whether perception of complexity can be observed and if it

is of sufficient magnitude to influence design settings.

3 EXPLANATORY MODEL OF COMPLEXITY IN
ENGINEERING DESIGN

This section develops an abstract explanatory model of complexity in

engineering design to relate desired performance and required effort.

Starting from construct definitions of performance, effort, and com-

plexity, a mathematical model proposes relationships among the three

factors. Temporal dynamics extend model results to longer-term hori-

zons to align with research on technology studies.

3.1 Performance and effort

Framed as “courses of action aimed at changing existing situations into

preferred ones,”21 engineering design transforms resources into arti-

facts that solve problems and generate utility for stakeholders. This

section models the relationship between effort (input) and perfor-

mance (output) in design activities. For clarity in presentation, consider

a design outcome to be a product, recognizing design artifacts more

broadly include processes and services.

Effort (E) is a holistic measure of costs incurred to realize a prod-

uct. While primarily conceived of as human labor, it also includes

other costs like research,materials, facilities, and administration aggre-

gated to a single factor. Referencing a common effort datum can pro-

vide meaningful comparison of alternatives. Time to realize a product

can estimate effort assuming constant expenditures, but aggregated

design costs or revenues are better estimates over long periods.

Performance (P) is a holistic measure of a product’s technical abil-

ity to meet its requirements. A performance measure for a product

is similar to a utility function in decision theory for a generic prefer-

ence set where a higher-performance product is preferred to lower-

performance one. Given the inherent challenges of formulating a scalar

measure of performance, some studies use an inflation-adjusted cost

of one “unit” of performance (i.e., performance cost, e.g., cost perMb of

memory) as an inversemeasure P−1.22

Technology studies literature investigates the relationship between

performance and effort through the intermediate factor of time. Some

models of technological progress use a sigmoid or S-curves to describe

decreasing performance returns to effort as a component technology

becomes more mature.23 Additional effort enables increased prod-

uct performance but generally at a decreasing rate. Meanwhile, new

 15206858, 2021, 4, D
ow

nloaded from
 https://incose.onlinelibrary.w

iley.com
/doi/10.1002/sys.21574 by U

niversity O
f T

w
ente Finance D

epartm
ent, W

iley O
nline L

ibrary on [12/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



GROGAN 223

architectural technologies extend the performance growth region over

longer periods.24 Over long time periods, technology studies observe

exponential growth of functional properties across diverse domains

such as information and energy technology.25,26 Other work observes

an equivalent exponential decrease in performance cost over time

across a broad set of more than 50 technologies.22,27

While simplified to ignore physical or market limits and other

dynamics, the relationship popularized as Moore’s law models expo-

nential growth in a performance frontier in Equation (1) with constant

P0 and positive growth rate rP.

P(t) = P0 exp(rPt), rP > 0 (1)

The exponential growth rate rP can be expressed as an annual growth

rate with ln(rP + 1) for t in years. Typical annual performance growth

rates range from 0.4 to 0.6 (34% –47% per year) for information tech-

nology, 0.04–0.10 (4%–10%per year) for energy technology, and 0.02–

0.12 (2%–11% per year) for chemical technology.27

There is less research on relationships between engineering effort

and product performance. Rock’s law, also referred to as Moore’s sec-

ond law, observes that microprocessor fabrication facility costs also

follow exponential growth in time.28,29 Augustine’s Law XVI provides

a similar observation that unit costs for tactical aircraft grow exponen-

tially in time, recognizing unit performance also increases over time.30

If representativeof effort expenditures for engineeredproducts in gen-

eral, it is reasonable to hypothesize that the effort to implement a prod-

uct on the performance frontier grows exponentially in time in Equa-

tion (2) with constant E0 and positive growth rate rE .

E(t) = E0 exp(rEt), rE > 0 (2)

The exponential growth rate rE can also be expressed as an annual

growth rate with ln(rE + 1) for t in years. The original 15% annual

growth in aircraft unit costs observed by Augustine (coincidentally,

similar to that of semiconductor manufacturing) corresponds to an

effort growth rate of rE = 0.140 while more recent updates showing

closer to 6.8% annual growth equate to rE = 0.066.31

Solving for time and equating performance dynamics in Equation (1)

with effort dynamics in Equation (2) yields Equation (3) which relates

required effort E to achieve desired performance P as a power lawwith

constant E′
0
and positive exponent kP .

E(P) = E0

(
P
P0

) rE
rP
= E′

0
PkP , kP =

rE
rP

> 0 (3)

In other words, a relative change in desired performance P requires a

proportional change in effort E based on the exponent kP . For exam-

ple, consider semiconductor manufacturing where performance mea-

sures the number of transistors on an integrated circuit and effort is

estimated by fabrication facility cost.29 A performance doubling time

every2 years yields rP = ln(2)∕2 ≈ 0.347 (30%per year)while an effort

doubling time every 5 years yields rE = ln(2)∕5 ≈ 0.139 (13%per year).

When combined, the power law exponent kP = 0.4 means a doubling

in performance requires 20.4 ≈ 1.320 times the effort or an increase of

32%.

3.2 Two facets of complexity

Complexity (C) is as an abstract quality that, in this model, describes

objective product features such as degree of coupling, number of com-

ponents, or solveability.17 Broader definitions expose two facets of

complexity. On one side, complexity may enhance performance by

adding more capability, for example, by optimizing operations to fine-

grained demands32 or tailoring policies to smaller jurisdictions.33 On

the other side, complexity certainly increases difficulty and associated

effort required to design and implement a product,34 whether or not it

is effective to actually increase performance. These observations are

formalized in performance-complexity (descriptive) and complexity-

effort (perceived) relationships below.

First, assume there is amonotonically increasing level of complexity

required to achieve a desired level of performance. Here, complexity

denotes an objectivemeasure attributed to a design, similar to existing

information-, uncertainty-, or energy-based metrics proposed in litera-

ture. As it is impossible to adopt a single complexity metric form suit-

able for all domains and performancemeasures, Equation (4) describes

a general performance-complexity frontier as a power law with con-

stant C0 and positive exponent kC .

