{
"cells": [
{
"cell_type": "markdown",
"id": "dbdcab40",
"metadata": {},
"source": [
"# Data analysis"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "dd0d57cb",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "421458e4",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3360\n"
]
},
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" Ligand# \n",
" Canonical SMILES \n",
" Class \n",
" Data group \n",
" Starting material \n",
" Solvent \n",
" Ligand \n",
" Rh [mol%] \n",
" L [mol%] \n",
" Temperature [°C] \n",
" Hydrogen [bar] \n",
" Time [h] \n",
" Conversion [-] \n",
" Enantiomeric excess [-] \n",
" |ee| [-] \n",
" |ee| [-] (2digits) \n",
" ΔΔG‡ [kJ/mol] \n",
" ΔΔG‡ [kJ/mol] with sign \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" L1 \n",
" C=1C=CC(=CC1)P(C=2C=CC=CC2)[C-]34[CH]5=[CH]6[C... \n",
" PP \n",
" Additional set \n",
" SM5 \n",
" Methanol \n",
" SL-J001-1 \n",
" 1 \n",
" 1.014674 \n",
" 50 \n",
" 5 \n",
" 16 \n",
" 1.0 \n",
" 0.607658 \n",
" 0.607658 \n",
" 0.608 \n",
" 3.789502 \n",
" 3.79 \n",
" \n",
" \n",
" 1 \n",
" L1 \n",
" C=1C=CC(=CC1)P(C=2C=CC=CC2)[C-]34[CH]5=[CH]6[C... \n",
" PP \n",
" Main data set \n",
" SM1 \n",
" 1,2-Dichloroethane \n",
" SL-J001-1 \n",
" 1 \n",
" 1.014674 \n",
" 25 \n",
" 5 \n",
" 1 \n",
" 1.0 \n",
" 0.551837 \n",
" 0.551837 \n",
" 0.552 \n",
" 3.078974 \n",
" 3.08 \n",
" \n",
" \n",
" 2 \n",
" L1 \n",
" C=1C=CC(=CC1)P(C=2C=CC=CC2)[C-]34[CH]5=[CH]6[C... \n",
" PP \n",
" Main data set \n",
" SM1 \n",
" 1,2-Dichloroethane \n",
" SL-J001-1 \n",
" 1 \n",
" 1.014674 \n",
" 25 \n",
" 5 \n",
" 16 \n",
" 1.0 \n",
" 0.530423 \n",
" 0.530423 \n",
" 0.530 \n",
" 2.928818 \n",
" 2.93 \n",
" \n",
" \n",
" 3 \n",
" L1 \n",
" C=1C=CC(=CC1)P(C=2C=CC=CC2)[C-]34[CH]5=[CH]6[C... \n",
" PP \n",
" Main data set \n",
" SM3 \n",
" Methanol \n",
" SL-J001-1 \n",
" 1 \n",
" 1.014674 \n",
" 25 \n",
" 5 \n",
" 1 \n",
" 1.0 \n",
" 0.426129 \n",
" 0.426129 \n",
" 0.426 \n",
" 2.256643 \n",
" 2.26 \n",
" \n",
" \n",
" 4 \n",
" L1 \n",
" C=1C=CC(=CC1)P(C=2C=CC=CC2)[C-]34[CH]5=[CH]6[C... \n",
" PP \n",
" Reproducibility \n",
" SM1 \n",
" Methanol \n",
" SL-J001-1 \n",
" 1 \n",
" 1.014674 \n",
