
Systems Engineering Complexity in Context
Sarah A Sheard, Ph.D.1

Stevens Institute of Technology
sarah.sheard@incose.org

Abstract. Systems engineering literature identifies many different kinds of complexity. One
paper cataloging complexity for the purpose of modifying systems engineering cost estimates
identified more than 30 types. The research described in this paper investigates the idea of
sorting and organizing the many concepts of complexity and showing the relationships
between them on a single two-dimensional chart.

The Systems Engineering Complexity Contexts (SECC) chart was developed to show
how a large number of complexity concepts relate to systems engineering and to each other.
All but two of the 30 types from the paper mentioned above fit on this chart. Those two
appear as aspects that may apply to all other boxes on the chart instead of as orthogonal
elements, which was the desired representation.

Introduction

Complexity is often blamed for systems engineering problems, (Britcher, 1998; Calvano
& John, 2004; Kurtz & Snowden, 2003; Stevens, Brook, Jackson, & Arnold, 1998; White,
2005) but rarely does the process of fixing blame involve crafting a precise definition of the
problem. The systems engineering literature describes a wide range of concepts of
complexity, including the number and type of stakeholders, the organization’s maturity and
scope, and the required product quality. (Maier, 2007) In fact, a paper cataloging complexity
for the purpose of adjusting systems engineering cost estimates, Young, Farr, and Valerdi
(2010) identified more than 30 types.

It is very difficult to apply such a broad topic as complexity to the equally broad topic of
systems engineering. Systems engineering comprises all life cycle phases, from early analysis
to anomaly resolution. Various groups, from government acquisition offices to programmers,
require many different views of systems engineering. Even if there were only one kind of
complexity, it could still apply differently to each aspect of systems engineering. Multiply the
number of possible variations by the number of complexity types and it quickly becomes
apparent that without a simple framework, describing the effects of complexity on systems
engineering would be too convoluted to be useful.

In 1962 Hall stated that the genesis of systems engineering was the need to deal with
complexity (Hall, 1962). Perhaps after fifty years it is time for systems engineering to deal
with the confusion resulting from the large variety of complexity concepts. Can the various
concepts be brought together in an organized form? Is there a way to show their relationships,
perhaps on a single two-dimensional chart? Would the chart permit a newly identified
conceptualization of complexity to fit within its structure?

The goal of this research is to identify such a two-dimensional structure. Success will be
achieved if all or nearly all of the relationships among different aspects of systems
engineering complexity can be shown on one chart, without requiring elements that apply to

1 Now at the Software Engineering Institute, 4500 Fifth Avenue, Pittsburgh Pennsylvania (US).
Copyright (C) 2013 by Sarah A. Sheard. Permission granted to INCOSE to publish and use.

1145

all boxes (which would represent an additional dimension). Success also implies that when a
new typology of complexity arises, its elements can fit in a specific place on the chart.

This paper describes a structure that comes close to achieving these goals. A new chart,
the Systems Engineering Complexity Contexts (SECC) chart, was derived from the
complexity concepts discussed in Young, et al. (2010) All of the concepts from Young, et al.
can be located on the structure, except for two that are captured not as the desired orthogonal
elements but as aspects that may apply to all other boxes on the chart. These two non-
orthogonal aspects keep the SECC from fully meeting the intended goal of the research.

Methodology

Complexity definitions. An early and ongoing step in this research identified many different
ways that systems engineering has encountered complexity. Some of the most often
mentioned attributes of complexity are that it makes projects difficult, that it involves large
system or project size and high connectivity, and that it arises from many causes, ranging
from difficult requirements to project management. The Young, et al. paper was identified as
the most complete compendium of complexity definitions and was therefore chosen for the
initial test of the structure.