C(P) = C0PkC , kC > 0 (4)

Values of kC depend on the performance and complexity metrics

selected and thedesign domain. For example, electro-mechanical prod-

ucts like aircraft exhibit larger kC values than signal processing prod-

ucts like integrated circuits for a given complexity metric.35 Further-

more, as a frontier, it is possible to add complexitywithout seeing a per-

formance return so C(P) reflects the minimum complexity required to

realize a product with performance P.

Second, assume there is a monotonically increasing effort required

to implement a product of given complexity. This relationship repre-

sents the subjective perception of complexity by a design actor real-

ized through an effort expenditure. While specific human factors that

contribute to engineering effort is an under-studied problem, existing

works point to cognitive factors like limited working memory as effort

drivers in solving complex problems.18,36 Similar to the relationship

between complexity and performance, Equation (5) describes a general

effort-complexity frontier as a power lawwith constant E′′
0
and positive

exponent kE .

E(C) = E′′
0
CkE , kE > 0 (5)

Values of kE depend on the complexity and effort metrics selected

and the design context including knowledge, experience, supporting

tools, cognitive abilities, and teamwork. While specific to each design

context, averaged kE values can generalize perception across a tar-

get population. Factor values kE > 1 align with study results showing
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224 GROGAN

a super-linear relationship between structural complexity metrics and

effort.15,34 36 Finally, as a frontier, it is possible to waste effort through

inefficient work so E(C) reflects theminimum effort required to realize

a product with complexity C.

Composing Equation (4)with Equation (5) yields an expandedmodel

of complexity in design in Equation (6).

(E◦C)(P) = E′′
0

(
C0PkC

)kE
= E′

0
PkCkE , kC > 0, kE > 0 (6)

The resulting expression elaborates on Equation (3) with kP = kCkE ,

revealing the utility of a power-law relationship for Equations (4) and

(5). While the domain-specific factor kC is static for a class of products,

the context-dependent factor kE varies based on a designer’s ability to

manage complexity.

Returning to the semiconductor manufacturing example from the

preceding section, the aggregate observed kP = 0.4 factor combines

both domain-specific kC and context-dependent kE factors. Decompos-

ing kP requires a specific complexity metric form. For example, assum-

ing kC = 0.333 (i.e., complexity is proportional to the cube root of the

number of transistors) yields an aggregate factor kE = 1.2. Now, con-

sider two hypothetical design organizations in the same domain with

different perception abilities. A design context with kE = 1.3 increases

to kP = 0.433, meaning a doubling in performance requires 20.433 =

1.35 times the effort. Alternatively, a design context with kE = 1.1

decreases to kP = 0.367, meaning a doubling in performance requires

20.367 = 1.29 times the effort.

3.3 Incorporating time dynamics

As a final component, the model of complexity in engineering design

can incorporate time to show performance-complexity-effort dynam-

ics over strategic horizons. Composing Equation (6) with Equation (1)

yields Equation (7).

(E◦C◦P)(t) = E′
0

(
P0 exp(rPt)

)kCkE
= E0 exp(rPkCkEt)

rP > 0, kC > 0, kE > 0 (7)

This expression shows the effort growth rate previously introduced

in Equation (2) decomposes to rE = rPkCkE such that effort growth

depends on technological progress (rP), design domain (kC), and design

context (kE).

Figure 1 graphically illustrates relationships between time, perfor-

mance, complexity, and effort for the semiconductor manufacturing

example with datum time t = 0 (hollow points) and a notional prod-

uct planned for t = 5 years (solid points). Dotted lines visually connect

points on adjacent quadrants. The upper-right plot shows the expo-

nential growth of performance over time following Equation (1), indi-

cating a 5.67-fold increase in 5 years. The upper-left plot shows the

power lawgrowth of complexity following Equation (4)with a 1.78-fold

increase to achieve the target performance. The lower-left plot shows

the power law growth of effort following Equation (5) with a 2-fold

F IGURE 1 Relation between performance, complexity, effort, and
time under the composite model for an example case based on
semiconductor manufacturing with rP = 0.347, kC = 0.333, and
kE = 1.2 for times 0 ≤ t ≤ 5 years

increase to achieve the necessary complexity. Finally, the lower-right

plot shows the exponential growth of effort over time following Equa-

tion (7).

Connecting points between the four quadrants helps to trace rela-

tionships between performance, complexity, effort, and time. For

example, a change in technology progress rate (rP) modifies the slope

in the upper-right quadrant, resulting in different levels of complexity

and effort required to achieve a target performance at a specified time.

Similarly, changes to the perception factor kE modifies the slope in the

lower-left quadrant, adjusting the resulting effort to achieve a target

design. Finally, while simply presented as lines, note that each quadrant

reflects a frontier of efficient solutions and additional points exist with

lower performance, higher complexity, or higher effort in each quad-

rant.

3.4 Assumptions and limitations

As an explanatory model, the model of complexity in engineering

design is not intended to predict specific outcomes of any individual

design activity or class of activities. Instead, it is intended to generate

and evaluate new causal mechanisms to support broad understanding

of effort drivers in complex system design. Nevertheless, this section

comments on key assumptions and limitations.

Technology studies provide good evidence for exponential growth

of product performance over time but exponential growth of effort is

less well explored. The power law relationships proposed in Equations

(4) and (5) were selected for mathematical convenience and ease of

presentation rather than strict empirical or theoretical accuracy.While

the discussion of Equation (5) mentions evidence of super-linear rela-

tionships between structural complexity measures and design effort,

no analogous evidence could be found for the relationship between

performance and complexity, which seems to be under-studied.
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GROGAN 225

F IGURE 2 Effort overruns from an exponential growth bias (A) traced through performance-complexity-effort-time dimensions and (B)
analytically evaluated for variable growth rate and lead time (star shows result from (A))

Furthermore, a single relationship form may not exist in general given

the variety of complexity and performance metrics used for specific

application cases. Alternative definitions allow a degree of freedom

for different complexity metrics as long as the function composition

in Equation (6) yields a power law relationship between performance

and effort.