" 25 \n",
" 5 \n",
" 16 \n",
" 1.0 \n",
" 0.387700 \n",
" 0.387700 \n",
" 0.388 \n",
" 2.028241 \n",
" 2.03 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Ligand# Canonical SMILES Class \\\n",
"0 L1 C=1C=CC(=CC1)P(C=2C=CC=CC2)[C-]34[CH]5=[CH]6[C... PP \n",
"1 L1 C=1C=CC(=CC1)P(C=2C=CC=CC2)[C-]34[CH]5=[CH]6[C... PP \n",
"2 L1 C=1C=CC(=CC1)P(C=2C=CC=CC2)[C-]34[CH]5=[CH]6[C... PP \n",
"3 L1 C=1C=CC(=CC1)P(C=2C=CC=CC2)[C-]34[CH]5=[CH]6[C... PP \n",
"4 L1 C=1C=CC(=CC1)P(C=2C=CC=CC2)[C-]34[CH]5=[CH]6[C... PP \n",
"\n",
" Data group Starting material Solvent Ligand \\\n",
"0 Additional set SM5 Methanol SL-J001-1 \n",
"1 Main data set SM1 1,2-Dichloroethane SL-J001-1 \n",
"2 Main data set SM1 1,2-Dichloroethane SL-J001-1 \n",
"3 Main data set SM3 Methanol SL-J001-1 \n",
"4 Reproducibility SM1 Methanol SL-J001-1 \n",
"\n",
" Rh [mol%] L [mol%] Temperature [°C] Hydrogen [bar] Time [h] \\\n",
"0 1 1.014674 50 5 16 \n",
"1 1 1.014674 25 5 1 \n",
"2 1 1.014674 25 5 16 \n",
"3 1 1.014674 25 5 1 \n",
"4 1 1.014674 25 5 16 \n",
"\n",
" Conversion [-] Enantiomeric excess [-] |ee| [-] |ee| [-] (2digits) \\\n",
"0 1.0 0.607658 0.607658 0.608 \n",
"1 1.0 0.551837 0.551837 0.552 \n",
"2 1.0 0.530423 0.530423 0.530 \n",
"3 1.0 0.426129 0.426129 0.426 \n",
"4 1.0 0.387700 0.387700 0.388 \n",
"\n",
" ΔΔG‡ [kJ/mol] ΔΔG‡ [kJ/mol] with sign \n",
"0 3.789502 3.79 \n",
"1 3.078974 3.08 \n",
"2 2.928818 2.93 \n",
"3 2.256643 2.26 \n",
"4 2.028241 2.03 "
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#read Ligand sheet\n",
"data_lig = pd.read_excel('C=C_AH_dataset_v3.6red.xlsx', 'Ligands')\n",
"#filter columns\n",
"data_lig = data_lig.loc[:,['Ligand#','Canonical SMILES','Class']]\n",
"#set missing class to other\n",
"data_lig.fillna('other')\n",
"#read experimental data sheet\n",
"data_exp = pd.read_excel('C=C_AH_dataset_v3.6red.xlsx', 'All data')\n",
"#merge ligand info and experimantal data\n",
"data = data_lig.merge(data_exp, on = 'Ligand#')\n",
"data = data.iloc[:,:-4]\n",
"print(len(data))\n",
"data.head(5)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "4ed8fa28",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" Ligand# \n",