Typology. Another research step, described in a previous paper (Sheard and Mostashari,
2010), created a typology of complexity: structural types (size, connectivity, and inhomo-
geneity or diversity), dynamic types (short-term and long-term), and sociopolitical types.
These types were challenged through application to systems engineering for a survey of
complexity vs. project outcomes (Sheard, 2012); the result was the addition of entities (those
things that are evaluated as more or less complex). Entities include the System itself, the
Project building the system, the Environment (both socio-political and technological), and
Cognition (a subjective or cognitive type). (Sheard and Mostashari, 2011)

Application to systems engineering. These steps were preparatory to the main goal:
organizing the ways that different definitions of complexity apply to systems engineering.
The SECC structure followed from describing what happens in the Environment entity that
leads to a Project entity being set up to build a System entity. Ways in which each entity can
be complex are emphasized in the descriptions. These three entities are linked via the life
cycle of systems. The fourth entity, Cognition, was added later to emphasize ways in which
other activities lead to confusion, uncertainty, frustration, and lack of knowledge. Showing
how the activities for each entity relate, the full-page SECC diagram allows each of the 30+
types of complexity from Young, et al. to be located upon it.

Entities

To apply complexity concepts, one must ask is what is the object—the “entity”—that is
complex. Within systems engineering there are three to five different kinds of entities that
may be complex. Four of these five include the following:

1) the (technological) System being designed and built

2) the (socio-technical) Project doing the building

3a) the technological Environment into which the system will be inserted when built
(e.g., the hardware and software technical systems with which this system must
interface, for starters)

1146

3b) the socio-political system related to the technological environment, generally
system stakeholders (Sheard and Mostashari, 2011)

The last two, 3a and 3b, could be considered separate entities, or grouped together into an
entity called the “environment,” the “supersystem,” or the “complex system encompassing
the technological system being built.”

The following could be considered a fifth entity:

4) the subjective human experience when thinking about, designing, or using the
system, called Cognition

These entities are shown in Figure 1, with 3a) and 3b) grouped together into “Environment”
and subjective experiences (Cognition) added.

Figure 1. Entities

The entities are shown as yellow, green, pink, and blue, respectively. To differentiate
them when the paper is not viewed in color, the varied border lines indicate the same
information. In the rest of this paper, activities related to each of these entities are color- and
border-coded as follows:

x Project-related activities have yellow fill (dash-dot border)

x System-related activities have green fill (solid border)

x Environment-related activities have pink fill (dash border)

x Cognition-related activities have blue fill (dotted border)

When activities relate to two different entities, both colors appear.

Activities related to the entities

In this section, the entities are decomposed into interrelated parts using the system life
cycle as a framework. Although a system is specified prior to being built, specification is not
the beginning of the life cycle: it actually begins when a problem is perceived.

Environment entity, discussion #1. The perceived problem is expressed under the
Environment entity, starting as: “Environment is an ongoing system: the Way Things Are.”
The environment has perceived problems. Someone, possibly a politician, interest group, or
contractor in a “pre-proposal” effort, envisions a potential solution to one or more of the
problems.

The environment also includes stakeholders, some of whom have resources that can be
applied to improve the Way Things Are. The envisioned solution will provide a desired
intervention into the Way Things Are. Once the envisioned solution, a budget, and an

1146

organization to do the building have been agreed on, system development begins. These
activities are shown in Figure 2.

Figure 2. Environment, from the Way Things Are to Initiating System Development

Note that the yellow fill (dash-dot border) indicates that the last activity concerns the
Project entity as well as the Environment entity. Green/red (solid/dashed border) indicates an
interface between the System and the Environment.

Project entity. Next is the Project entity. The project’s organization usually exists before a
project is started, although not always. At some point the organization establishes a project,
which in general consists of many people who interact and form changing teams. Their work
consists of many tasks, some of which build system elements. Note that “tasks build
elements” represents an interface between the Project and the System entities. Figure 3 shows
this sequence and the interface relationship.

Figure 3. Project, from Organization Through Tasks

The project itself is initiated with a plan of how the resources will be spent (i.e., the
budget). The immediate goal is to produce the desired system. A better goal is to reduce the
problem experienced in the Way Things Are, by means of producing an effective system and
inserting it effectively into the environment. Organizations that understand how the project
goals relate to the environment are better able to produce effective systems. Figure 4 shows
this sequence. Many of these activities are shown as interfaces, either between the Project
and the System (green/yellow), the Project and the Environment (yellow/red), or the System
and the Environment (green/red).