Additionally, some factor values cannot easily be compared across

cases. Values of rP depend on time units but can easily be compared

across cases. In contrast, values of kC and kE depend on the adopted

complexity metric which is more application-specific. The model also

assumes factors rP , kE , and kC are time-invariant. Realistically, all of

these parameters vary in time to some extent in response to contextual

factors. For example, Rupp and Selberherr29 explore economic limits

toMoore’s law driven bymarket capacity constraints that augment the

effect of rP. Other dynamic factors include demand for product inno-

vation, new domain-specific design architectures that exhibit different

types of complexity, and new methods or tools that influence designer

ability. Ignoring these temporal effects assumes they are secondary to

the primary effects of performance, effort, and complexity.

4 THREE MECHANISMS FOR EFFORT
OVERRUNS

The proposed explanatory model contributes to three new causal

mechanisms that demonstrate potential sources of effort overruns

in complex system design driven by exponential growth bias, excess

complexity, and differential perception. The following sections explain,

illustrate, and analytically evaluate effort overrun for eachmechanism.

4.1 Exponential growth bias

The first mechanism investigates systematic biases to estimating

effort. While product performance follows exponential growth over

time with rate rP, cumulative effort grows exponentially with rate

rPkCkE , composing factors from drivers for technological progress,

product domain, and design context. Estimating required effort to

achieve a future product may be subject to human biases to lin-

earize exponential growth.37 Linear extrapolation of effort mea-

sures such as full-time equivalent staff or allocated budget will

under-estimate effort required for a future product because of tech-

nological progression compounded by complexity and perception

factors.

Figure 2A builds on the semiconductor manufacturing exam-

ple with rP = 0.347, kC = 0.333, kE = 1.2 to show linear extrapola-

tion of effort as a red line from t0 = 0 to t = 5. It estimates

effort (hollow red point) at t = 5 as Ê∕E0 = 1.7 compared to a

true value (solid red point) of E∕E0 = 2.0, an apparent 18% over-

run. Mathematically, linear effort extrapolation using Equation (7)

from a datum point t0 yields the approximate effort function Ê(t) in

Equation (8).

Ê(t) = E(t0) +
dE
dt

||||t0 (t − t0) = E(t0)[1 + rPkCkE(t − t0)] (8)

Subsequently, Equation (9) computes effort overruns (xE) as a fraction

of estimated effort as a function of the lead time (t − t0) and composite

effort growth rate rPkCkE .

xE =
E(t) − Ê(t)

Ê(t)
=

E(t0)E(t − t0)
E(t0)[1 + rPkCkE(t − t0)]

− 1

=
exp(rPkCkE(t − t0))
1 + rPkCkE(t − t0)

− 1 (9)

A contour plot in Figure 2B visualizes effort overruns (xE) com-

puted from Equation (9) for lead times between 0–10 (years) and

annual effort growth rates between 0 and 0.25 (0%–22% per year).

Results show projects with a long lead time or rapid effort growth

rate are most susceptible to overruns from exponential growth

bias.
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F IGURE 3 Effort overruns from excess complexity (A) traced through performance-complexity-effort-time dimensions and (B) analytically
evaluated for variable perception and excess complexity (star shows result from (A))

4.2 Excess complexity

The second mechanism investigates how exceeding the efficient

complexity-performance frontier (i.e., adding excess complexity) can

contribute to effort overruns. Excess complexity does not improve

performance and should generally be minimized16; however, human

limitations ranging from cognitive resources to organizational struc-

tures generally prevent “optimal” design from being achieved. Excess

complexity is particularly important with respect to overruns because

the perception factor kE acts as an effort multiplier: 20% excess com-

plexity can generatemore than 20% additional effort for kE > 1 due to

perceptual limitations in implementation.

Figure 3A builds on the semiconductor manufacturing example

with rP = 0.347, kC = 0.333, kE = 1.2 to show a 20% excess complex-

ity incorporated in the design for the new product at t = 5. Complexity

rises from C∕C0 = 1.78 (hollow red point) to C′∕C0 = 2.14 (solid red

point), subsequently raising effort from E∕E0 = 2.0 to E′∕E0 = 2.49, an

apparent 25% overrun. Mathematically, excess complexity xC can be

expressed as a fraction above the estimated “optimal” complexity (i.e.,

C′ = (1 + xC)C). Equation (10) computes the resulting effort overrun

(xE) as a fraction of the estimated effort with “optimal” complexity from

Equation (5) as a function of excess complexity xC and the perception

factor kE .

xE =
E(C′) − E(C)

E(C)
=

E0((1 + xC)C)kE

E0CkE
− 1 = (1 + xC)kE − 1 (10)

A contour plot in Figure 3B visualizes effort overruns (xE) for excess

complexity between 0 and 100% and for perception factors between

1.0 and 1.8. While excess complexity is a more influential driver

of overruns itself, design contexts with high barriers to perception

require substantially more effort to overcome the inefficient applica-

tion of complexity.

4.3 Differential perception

The third mechanism investigates how differential perception of com-

plexity can lead to effort overruns. As the perception factor kE is unique

to the design context, it can vary across individuals and organizations

participating in design activities. An increase in this factor results in

additional effort to realize a product with a given complexity. Under-

lying differences in perception may arise from innate cognitive abili-

ties or use of expertise-driven strategies like chunking36; however, the

topic is under-studied. Regardless of its source, differential percep-

tion could occur across functional units, levels of hierarchy, or even in

response to new technology or organizational policies. Most critically,

differential perception between estimators and designers could con-

tribute to apparent effort overruns.

Figure 4A continues the semiconductor manufacturing example

with rP = 0.347, kC = 0.333, kE = 1.2. The product at t = 5 has perfor-

mance P∕P0 = 5.67 and complexity C∕C0 = 1.78. An estimator uses

the aggregated kE = 1.2 factor to estimate effort (hollow red points)

but a designer uses a higher k′E = 1.5 in implementation (red line and

solid red point). Assuming a unit constant C0 = 1, effort rises from

E = 2.0 to E′ = 2.38 as an apparent 19% overrun. Unlike the previous

examples, this result varies based on the scaling factor C0, reinforcing

the mutual dependence between interpretation of differential kE val-

ues and adopted complexitymetrics. Largemagnitude complexitymet-

rics require smaller differential kE values to show significant difference

in required effort.