" \n",
" \n",
" Starting material \n",
" Solvent \n",
" Temperature [°C] \n",
" Hydrogen [bar] \n",
" Time [h] \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" SM1 \n",
" 1,2-Dichloroethane \n",
" 25 \n",
" 5 \n",
" 1 \n",
" 192 \n",
" \n",
" \n",
" 16 \n",
" 192 \n",
" \n",
" \n",
" 30 \n",
" 16 \n",
" 192 \n",
" \n",
" \n",
" Methanol \n",
" 25 \n",
" 5 \n",
" 1 \n",
" 192 \n",
" \n",
" \n",
" 16 \n",
" 384 \n",
" \n",
" \n",
" 30 \n",
" 16 \n",
" 192 \n",
" \n",
" \n",
" SM2 \n",
" 1,2-Dichloroethane \n",
" 25 \n",
" 5 \n",
" 1 \n",
" 192 \n",
" \n",
" \n",
" 16 \n",
" 192 \n",
" \n",
" \n",
" Methanol \n",
" 25 \n",
" 5 \n",
" 1 \n",
" 192 \n",
" \n",
" \n",
" 16 \n",
" 192 \n",
" \n",
" \n",
" SM3 \n",
" 1,2-Dichloroethane \n",
" 25 \n",
" 5 \n",
" 1 \n",
" 192 \n",
" \n",
" \n",
" 16 \n",
" 192 \n",
" \n",
" \n",
" Methanol \n",
" 25 \n",
" 5 \n",
" 1 \n",
" 192 \n",
" \n",
" \n",
" 16 \n",
" 192 \n",
" \n",
" \n",
" SM4 \n",
" Methanol \n",
" 50 \n",
" 5 \n",
" 16 \n",
" 192 \n",
" \n",
" \n",
" SM5 \n",
" Methanol \n",
" 25 \n",
" 5 \n",
" 16 \n",
" 96 \n",
" \n",
" \n",
" 50 \n",
" 5 \n",
" 16 \n",
" 192 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Ligand#\n",
"Starting material Solvent Temperature [°C] Hydrogen [bar] Time [h] \n",
"SM1 1,2-Dichloroethane 25 5 1 192\n",
" 16 192\n",
" 30 16 192\n",
" Methanol 25 5 1 192\n",
" 16 384\n",
" 30 16 192\n",
"SM2 1,2-Dichloroethane 25 5 1 192\n",
" 16 192\n",
" Methanol 25 5 1 192\n",
" 16 192\n",
"SM3 1,2-Dichloroethane 25 5 1 192\n",
" 16 192\n",
" Methanol 25 5 1 192\n",
" 16 192\n",
"SM4 Methanol 50 5 16 192\n",
"SM5 Methanol 25 5 16 96\n",
" 50 5 16 192"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"grouped = data.loc[:,['Ligand#','Starting material','Solvent','Temperature [°C]', 'Hydrogen [bar]','Time [h]']].groupby('Starting material')\n",
"\n",
"# Define aggregation functions\n",
"agg_funcs = {\n",
" 'Ligand#': 'nunique', # Count unique values\n",
" 'Starting material': 'unique', # Create set of unique values\n",
" 'Solvent': 'unique', # Create set of unique values\n",
" 'Temperature [°C]': 'unique', # Create set of unique values\n",