1146

Figure 4. Project Life Cycle

Environment entity, discussion #2. When the system is eventually inserted into the
environment, it affects the Way Things Are, ideally to the point of resolving the original
problem (Figure 5). Thus it causes the Way Things Are to change (evolve). Note that the Way
Things Are was never fully understood, nor were all of its elements or behaviors, and its
problems were also uncertain. (Uncertainty, since it resides in the human mind, is shown as
blue, the color for the Cognition entity.)

This uncertainty and other issues can lead to side effects. Sometimes the system did not
do what was intended. Sometimes the system did do what it was supposed to do, but the
environment experienced an unexpected change in response to the system’s presence.
Sometimes the environment had features that were simply not understood and therefore not
designed for. Usually, the Way Things Are has also evolved because of reasons unrelated to
the system. These reasons combine so that the effect of the system is not quite as positive as
originally envisioned.

Thus there is a new problem, one that perhaps can be ameliorated by the creation of a new
system, given appropriate sponsors and resources, and the cycle begins again.

Figure 5. Environment: System Inserted Into the Way Things Are

System entity. To describe the complexity of a technological system, it is useful to look at
how it is composed. The system has many diverse, interconnected elements that are
organized in a multi-level structure. Each element has its own structure and behaviors. There
are usually many paths through a technological system, especially through its software, that

1146

need to be tested. The system behavior arises from the connected elements and sometimes
displays known patterns, but at other times shows emergent behavior that is surprising.
Figure 6 shows these aspects of the situation. The blue (dashed border) indicates that the
fourth entity, Cognition, comes into play where there is significant uncertainty.

Figure 6. System and its Elements

Subjective or cognitive complexity (Cognition). People have cognitive limitations. Inability
to understand or predict creates uncertainty, which causes risk and makes people uneasy.
Therefore, people take steps to reduce uncertainty, by dividing up or sharing tasks, or by
creating support tools. This is shown in Figure 7.

Figure 7. Cognition Aspects

In addition to these activities, all activities mentioned so far have some uncertainty; the
ones with arguably the most show half blue (although if they already had two colors, blue
was not added).

Additional activities. Two other steps are necessary before bringing the above threads
together. The first step is to note two generalities: the Way Things Are changes with time (as
does each activity related to any of the entities), and all of the steps consume and produce
information, which can be handled separately from the actual performance of the activity.
The second step is to add two activities performed during element design and build: “element
technology maturity” and “computer and software expertise needed,” which are both Project-
and System-related; see Figure 8.

1146

Figure 8. Two Final Activities

Note that computer and software expertise areas were specified because a lack of these two
kinds of expertise appeared in descriptions of complexity from the literature. (Complexity as
a scientific topic has been applied to computers and software much more often than it has to
other kinds of systems.) Clearly other expertise areas are also needed to develop systems, and
they also occupy this box.

Systems Engineering Complexity Contexts (SECC) chart

The overall chart that shows all these aspects of systems engineering that may be complex is
called the Systems Engineering Complexity Contexts (SECC) chart (Figure 9). The chart is
created by orienting the above threads mostly vertically and showing interconnects among
them. Because the System entity shares many activities with the Project entity and many with
the Environment entity, System is placed in the middle. Project activities are shown on the
left, followed by combined System/Project activities and System activities. Environment
activities follow, and Cognition is on the right. Arrows drawn between the activities duplicate
the above arrows (solid lines) and add new lines (dashed lines), generally between entities.

Figure 9. Systems Engineering Complexity Contexts (SECC)

1146

The best way to understand the story is to start with the Way Things Are, as has been done
in the descriptions above. Other paths are also instructive, particularly looking at the newly-
added (dashed) lines. Essentially, the technological System is built by the Project to solve a
problem in the Environment. Difficulties arise because of complexities related to all three
entities, as well as limitations of people (Cognition entity). Uncertainties lead to risks as well
as to mitigating activities such as tool development. Risks may turn into project issues or may
affect how well the system solves the environmental problem.

If the SECC really addresses the complexities related to systems engineering, then
various taxonomies developed to describe complexities in systems engineering contexts can
be related to the elements of the chart. The test of this hypothesis is described in the next
section.