Differential perception can be represented as the difference in per-

ception factors ΔkE = k′E − kE . Equation (11) computes the resulting

overrun (xE) as a fraction of the estimated effort as a function of com-

plexity C from Equation (5) and differential perceptionΔkE .

xE =
E′(C) − E(C)

E(C)
=

E0CkE+ΔkE

E0CkE
− 1 = CΔkE − 1 (11)
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GROGAN 227

F IGURE 4 Effort overruns from differential perception (A) traced through performance-complexity-effort-time dimensions and (B)
analytically evaluated for variable complexity and differential perception (star shows result from (A))

A contour plot in Figure 4B visualizes effort overruns (xE) for differen-

tial perception factors between0.0 and0.5 and for complexitybetween

1 and 10. Results highlight the scale dependence between ΔkE and C

where large complexity magnitudes only require small differences in

ΔkE to yield large overruns.

4.4 Comments

The three causal mechanisms propose new ways of thinking about

effort overruns in engineering design as a step to further understand-

ing and mitigation. Some mechanisms like exponential bias may not

be as extreme as presented here while others like excess complex-

ity may be omnipresent. Although presented separately, mechanisms

could also work together to amplify effects. For example, a long lead

time for a complex product inefficiently designed by an organization

with large differential perception between estimating and implement-

ing entities suggests large likely effort overruns.

The proposed model can also help frame other mechanisms con-

tributing to effort overruns. For example, inefficient application of

effort away from the complexity-effort frontier clearly contributes

to effort overruns. Likewise, the planning fallacy and anchoring and

adjustmentheuristicmayyield outcomes similar to linear extrapolation

to explain outcomes from a cognitive psychology perspective.Misjudg-

ing other parameters such a kC or rP (similar to the differential percep-

tion of complexity for kE) could also contribute to effort overruns.

While the proposed mechanisms remain conjectures at this point,

the dual role of complexity as performance enabler and its percep-

tion as effort consumer are critical features to be explored further. To

study the role of perception and further validate the effort-complexity

power law in Equation (5), the following section measures variation

in kE among a population of design actors working on tasks with vari-

able complexity.

5 EMPIRICAL EVIDENCE FOR PERCEPTION OF
COMPLEXITY

In support of the proposed model of complexity in engineering design

and, specifically, the relationship between perception of complexity

and effort to complete a design task, this section analyzes secondary

data from a prior behavioral experiment. Analysis objectives seek to

measure the perception of complexity factor kE across a population of

designers, validate the functional form of Equation (5) for a particular

structural complexitymetric, and understand how variation in kE could

contribute to differential engineering effort expenditures among indi-

viduals.

5.1 Parameter design task

A previous study by the author38 investigated the effect of variable

task size (N) and variable team size (n) on required design effort. The

study performed a behavioral experiment using an abstract surrogate

parameter design task as a linear system of equations in Equation (12).

find x s.t.
||||||
N∑
j=1

mijxj − y⋆i

|||||| ≤ 𝜖 ∀ i (12)

Design actors select N design parameters x = ⟨x1,… xN⟩ (inputs) to
meet M target functional requirements y⋆ = ⟨y⋆

1
,… , y⋆M⟩ (outputs).

Design parameters and functional requirements are related by anM ×

N coupling matrix [mij]. Uncoupled tasks have mij = 0 for all i ≠ j such

that each design parameter controls exactly one functional require-

ment. Coupled tasks havemij ≠ 0 for all i, j such that allN design param-

eters affect each functional requirement. All functional requirements

must achieve target values within an allowable error tolerance (𝜖) to

complete a task.
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228 GROGAN

F IGURE 5 Effort (E) versus complexity (C) on a log-log scale for individuals (I) and teams (T) with simple regression

Unique design problems randomly generate mij and y⋆i by compos-

ing random orthonormal basis vectors to preserve constant unit dis-

tance between the initial condition (x = 0) and the solution (Mx = y⋆).

Control of inputs and outputs is distributed among n designers. Input

control means a designer can change the design parameter value and

output control means a designer can see if the functional requirement

value is within the error tolerance.

A distributed software application implements the parameter

design task with purposeful barriers to communication. Each designer

uses a graphical user interface to modify assigned inputs and view

assigned outputs. Vertical input sliders with randomly-assigned labels

like “Diameter” for x1 and “Flexibility” for x2 can be modified with a

mouseorkeyboard shortcuts.Horizontal output sliderswith randomly-

assigned labels like “Epsilon” for y1 and “Rho” for y2 display the valid

solution region and automatically update output values. No quanti-

tative information is presented and designers are limited to verbal

communication and gestures to complete the design task. The time

required to complete a design task is measured from the first input

change until all outputs are within the target range.

5.2 Secondary data

Results from the previous study provide a publicly-available source

of secondary data on the surrogate parameter design task.39 Inter-

ested readers should refer to Grogan and deWeck38 for methodolog-

ical details. The data set contains 374 observations of task comple-

tion duration from 10 experimental sessions and 30 total participants.

Each session administered 24 tasks with 2 ≤ N ≤ 6 parameters and

1 ≤ n ≤ 3 designers with 9 individual (n = 1) tasks performed in par-

allel (27 samples) and 15 team (n = 2 or n = 3) tasks. Each individual

and team is considered a unique design actor for which a perception of

complexity kE factor can be computed.

To apply the secondary data to study perception of complexity, per-

formance, effort, and complexity must first be operationalized (com-

plexity growth over time is not considered). Assume the number of

design parameters N measures performance with P = N. Assume the

task completion time T (seconds) estimates effort with E = T. Finally,

Equation (13) proposes a complexity metric as a function of N with

C0 = 1 for all tasks, kC = 1 for uncoupled tasks, and kC = 2 for coupled

tasks.

C(P) = C0NkC (13)

Coincidentally, C equals the number of non-zeromij factors and is pro-

portional to the task information content. Complexity values range

between C = 2 for an uncoupled N = 2 task and C = 16 for a coupled

N = 4 task.

Preliminary analysis investigateswhether complexity and effort fol-

lowapower law relationship. Thepanel in Figure 5plots the complexity

(C) and effort (E) metrics for all completed parameter design tasks for

each of 30 individual (I) and 10 team (T) design groups. An apparent lin-

ear relationship in log-log space emphasized by a simple linear regres-

sion overlay supports the expected power law relationship between

complexity and effort, that is, the regression slope estimates the kE fac-

tor for each design actor. However, additional statistical analysis must

correct for other known contextual factors such as task ordering, team

size, and variations in the error tolerance (𝜖) across sessions.