" 'Hydrogen [bar]': 'unique', # Create set of unique values\n",
" 'Time [h]': 'unique' # Create set of unique values\n",
"}\n",
"\n",
"# Group by 'Starting material' and aggregate using the specified functions\n",
"grouped = data.loc[:,['Ligand#','Starting material','Solvent','Temperature [°C]', 'Hydrogen [bar]','Time [h]']].groupby('Starting material').agg(agg_funcs)\n",
"grouped = data.loc[:,['Ligand#','Starting material','Solvent','Temperature [°C]', 'Hydrogen [bar]','Time [h]']].groupby(['Starting material','Solvent','Temperature [°C]', 'Hydrogen [bar]','Time [h]'])\n",
"#display conditions\n",
"grouped.aggregate('count')"
]
},
{
"cell_type": "markdown",
"id": "fd20a98a",
"metadata": {},
"source": [
"## Reproducibility and Solvent/Time/Pressure/Temperature effect analysis"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "68ec85cc",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"384"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dupli_df = data[data.duplicated(subset=list(set(data.columns[:-6])-set(['Data group'])), keep=False)]\n",
"#drop constant\n",
"dupli_df = dupli_df.loc[:, (dupli_df != dupli_df.iloc[0]).any()] \n",
"len(dupli_df)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "9d5aba8b",
"metadata": {},
"outputs": [],
"source": [
"data = data[~data['Data group'].isin(['Reproducibility'])]\n",
"\n",
"press_df = data[data.duplicated(subset=list(set(data.columns[:-6])-set(['Data group', 'Hydrogen [bar]'])), keep=False)]\n",
"#drop constant\n",
"press_df = press_df.loc[:, (press_df != press_df.iloc[0]).any()] \n",
"\n",
"temp_df = data[data.duplicated(subset=list(set(data.columns[:-6])-set(['Data group', 'Temperature [°C]'])), keep=False)]\n",
"#drop constant\n",
"temp_df = temp_df.loc[:, (temp_df != temp_df.iloc[0]).any()] \n",
"\n",
"time_df = data[data.duplicated(subset=list(set(data.columns[:-6])-set(['Data group', 'Time [h]'])), keep=False)]\n",
"#drop constant\n",
"time_df = time_df.loc[:, (time_df != time_df.iloc[0]).any()] \n",
"\n",
"solv_df = data[data.duplicated(subset=list(set(data.columns[:-6])-set(['Data group', 'Solvent'])), keep=False)]\n",
"#drop constant\n",