Verification

Two tests were performed to see whether the SECC chart captures the important kinds of
complexity, as applied to systems engineering. The first was to verify that the types of
complexity noted in Young, et al. could be located on the chart, since that compendium was
the impetus for making the chart. The second was to see whether the chart was general
enough to apply easily to other typologies.

First test: Young, et al. types of complexity. Table 1 lists the types of complexity adapted
from Young, et al. Their sources are shown in the table, but those sources are not included in
the reference section of this paper unless cited elsewhere. Note that their work cataloged the
kinds of definitions discussed by different sources without attempting to resolve overlaps.
Figure 10 shows that indeed all of these can be assigned to specific locations on the SECC
chart. Numbers in the left column of Table 1 correspond to the white numbers in black ovals
on the figure.

Table 1. Complexity Types from Young, Farr, and Valerdi (2010)

Type of Complexity Sources
1 Hierarchical/Structural (# levels) Ross & Arkin, 2009; Kolasa, 2005;

Kitano, 2002; Edelman & Gally,
2001

2 Configuration Complexity Ǝ
3 Complicatedness/ Functional Complexity Ǝ
4 Subjective Complexity Reitsma, 2003
5 Statistical Complexity Ǝ
6 Algorithmic/Deterministic Complexity Ǝ��; Manson, 2001
7 Aggregate Complexity (interrelationships) Manson, 2001
8 Project Complexity (organizational and technological) Baccarini, 1996
9 Project Complexity (assembly, system, array) Sauser et al., 2005; Shenhar & Dvir,

1996
10 Product Complexity (physical) Williams, 1999
11 Structural Organizational Complexity Xia & Lee, 2004, 2005
12 Structural IT Complexity Ǝ
13 Dynamic Organizational Complexity Ǝ
14 Dynamic IT Complexity Ǝ
15 Inter-Component Complexity (can grow exponentially) Rumpler, 2006

1146

Type of Complexity Sources
16 Interface Complexity (by component) Ǝ
17 Implementation Complexity (e.g. code) Ǝ
18 System-level Complexity (emergent) Ǝ
19 Structural Complexity (design and structure, persistent) Laird & Brennan, 2006; Tran et al.,

2002; Fenton, 1994; Lew et al., 1988
20 Conceptual Complexity (psychological) Ǝ
21 Computational Complexity (algorithms) Ǝ
22 Structural/Combinatorial Complexity Mostashari & Sussman, 2009
23 Behavioral Complexity (unpredictability) Ǝ
24 Nested Complexity (technical/socio-technical) Ǝ
25 Evaluative Complexity (multiple stakeholder

viewpoints)
 Ǝ

26 Static* Complexity Sheard & Mostashari, 2009
27 Dynamic Complexity Ǝ
28 Social-Political Complexity Ǝ
29 Technical Complexity (Systems Integration- based) Jain et al., 2008
30 Programmatic Complexity (Systems Integration based) Ǝ
31 Configuration Complexity (Systems Integration based) Ǝ
32 Operational Complexity (Systems Integration based) Ǝ
33 Organizational Complexity (Systems Integration based) Ǝ
* This term was used in an early version made available to Young, Farr, and Valerdi, but was changed
to “Structural” before publication.

Figure 10. SECC Chart Locates Complexity Types

1146

Second test: two additional typologies.

Sheard and Mostashari’s (2010) six types are numbered in the key of Figure 11, which
identifies where the six types appear on the SECC chart.

Size refers to extent (often appearing as amount of money dedicated to the project or to
maintaining an ongoing system) or other countable items such as number of users, number of
hits, number of components or platforms or parts or lines of code. Size appears on the SECC
chart wherever a number of things or people are mentioned.

Figure 11. Types of Complexity Applied to These Activities

Connectivity refers to the number of connections among parts, whether physical
interfaces, logical interfaces (including buses, protocols, or messages), social connections, or
perhaps process sequence. Connectivity appears on the SECC chart when elements,
behaviors, or people interact.

Inhomogeneity, also called diversity, includes the number of different kinds of elements
or interfaces; it also comes into play when a space or ecosystem has a variety of niches or
differentiated areas where characteristics are different from the average. Complexity due to
architectural considerations (such as hierarchies, layers, or clusters) is included here as well.
Inhomogeneity appears on the SECC chart where diversity or architectural patterns are
mentioned.