5.3 Analysis and results

Statistical analysis performs regression to differentiate perception of

complexity from other contextual factors. The previous study found

the team size (n), task order (O, i.e., sequence in a session), and error

threshold (𝜖) to be significant factors influencing effort. Equation (14)

isolates the perception of complexity factor kE as the power law expo-

nent for complexity and aggregates other significant contextual effects

to the E0 factor.

E(C) = E0CkE =
(
b0nb2Ob3b𝜖0.1

4
b𝜖0.11
5

)
CkE (14)
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GROGAN 229

TABLE 1 Stepwise linear multiple effects models for design task
time

Step 1Model Step 2Model

(AIC= 665.97) (AIC=641.97)

Random Coef. Factor Var. Factor Var.

G 𝛾01 Intercept 0.000

G 𝛾11 lnC 0.018 lnC 0.018

Residual 0.277 0.277

Fixed Coef. Estimate S.E. t stat. Estimate S.E. t stat.

Intercept 𝛾00 1.367 0.119 11.485 1.367 0.119 11.485

lnC 𝛾10 1.343 0.052 25.865 1.343 0.052 25.865

ln n 𝛾20 1.215 0.103 11.824 1.215 0.103 11.824

lnO 𝛾30 −0.175 0.034 −5.119 −0.175 0.034 −5.119

𝜖0.1 𝛾40 −0.342 0.114 −2.993 −0.342 0.114 −2.993

𝜖0.11 𝛾50 −0.836 0.153 −5.465 −0.836 0.153 −5.465

Coefficients to be solved for using regression include a constant b0, a

power law coefficient b2 for team size n, power law coefficient b3 for

task order O, and constants b4 and b5 for dummy variables 𝜖0.1 and

𝜖0.11 for error tolerance levels 0.1 and 0.11, respectively. The resulting

model is similar to that used in.38

A two-level mixed effects regression model accommodates corre-

lated samples fromdesigner groups (i.e., individual or team)with factor

G.40 A log-transformation of Equation (14) assigns 𝛽0j = ln(b0), 𝛽1j =

kE , etc. to yield the level 1 model in Equation (15) with a design task

as the unit of analysis and coefficients for each group j.

ln E = 𝛽0j + 𝛽1j lnC + 𝛽2j ln n + 𝛽3j lnO + 𝛽4j𝜖0.1 + 𝛽5j𝜖0.11 (15)

The level 2 model in Equation (16) considers a design group as the unit

of analysis with two effects on level 1 coefficients.

𝛽ij =

⎧⎪⎨⎪⎩
𝛾00 + 𝛾01(G) + u0j i = 0

𝛾10 + 𝛾11(G) + u0j i = 1

𝛾i0 + u0j otherwise

(16)

In other words, group differences can modify the 𝛽0j coefficient to tai-

lor E0 for each group or modify the 𝛽1j coefficient to tailor kE for each

group. Group effects on 𝛽2j are included due to insufficient data varia-

tion and preliminary analysis ruled out group effects on 𝛽3j with a back-

wards stepwise regression procedure.

The linear multiple effects model is computed using the R statisti-

cal tool with the lme4 package using standard maximum likelihood.41

Table 1 shows results of a stepwise regression procedure to sequen-

tially eliminate non-significant factors. Each step reduces AIC com-

puted using a maximum likelihood (ML) criterion. The Step 1 model

includes randomeffects ofG for both the intercept (E0) and lnC (kE) fac-

tors. The Step 2model eliminates the randomeffect on the intercept as

it explains little variance. Graphical inspection of a profile zeta plot sug-

gests coefficients have good normal approximation and all coefficients

are statistically significant based on t values.

5.4 Discussion

Substituting fitted Level 1 coefficient estimates from the Step 2 model

in Table 1 into Equations (15)–(16) can estimate effort as a function of

contextual factors like team size, order, and error threshold and, most

importantly, complexity as defined in Equation (13). While the fixed

effect coefficients are not of primary interest in this analysis, values

agree with past results and intuition that completion time increases

with team size, decreases with later task order, and decreases with

larger error tolerances. Meanwhile, the coefficient value 𝛾10 = 1.343

corresponds to the average kE value across all design groups. There-

fore, analysis results support the hypothesized model in Equation (5)

that a power law governs the relationship between complexity and

effort for this simplified parameter design task.

More interesting results appear in the Level 2 coefficients that

refine the kE factor for each design group, confirming the presence of

differential perception of complexity. Table 2 reports fitted coefficient

𝛾10 + 𝛾11(G) = kE for each group G and Figure 6 shows a box plot and

histogram of the resulting distribution. The mean value is 𝛾10 = 1.343

and observed values range from 1.105 to 1.602. The smaller range

observed in teamsmay be attributed to a smaller sample size (10 teams

versus 30 individuals) and, although the team mean is slightly larger,

Welch’s t-test cannot reject the null hypothesis that both group popu-

lations have the samemean (t(23.1) = −1.59, p = 0.13).

Using coefficients from the Step 2 regression model, the contour

plot in Figure 7 illustrates how estimated effort (task completion time)

varies as a function of the design task complexity C and the percep-

tion factor kE . Framed within minimum and maximum observed kE val-

ues, the dotted line shows estimated effort for the mean 𝛾01 = 1.343.

Dashed lines show estimated effort for values within one standard

deviation, 𝛾01 ± 𝜎𝛾01 = {1.232,1.454}.

Revisiting the third mechanism for effort overruns, an apparent

effort overrun following Figure 4B appears if designers with lower kE
values estimate effort while designers with higher kE complete the

design. For example, designers within one standard deviation of each

other have ΔkE = 0.111 which, for a simple task with C = 2, translates

to an apparent effort overrun of xE = 20.111 − 1 = 8.0% (estimated at

6.65 s, actually 7.18 s). However, for a more complex task with C =

16, the effort overrun is xE = 160.111 − 1 = 36.0% (estimated at 109 s,

actually 148 s).