1146

Short-term dynamics constitute considerations in the operational time frame, for example,
the urgency of action to prevent a catastrophic explosion. This appears on the SECC in the
box about change, which is one of the cross-cutting factors that applies to most things.

Long-term dynamics considers evolution of a species, state, or configuration into an
entirely new system as its pieces adapt, evolve, or perhaps are replaced with a new
technology. This appears on the SECC with respect to the evolution of the Way Things Are
and in the evolution of the organization that forms projects.

Socio-political complexity comprises the non-technical considerations that arise when
human agents have opinions, intents, schemes, and plans to obtain resources and incentives
(this is often considered the realm of social sciences and liberal arts rather than of hard
science and engineering). Socio-political complexity appears on the SECC chart under two of
the Cognition entity activities, two of the Environment activities, and three of the Project
entity activities. Of course, like dynamics, people are involved in almost every aspect of
systems engineering.

Some of the boxes shown on the diagram that do not have indicators of type are
descriptions of the world the way it is (the Way Things Are box and related boxes), or of how
a project works, and do not indicate complexity per se.

Maier (2007) addressed 11 different dimensions of complexity, shown in Table 2. Most of
these dimensions fit well into the Systems Engineering Complexity Contexts structure, but
two do not. His “Situation objectives” and “Feasibility” do not have an obvious location.
However, inserting “Feasibility of meeting intervention objectives” next to “Intend to provide
desired intervention in the Way Things Are” under Environment locates the “Situation
objectives” dimension. Similarly inserting “Feasibility of meeting project objectives” next to
“Understand goals” and “Plan effort vs. budget,” between Project and System, locates
“Feasibility.” In this case the Systems Engineering Complexity Contexts chart can be
extended without significant rewriting to accommodate an additional second set of definitions
or dimensions of systems engineering complexity.

Table 2. Maier’s Dimensions of Complexity

Factors in Complexity of System Development Efforts (Maier, 2007)
Factor Spectrum
Sponsors One, with funding, ņ�0DQ\��ZLWKRXW�IXQGLQJ
Users 6DPH�DV�WKH�VSRQVRUV�ņ�8QNQRZQ
Technology /RZ��ņ�6XSHU-high
Feasibility Easy ņ Not
Control Centralized ņ Virtual
Situation Objectives Tame ņ Wicked
Quality Measurable ņ One-shot, unstable
Program Scope <$1M ņ >$1B
Organizational maturity High ņ First of kind
Technical Scope Discrete Product ņ Assemblage of products and

enterprises
Operational Adaptation Stable ņ Full Scope Adaptation

1146

Uses of the SECC chart

The SECC chart describes how normal systems engineering works, with a focus on the
ways that systems and systems engineering can be complex. More specific ways of dealing
with complexity can be developed if what “complexity” really is can be made clearer. It was
difficult to describe the needed tools, training, measures, standards, or research direction
when systems engineering was seen as a featureless monolith. Defining a number of systems
engineering roles and implementations improved the practice by allowing discussions of
processes, tools, etc., to address specific types of systems engineering (Sheard 1996 and
2000). Clarifying the complexity related to systems engineering is expected to have a
comparable effect, allowing development of specific complexity remedies for specific types
of systems engineering.

In the case of every kind of complexity studied with respect to systems engineering in a
doctoral dissertation (Sheard 2012), complexity was associated with worse outcomes for all
statistically significant associations. It is advantageous to reduce complexity as much as
possible, without creating rigidity or overly restricting the supported operational modes. But
to reduce complexity, it is important to know where complexity appears. The SECC provides
a structure that can be used to identify a broad range of complexities.

To use the SECC, practitioners should step through the diagram with respect to a situation
or system they are involved in. They should identify activities (boxes on the chart) where
their situation or system is more complex than normal (at possibly two levels: a stretch, and
far worse than anything their organization has done to date). The complexities should be
examined to identify risks, which should be analyzed for likelihood and consequence and
mitigated so far as resources allow. The worst complexities should be reviewed periodically
to ensure the risks are being worked down.