To further investigate hypothetical effort overruns from flawed

kE values, two error metrics evaluate an effort estimate Ê using the

observed data set with T = 374 samples. Equation (17) computes a

root mean square error (RMSE) as an absolute measure of inaccurate

effort estimates.

RMSE =

√√√√1
T

T∑
i=1

(Êi − Ei)2 (17)
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230 GROGAN

F IGURE 6 (A) Box plot of kE by group typewith 1.5 inter-quartile range whiskers; (B) Histogram of kE by group type

F IGURE 7 Contour plot of estimated effort (E) as a function of problem complexity C and perception of complexity kE for a parameter task
setting withO = 10, n = 1, 𝜖0.1 = 0, and 𝜖0.11 = 0

Alternatively, Equation (18) computes the average effort overrun frac-

tion (x̄E), allowing both positive (overrun) and negative (under-run) val-

ues to offset each other in the data set.

x̄E =
1
T

T∑
i=1

(Ei − Êi)

Êi
(18)

Table 3 compares RMSE and x̄E for effort estimates from Equation (14)

under four conditions: (1) using the mean kE value, (2) using group-

specific kE values from Table 2, and (3–4) using values one standard

deviation from themean kE value.

Results show mean overruns x̄E > 0 in every case which can be

explained by the power law relationship between effort and complex-

ity.Model residuals are normally distributed for log-transformed effort

(i.e., ln Ê − ln E ∼ norm(0,𝜎)) but become a log-normally distributed

multiplicative factor when estimating effort (i.e., E∕Ê ∼ lognorm(0,𝜎))

because of the exponential transformation. Closely related to themore

general effect of differential perception, the natural skew of the log-

normal distribution produces more frequent overruns than under-

runs.

Compared to the baseline mean estimate of kE in case 1, adopting

the group-specific estimates of kE in case 2 reduces RMSE and mean

overrun. Adopting a kE value one standard deviation below the mean

in case 3 substantially increases RMSE and mean overrun effort com-

pared to the baseline. However, adopting a kE value one standard devi-

ation above the mean in case 4 achieves RMSE similar to the group-

level estimates but with near-zero mean overrun, effectively correct-

ing the skewed distribution. Figure 8 plots RMSE and x̄E values over

a wider range of kE factors, showing the minimum RMSE occurs close

to one standard deviation above mean value. If generalizable, this type

of insight could help inform effort estimates for broadly-scoped tasks

across a diverse set of design actors.

While these results are significantly limited by the nature of the

secondary data analysis (including hypothetical effort overruns rather

than soliciting actual estimates), follow-up studies should investigate
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GROGAN 231

TABLE 2 Level 2 (group-specific) coefficients for perception of
complexity (kE)

Group (G) kE

I-1 1.602

I-2 1.478

I-3 1.247

I-4 1.529

I-5 1.136

I-6 1.231

I-7 1.193

I-8 1.330

I-9 1.226

I-10 1.254

I-11 1.275

I-12 1.105

I-13 1.411

I-14 1.292

I-15 1.161

I-16 1.277

I-17 1.518

I-18 1.428

I-19 1.411

I-20 1.429

I-21 1.265

I-22 1.407

I-23 1.275

I-24 1.343

I-25 1.355

I-26 1.386

I-27 1.335

I-28 1.316

I-29 1.388

I-30 1.288

T-1 1.412

T-2 1.516

T-3 1.304

T-4 1.365

T-5 1.471

T-6 1.432

T-7 1.271

T-8 1.333

T-9 1.413

T-10 1.306

whether differential perception between design groups actually con-

tributes to effort overruns. If similar observations can be replicated

for design problems of increasing realism and complexity, results could

be used to correct for observed skew or tailor effort estimates to

TABLE 3 Hypothetical effort errors and overruns for estimates
with alternative perception factors (kE)

Case Estimation kE Factor RMSE Effort (s) Mean overrun (x̄E)

1 𝛾10 = 1.343 87.8 19.5%

2 𝛾10 + 𝛾11(G) 79.3 14.0%

3 𝛾10 − 𝜎𝛾10 = 1.232 99.9 46.4%

4 𝛾10 + 𝜎𝛾10 = 1.454 79.3 −2.0%

F IGURE 8 Hypothetical effort errors and overruns for estimates
of kE . Gray lines denote 𝛾10 and 𝛾10 ± 𝜎𝛾10

specific design groups based on historical observation of the effort-

complexity frontier.

5.5 Limitations

Results of this analysis are subject to several limitations. First, it adopts

secondary data from a prior experiment rather than designing a new

experiment tailored to specific research objectives. The original study

does not solicit effort estimates in advance of each task or measure

effort overruns, limiting the strength of some insights provided here.

It also does not consider desired performance or temporal dynamics

(performance is fixed for each task) and does not permit excess com-

plexity (complexity is fixed for each task), limiting direct validation of

Equation (1) and Equation (4) as components of the proposed model

of complexity in engineering design. However, the prior study provides

control over the key variable of interest (complexity) while accounting

for key contextual factors like the order, team size, and variable error

tolerance to isolate and measure perception of complexity for individ-

uals.

Second, the surrogate parameter design task is a highly simplified

representation of design activities. Similar to the objectives of the orig-

inal study, the abstract nature of the task allows for controlled exper-

imental conditions at the cost of direct generalization to more realis-

tic design scenarios. Its lack of domain-specific context reduces effects

of prior knowledge, experience, and supporting tools which are crit-

ical in technical activities but also a source of significant variation

among design groups. The design task is more of an optimization task

 15206858, 2021, 4, D
ow

nloaded from
 https://incose.onlinelibrary.w

iley.com
/doi/10.1002/sys.21574 by U

niversity O
f T

w
ente Finance D

epartm
ent, W

iley O
nline L

ibrary on [12/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



232 GROGAN

than a creative task and has no sources of uncertainty for require-

ments or mapping between inputs and outputs. The simple tasks in

this study also allow many data points to be collected in a design ses-

sion to improve statistical power. Thus, while the particular results of

this study are not intended to directly apply to general engineering

design, they do provide supporting evidence of variable perception of

complexity between design groups. Research settings with increasing

realism should further vet results while advancing measurement of

performance, effort, and complexity constructs.

Finally, this study does not directly evaluate the effects of differen-

tial perception of complexity. While hypothesized in the third mecha-

nism to contribute to effort overruns, further research is required to

understand if there are systematic differences in perception of com-

plexity across disciplinary or hierarchical roles within design organiza-

tions and provide further evidence for or against the three proposed

mechanisms contributing to effort overruns.

6 CONCLUSION

Effort overruns on large engineering projects demand new explana-

tions for the role of complexity in design. The proposed model relates

desired performance and required effort using two facets of complex-

ity as intermediate factors. Complexity enables desired performance

but also contributes required design effort as a function of contextual

factors including its perception by design actors. Three mechanisms

leading to potential effort overruns include exponential growth biases

when using historical effort to project future effort, excess complexity

in designwhich amplifies required effort, and differential perception of

complexity whichmay contribute to poor estimates of required effort.

Secondary data analysis from a previous human subject experiment

measures perception of complexity for simplified parameter design

tasks. In agreementwith the proposedmodel, results showapower law

relates complexity and effortmeasured as task completion time. Linear

regression with mixed effects shows perception of complexity varies

across design groups. Results suggest perception of complexitymay be

a significant driver of effort in design, especially with respect to differ-

ential perception across individuals.

While this paper introduces the model of complexity in design

and provides supporting evidence, future work must provide fur-

ther evaluation. First, it is unknown whether a power law governs

the relationship between performance and complexity. Evaluating

complexity-performance design tradespaces could help identify the

Pareto-efficient frontier anddetermine if it indeed follows apower law.

Of course, the functional relationship likely depends on the complex-

ity metric form, so several alternatives may need to be compared with

each other.

Second, while this study provides preliminary evidence, it is

unknownwhether a power law governs the relationship between com-

plexity and effort. Further investigation of historical or experimental

data in more realistic design settings would help establish this compo-

nent of the proposedmodel.While product performance data is gener-

ally available, total effort data including research and developmentwill

provemore difficult to acquire or estimate. Building on existingwork in

technology studies or economics literature may help identify theoreti-

cal foundations for this relationship.

Third, the empirical evidence in this study cannot truly assess effort

overruns because no effort estimates were collected from design

actors. A simple modification of the existing task could ask design

actors to estimate required effort before starting a design task which

would help evaluate proposed mechanisms for effort overruns. Other

future work may augment perception of complexity through various

contextual effects. For example, the original study enforced purpose-

ful barriers to design including no quantitative information and limits

to verbal communication. Relaxing these constraints or, alternatively,

providing improved design tools to facilitate communication or knowl-

edge transfer would be expected to improve perception of complexity

and reduce total design effort.

Finally, it may be possible to study the relationship between per-

formance, effort, and complexity in a more realistic design experiment

compared to the linear system of equations employed here as a sur-

rogate parameter design task. Future work must balance experimen-

tal control with generalization as realistic settings have many uncon-

trolled effects including prior domain knowledge and experience and

challenges to quantify abstract concepts such as performance, com-

plexity, and effort specific to each problem. The two-level random

effects regression model provides a strong basis to analyze correlated

samples from design actors and should be considered for any future

experimental studies.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science

Foundation under grant nos. 1742971 and 1943433.

CONFLICT OF INTEREST

The author reports no conflicts of interest.

DATA AVAILABILITY STATEMENT

Data are publicly available via the reference data article.

ORCID

Paul T.Grogan https://orcid.org/0000-0001-8986-4806

REFERENCES

1. U.S. Government Accountability Office. Trends in Nunn-McCurdy

breaches for major defense acquisition programs. Report GAO-

11-295R, Washington, DC: U.S. Government Accountability Office;

2011.

2. National Research Council. Controlling Cost Growth of NASA Earth and
Space Science Missions. Washington, DC: National Academies Press;

2010.

3. MoløkkenK, JørgensenM. A review of surveys on software effort esti-

mation. In: Proceedings of the 2003 ACM-IEEE International Symposium
on Empirical Software Engineering. 2003:220-230.

4. Flyvbjerg B, Holm MS, Buhl S. Underestimating costs in public works

projects: error or lie? J Am Planning Assoc. 2002;68:279-295.
5. Arena MV, Younossi O, Brancato K, Blickstein I, Grammich CA. Why

has the cost of fixed-wing aircraft risen?: amacroscopic examination of

 15206858, 2021, 4, D
ow

nloaded from
 https://incose.onlinelibrary.w

iley.com
/doi/10.1002/sys.21574 by U

niversity O
f T

w
ente Finance D

epartm
ent, W

iley O
nline L

ibrary on [12/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0001-8986-4806
https://orcid.org/0000-0001-8986-4806


GROGAN 233

the trends in U.S. military aircraft costs over the past several decades.

Tech. rep., SantaMonica, CA; 2008.

6. Roberts B, Mazzuchi T, Sarkani S. Engineered resilience for complex

systems as a predictor for cost overruns. Syst Eng. 2016;19:111-132.
7. Calvano CN, John P. Systems engineering in an age of complexity. Syst

Eng. 2004;7:25-34.
8. ElMaraghy W, ElMaraghy H, Tomiyama T, Monostori L. Complexity in

engineering design andmanufacturing. CIRP Ann. 2012;61:793-814.
9. Sheard SA, Mostashari A. Principles of complex systems for systems

engineering. Syst Eng. 2009;12:295-311.
10. Flyvbjerg B, Garbuio M, Lovallo D. Delusion and deception in large

infrastructure projects: two models for explaining and preventing

executive disaster. Calif Manage Rev. 2009;51:170-193.
11. McCabe TJ, Butler CW. Design complexity measurement and testing.

Commun ACM. 1989;32:1415-1425.

12. Weyuker EJ. Evaluating software complexity measures. IEEE Trans
Softw Eng. 1988;14:1357-1365.

13. Bashir HA, Thomson V. Estimating design complexity. J Eng Design.
1999;10:247-257.

14. PuglieseA,Nilchiani R.Developing spectral structural complexitymet-

rics. IEEE Syst J. 2019;13:3619-3626.
15. Sinha K, de Weck OL. Empirical validation of structural complexity

metric and complexity management for engineering systems. Syst Eng.
2016;19:193-206.