Summary

Systems engineering is a broad process, ranging from early analysis through parts lists
and test results. The breadth can be shown schematically by following activity paths that
move among entities. The external world entity owns the larger system into which the system
must fit; it also owns the stakeholders and their resources that can be brought to bear upon a
problem by establishing a project that will create a technological system. The concept of
human cognition is represented in a fourth entity that helps capture other aspects of
complexity associated with the system, project, and environment. Complexity can apply
differently to all these aspects of systems engineering.

Displaying all the entities on one chart shows how various complexities from a broad
range of the literature fit into the systems engineering context. Ultimately, types of
complexity that are shown by research to be predictive of project or system outcomes can be
identified as early indicators of project and system success (Sheard, 2012). Other useful
research would include determining where information complexity fits within the Systems
Engineering Complexity Contexts diagram and how to tell whether the information is
complex.

1146

Acknowledgements

The author acknowledges with appreciation the contribution of INCOSE reviewers who
helped improve the paper significantly with their detailed comments and of Erin Harper, an
excellent technical editor.

References

Britcher, R. N. 1998. “Why some large computer projects fail.” In R. L. Glass (Ed.), Software
Runaways (pp. 65-86). Upper Saddle River, NJ: Prentice-Hall, Inc.

Calvano, C. N., & John, P. 2004. “Systems engineering in an age of complexity.” Syst. Eng., 7(1), 25-
34.

Hall, A. D. (1962). A Methodology for Systems Engineering: Van Nostrand Reinhold.

Kurtz, C. F., & Snowden, D. J. 2003. “The new dynamics of strategy: sense-making in a complex and
complicated world.” IBM Systems Journal, 42(3), 22. doi: 0018-8670/03

Maier, M. 2007. “Dimensions of complexity other than ‘complexity’”, Paper presented at the
Symposium on Complex Systems Engineering, Santa Monica, CA (US), 11–12 January.

Sheard, S. A. 1996. “Twelve systems engineering roles.” Paper presented at the sixth annual
international symposium of INCOSE, Boston MA (US), 7-11 July.

ņņņ��2000. “Three types of systems engineering implementation.” Paper presented at the tenth
annual international symposium of INCOSE, Minneapolis MN (US), 16-20 July.

ņņņ��2012. “Assessing the impact of complexity attributes on system development project
outcomes.” (Ph. D.), Stevens Institute of Technology (Hoboken, NJ, US).

Sheard, S. A., & Mostashari, A. 2010. A complexity typology for systems engineering. Paper
presented at the twentieth annual international symposium of INCOSE, Chicago IL (US), 11-15
July.

ņņņ��2011. “Complexity in large-scale technical project management.” International Journal of
Complexity in Leadership and Management, 1(3), 289-300. doi: 10.1504/IJCLM.2011.042550

Stevens, R., Brook, P., Jackson, K., & Arnold, S. 1998. Systems engineering: coping with complexity.
Hertfordshire: Prentice Hall.

White, S. M. 2005. “Improving the system/software engineering interface for complex system
development.” Paper presented at the 12th IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems, Greenbelt Maryland, 4-7 April.

Young, L. Z., Farr, J. V., & Valerdi, R. 2010. “The role of complexities in systems engineering cost
estimating processes.” Paper presented at the conference on systems engineering research ,
Hoboken NJ (US), 17-19 March.

1146

Biography

Sarah Sheard, Fellow of INCOSE and of the Lean Systems Society,
earned INCOSE’s 2002 Founder’s Award and the CSEP certification. Dr.
Sheard, a member of INCOSE since 1992, has served in both technical and
administrative leadership roles. The most famous of her 40+ papers are
Twelve Systems Engineering Roles, the Frameworks Quagmire and
Principles of Complex Systems for Systems Engineering.

At the Software Engineering Institute of Carnegie Mellon University,
Dr. Sheard researches software engineering process and measurement and

brings software engineering tools and technologies to government clients. Previously she was
a consultant and teacher at Third Millennium Systems and at the Systems and Software
Consortium, and a systems engineer at Loral/IBM Federal Systems and Hughes Aircraft
Company.

Dr. Sheard has a Ph.D. in Enterprise Systems at the Stevens Institute of Technology, a
master’s degree from the California Institute of Technology, and a bachelor’s degree from the
University of Rochester.

1146