16. Suh NP. A theory of complexity, periodicity and the design axioms. Res
Eng Design. 1999;11:116-132.

17. Summers JD, Shah JJ. Mechanical engineering design complexity met-

rics: size, coupling, and solvability. J Mechan Design. 2010;32:021004.
18. Darcy DP, Kemerer CF, Slaughter SA, Tomayko JE. The structural

complexity of software: an experimental test. IEEE Trans Softw Eng.
2005;31:982-995.

19. Schlindwein SL, Ison R. Human knowing and perceived complexity:

implications for systems practice. Emergence: Complexity and Organiza-
tion. 2004;6:27-32.

20. Manuse JE, SniezekB.On the perception of complexity and its implica-

tions. In: Kahlen FJ, Flumerfelt S, Alves A, eds. Transdisciplinary Perspec-
tives on Complex Systems. Springer; 2017:213-269.

21. Simon HA. The Sciences of the Artificial. 3rd ed., Cambridge, MA: MIT

Press; 1996.

22. Nagy B, Farmer JD, Bui QM, Trancik JE. Statistical basis for predicting

technological progress. PLOSOne. 2013;8:e52669.
23. Christensen CM. Exploring the limits of the technology S-curve part I:

component technologies. Prod Oper Manag. 1992;1(4):334-357.
24. Christensen CM. Exploring the limits of the technology S-curve part II:

architectural technologies. Prod Oper Manag. 1992;1(4):358-366.
25. Koh H, Magee CL. A functional approach for studying technological

progress: application to information technology. Technol Forecast Social
Change. 2006;73(9):1061-1083.

26. Koh H, Magee CL. A functional approach for studying technologi-

cal progress: extension to energy technology. Technol Forecast Social
Change. 2008;75(6):735–758.

27. Farmer JD, Lafond F. How predictable is technological progress?. Res
Policy. 2016;45:647-665.

28. Ross PE. 5 commandments. IEEE Spectr. 2003;40:30-35.
29. Rupp K, Selberherr S. The economic limit toMoore’s law. IEEE Transact

Semiconductor Manufact. 2011;24:1-4.
30. Augustine NR. Augustine’s Laws. AIAA; 1997.

31. Johnstone BM. Augustine’s laws: are we really headed for

the $800 billion-dollar fighter? In: ICEAA Professional Devel-
opment & Training Workshop. San Antonio, TX; 2020. https://

www.iceaaonline.com/ready/wp-content/uploads/2020/06/

MM06-PPT-Johnstone-Augustines-Law.pdf.

32. Deshmukh AV, Talavage JJ, Barash MM. Complexity in manufacturing

systemspart 1: analysis of static complexity. IIE Transact. 1998;30:645-
655.

33. Oates WE. On the Theory and Practice of Fiscal Decentralization. Cam-

bridge,MA: Harvard University Press; 2008:165-189.

34. Bashir HA, Thomson V. Models for estimating design effort and time.

Design Studies. 2001;22:141-155.
35. Whitney DE. Why mechanical design cannot be like VLSI design. Res

Eng Design. 1996;8:125-138.
36. Hirschi NW, FreyDD. Cognition and complexity: an experiment on the

effect of coupling in parameter design. Res Eng Design. 2002;13:123-
131.

37. Stango V, Zinman J. Exponential growth bias and household finance. J
Finance. 2009;64:2807-2849.

38. Grogan PT, de Weck OL. Collaboration and complexity: an exper-

iment on the effect of multi-actor coupled design. Res Eng Design.
2016;27:221-235.

39. GroganPT.Data onmulti-actor parameter design tasks by engineering

studentswith variable problemsize, coupling, and teamsize.DataBrief.
2018;20:1079-1084.

40. Radenbush SW, Bryk AS. Hierarchical Linear Models: Applications and
Data Analysis Methods. 2nd ed. Thousand Oaks, CA: Sage Publications;

2002.

41. Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects

models using lme4. J Stat Softw. 2015;67:1-48.

AUTHOR BIOGRAPHY

P. GROGAN is an assistant professor with

the School of Systems and Enterprises

at Stevens Institute of Technology. His

research develops and studies the use

of information-based methods and tools

for engineering design in domains with

distributed system architectures such as

aerospace, defense, and critical infrastructure. He holds a PhD in

Engineering Systems and SMdegree inAeronautics&Astronautics

from the Massachusetts Institute of Technology and a BS degree

in Engineering Mechanics from the University of Wisconsin–

Madison.

How to cite this article: Grogan PT. Perception of complexity

in engineering design. Systems Engineering. 2021;24:221–233.

https://doi.org/10.1002/sys.21574

 15206858, 2021, 4, D
ow

nloaded from
 https://incose.onlinelibrary.w

iley.com
/doi/10.1002/sys.21574 by U

niversity O
f T

w
ente Finance D

epartm
ent, W

iley O
nline L

ibrary on [12/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.iceaaonline.com/ready/wp-content/uploads/2020/06/MM06-PPT-Johnstone-Augustines-Law.pdf
https://www.iceaaonline.com/ready/wp-content/uploads/2020/06/MM06-PPT-Johnstone-Augustines-Law.pdf
https://www.iceaaonline.com/ready/wp-content/uploads/2020/06/MM06-PPT-Johnstone-Augustines-Law.pdf
https://doi.org/10.1002/sys.21574

	Perception of complexity in engineering design
	Abstract
	1 | INTRODUCTION
	2 | COMPLEXITY IN SYSTEMS ENGINEERING AND DESIGN
	3 | EXPLANATORY MODEL OF COMPLEXITY IN ENGINEERING DESIGN
	3.1 | Performance and effort
	3.2 | Two facets of complexity
	3.3 | Incorporating time dynamics
	3.4 | Assumptions and limitations

	4 | THREE MECHANISMS FOR EFFORT OVERRUNS
	4.1 | Exponential growth bias
	4.2 | Excess complexity
	4.3 | Differential perception
	4.4 | Comments

	5 | EMPIRICAL EVIDENCE FOR PERCEPTION OF COMPLEXITY
	5.1 | Parameter design task
	5.2 | Secondary data
	5.3 | Analysis and results
	5.4 | Discussion
	5.5 | Limitations

	6 | CONCLUSION
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES
	AUTHOR BIOGRAPHY