"solv_df = solv_df.loc[:, (solv_df != solv_df.iloc[0]).any()] \n",
"solv_df = solv_df[solv_df['Time [h]']==1]"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "57e6c015",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAMVCAYAAACm0EewAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxU5f4H8M8wzMKwMwhqAiKDueBC4saAa2akpt5ssQ1F28ys7P5Sy93KNm/mQstNxO41Wq5bmmWmqaBmmphrJorigiLIPjDDDOf3B57jnJkzGwwwA9/368XrFWfOnDlnpPOc5/t8n+8jYhiGASGEEEIIIYQQQgghTcijuU+AEEIIIYQQQgghhLQ+FJQihBBCCCGEEEIIIU2OglKEEEIIIYQQQgghpMlRUIoQQgghhBBCCCGENDkKShFCCCGEEEIIIYSQJkdBKUIIIYQQQgghhBDS5CgoRQghhBBCCCGEEEKaHAWlCCGEEEIIIYQQQkiTo6AUIYQQQgghhBBCCGlyFJQiVqWnp0MkEln82bNnT3OfIgDgq6++wvLlywVfE4lEWLhwYZOejzMNGTIEQ4YMae7TcFsXL17k/c3+73//s/meY8eOOfweQloraieaH7UTDUPtBCGNj9qK5kdtRcNQW9F4PJv7BIh7WLt2Lbp06WK2vVu3bs1wNua++uornDx5Eq+88orZawcPHkSHDh2a/qScJDU1tblPoUWYO3cuRo0ahc6dO9vct3Pnzjh48CCOHj2KF198sQnOjhD3R+1E86F2wjmonSCk8VFb0XyorXAOaiucj4JSxC4xMTGIi4tr7tOolwEDBjT3KdSLRqOBQqFwmUba3UVFRdn9t6BQKDBgwABUV1c38lkR0nJQO9H0qJ1wLmonCGl81FY0PWornIvaCuej6XvEaUQiEaZPn47//Oc/6Nq1KxQKBXr16oVt27bx9svJycHkyZMRHR0NhUKBu+66C2PGjMGJEyd4++3ZswcikQgZGRl488030b59e/j5+eHee+/F2bNnuf2GDBmCH374AZcuXeKlRxqfl2mq7cmTJzF27FgEBgZCLpejd+/eWLduneDnf/XVV5g1axbatWsHHx8fjBkzBjdu3EB5eTmeffZZBAcHIzg4GJMnT0ZFRQXvGAzDIDU1Fb1794aXlxcCAwMxYcIEXLhwgbffkCFDEBMTg3379iE+Ph4KhQIpKSnca6aptlqtFosXL0bXrl0hl8uhVCoxdOhQHDhwwOa/0y+//ILhw4fDz88PCoUCarUau3bt4l4/d+4c/Pz88PDDD/Pet3v3bojFYsybN8+h87D3O8jOzsbo0aMREhICmUyG9u3bY9SoUbhy5Qq3z3fffYf+/fvD398fCoUCnTp14r4nQojro3aC2glqJwghtlBbQW0FtRWtCwWliF0MBgP0ej3vx2AwmO33ww8/YNWqVVi8eDE2bNiAoKAgjB8/nnezuHbtGpRKJd5991389NNPWL16NTw9PdG/f39ew8B64403cOnSJXzxxRf4/PPPce7cOYwZM4b7/NTUVKjVarRt2xYHDx7kfiw5e/Ys4uPjcerUKaxYsQIbN25Et27dMGnSJLz//vuCn19QUID09HQsW7YMe/bswcSJE/HQQw/B398fGRkZeP311/Gf//wHb7zxBu+9zz33HF555RXce++92Lx5M1JTU3Hq1CnEx8fjxo0bvH3z8/Px5JNP4vHHH8f27dsxbdo0wfPX6/VISkrCkiVLMHr0aGzatAnp6emIj49HXl6exesGgP/+97+477774Ofnh3Xr1uHbb79FUFAQRo4cyTUi0dHR+Pe//43//e9/WLFiBQDg+vXrePzxx5GYmMg1xvaehz3fQWVlJUaMGIEbN25g9erV2LlzJ5YvX47w8HCUl5cDqEuZfvTRR9GpUyd8/fXX+OGHHzB//nzo9Xqr10wIaRrUTlA7Qe0EIcQWaiuoraC2gphhCLFi7dq1DADBH7FYzNsXABMaGsqUlZVx265fv854eHgwS5cutfgZer2e0el0THR0NPPqq69y23/99VcGAPPAAw/w9v/2228ZAMzBgwe5baNGjWIiIiIEjw+AWbBgAff7Y489xshkMiYvL4+3X1JSEqNQKJiSkhLe548ZM4a33yuvvMIAYGbMmMHbPm7cOCYoKIj7/eDBgwwAZtmyZbz9Ll++zHh5eTGvv/46t23w4MEMAGbXrl1m5z948GBm8ODB3O9ffvklA4D597//LXi9llRWVjJBQUFm12MwGJhevXox/fr1421/4YUXGKlUyhw8eJAZNmwYExISwly7ds2h87D3Ozhy5AgDgNm8ebPFY3344YcMAO7fx165ubkMAGbt2rUOvY9h7vwNfPfddw6/l5DWgtoJaieonaB2ghBbqK2gtoLaCmorLKFMKWKXL7/8EocPH+b9HDp0yGy/oUOHwtfXl/s9NDQUISEhuHTpErdNr9fjnXfeQbdu3SCVSuHp6QmpVIpz587hzJkzZsd88MEHeb/37NkTAHjHdMTu3bsxfPhwhIWF8bZPmjQJGo3GbERk9OjRvN+7du0KABg1apTZ9lu3bnHpttu2bYNIJMKTTz7JGw1q27YtevXqZbbKSGBgIIYNG2bz/H/88UfI5XKHU0wPHDiAW7duITk5mXc+tbW1uP/++3H48GFUVlZy+3/00Ufo3r07hg4dij179uC///0v2rVr59B52PsdqFQqBAYGYtasWfj0009x+vRps2P17dsXAPDII4/g22+/xdWrVx26fiGmI3UMwzT4mIS0VtRO3EHthP3nQe0EIa0LtRV3UFth/3lQW9GyUVCK2KVr166Ii4vj/fTp08dsP6VSabZNJpOhqqqK+33mzJmYN28exo0bh61bt+LQoUM4fPgwevXqxdvP0jFlMhkACO5rj6KiIt6NkNW+fXvudWNBQUG836VSqdXtbCG7GzdugGEYhIaGQiKR8H5+++03FBYW8t4vdE5Cbt68ifbt28PDw7H/fdm01gkTJpidz3vvvQeGYXDr1i1uf5lMhscffxzV1dXo3bs3RowY4fB52Psd+Pv7Y+/evejduzfeeOMNdO/eHe3bt8eCBQtQU1MDABg0aBA2b94MvV6Pp59+Gh06dEBMTAwyMjIc+h5YFy9eNDunvXv31utYhBBqJ4xRO2H/eVA7QUjrQm3FHdRW2H8e1Fa0bLT6Hmly//3vf/H000/jnXfe4W0vLCxEQEBAo3++UqlEfn6+2fZr164BAIKDg53yOcHBwRCJRMjMzOQaPWOm24wLKVrTpk0bZGVloba21qFGhL2ulStXWlwxIjQ0lPvvkydPYv78+ejbty8OHz6Mf/3rX5g5c6ZD5+HId9CjRw98/fXXYBgGx48fR3p6OhYvXgwvLy/Mnj0bADB27FiMHTsWWq0Wv/32G5YuXYrHH38cHTt2xMCBA+3+LoC6B4bDhw/ztt19990OHYMQ0jionahD7QS1E4QQy6itqENtBbUV7o4ypUiTE4lEZjeTH374oUGpk6YjJ9YMHz4cu3fv5hoM1pdffskt2+kMo0ePBsMwuHr1qtmIUFxcHHr06FGv4yYlJaG6uhrp6ekOvU+tViMgIACnT58WPJ+4uDhuZKayshIPP/wwOnbsiF9//RXTp0/H7NmzeenV9pxHfb4DkUiEXr164aOPPkJAQACOHj1qto9MJsPgwYPx3nvvAahbZcNRUqnU7HyM08QJIc2H2glqJ6idIITYQm0FtRXUVrQMlClF7HLy5EnBFQmioqLQpk0bh441evRopKeno0uXLujZsyf++OMPfPDBB+jQoUO9z69Hjx7YuHEjPvnkE/Tp0wceHh6Ii4sT3HfBggXYtm0bhg4divnz5yMoKAjr16/HDz/8gPfffx/+/v71Pg9jarUazz77LCZPnowjR45g0KBB8Pb2Rn5+PrKystCjRw+88MILDh934sSJWLt2LZ5//nmcPXsWQ4cORW1tLQ4dOoSuXbviscceE3yfj48PVq5cieTkZNy6dQsTJkxASEgIbt68iT///BM3b97EJ598AgB4/vnnkZeXh99//x3e3t5YtmwZDh48iMceewzZ2dkICAiw6zzs/Q62bduG1NRUjBs3Dp06dQLDMNi4cSNKSkq4FN/58+fjypUrGD58ODp06ICSkhJ8/PHHkEgkGDx4cP3/oQghTkHthOOonaB2gpDWhtoKx1FbQW1Fi9d0NdWJO7K2UgZMVkkAwLz44otmx4iIiGCSk5O534uLi5kpU6YwISEhjEKhYBISEpjMzEyzFSEsrVIgtPLBrVu3mAkTJjABAQGMSCRijP+0YbJSBsMwzIkTJ5gxY8Yw/v7+jFQqZXr16mW2koKlz2e/k8OHD/O2L1iwgAHA3Lx5k7c9LS2N6d+/P+Pt7c14eXkxUVFRzNNPP80cOXKE22fw4MFM9+7dzb479jXj74VhGKaqqoqZP38+Ex0dzUilUkapVDLDhg1jDhw4IHgMY3v37mVGjRrFBAUFMRKJhLnrrruYUaNGcdf573//W3BliZycHMbPz48ZN26cw+dh6zv466+/mIkTJzJRUVGMl5cX4+/vz/Tr149JT0/njrFt2zYmKSmJueuuuxipVMqEhIQwDzzwAJOZmWn1emmlDEIaF7UT1E6wqJ0ghFhCbQW1FSxqK4gpEcNQaXhCSMt18eJFREZGYs2aNXj66achFovtmmuv1+uxd+9e3Hvvvfjuu+8wYcKEJjhbQgghTY3aCUIIIbZQW9F4qKYUIaRVmDJlCiQSCTZs2GBz32PHjkEikeDee+9tgjMjhBDiCqidIIQQYgu1Fc5HmVKEkBZNp9Ph+PHj3O9RUVEIDAy0+p6qqiqcOnXKofcQQghxT9ROEEIIsYXaisZDQSlCCCGEEEIIIYQQ0uRo+h4hhBBCCCGEEEIIaXIUlCItyqFDhzB+/HiEh4dDJpMhNDQUAwcOxGuvvVav402aNAkdO3Z07knW0+nTp7Fw4UJcvHjR6cfOzs7G4MGD4e/vD5FIhOXLlwMAdu3ahbi4OHh7e0MkEmHz5s1O/VyNRoOFCxdiz549Tj0uIYQAQHp6OkQiEffj6emJDh06YPLkybh69Wpzn57bW7lyJVQqFaRSKUQiEUpKSgAAc+fORXh4ODw9PREQEOD0zz1w4AAWLlzIfR4hpHUyvr9b+2nNz5nbt2/HwoULm/s0Goz6Ki2bZ3OfACHO8sMPP+DBBx/EkCFD8P7776Ndu3bIz8/HkSNH8PXXX2PZsmXNfYoNcvr0aSxatAhDhgxxeqAsJSUFlZWV+PrrrxEYGIiOHTuCYRg88sgj6Ny5M77//nt4e3vj7rvvdurnajQaLFq0CAAwZMgQpx6bEEJYa9euRZcuXVBVVYV9+/Zh6dKl2Lt3L06cOAFvb+/mPj23dOzYMcyYMQNTp05FcnIyPD094evriy1btuDtt9/Gm2++iaSkJMhkMqd/9oEDB7Bo0SJMmjSpUYJehBD3cPDgQd7vS5Yswa+//ordu3fztnfr1q0pT8ulbN++HatXr3b7wBT1VVo2CkqRFuP9999HZGQkduzYAU/PO3/ajz32GN5///1mPDPXd/LkSTzzzDNISkritl29ehW3bt3C+PHjMXz48GY8O0IIaZiYmBjExcUBAIYOHQqDwYAlS5Zg8+bNeOKJJwTfo9FooFAomvI0G6yqqgpeXl5N8lls4dZnnnkG/fr147afPHkSADBjxgyEhIQ0ybkQQlqnAQMG8H5v06YNPDw8zLa3JK7SNjX1eVBfpWWj6XukxSgqKkJwcDAvIMXy8OD/qdfW1uL9999Hly5dIJPJEBISgqeffhpXrlyx+hmxsbFITEw0224wGHDXXXfhH//4B7dNp9Phrbfe4j6jTZs2mDx5Mm7evMl7b8eOHTF69Gj89NNPuOeee+Dl5YUuXbogLS2N2yc9PR0PP/wwgLoOFZuOnJ6ebvV8z507h8cffxwhISGQyWTo2rUrVq9ezTuuSCSCXq/HJ598wh134cKF6NChAwBg1qxZEIlEvOwsW8dllZSU4LXXXkOnTp247/mBBx7AX3/9hYsXL6JNmzYAgEWLFnGfPWnSJKvXRAghDcV2WC5dugSgbqq2j48PTpw4gfvuuw++vr7cA6699/Ldu3djyJAhUCqV8PLyQnh4OB566CFoNBpun08++QS9evWCj48PfH190aVLF7zxxhvc6wsXLoRIJDI7X/ZebTx9m207Nm7ciNjYWMjlcm409/r163juuefQoUMHSKVSREZGYtGiRdDr9XZ9P9988w0GDhwIb29v+Pj4YOTIkcjOzuZeHzJkCJ588kkAQP/+/bl7d8eOHTF37lwAQGhoKNee2Htc1qFDhzBmzBgolUrI5XJERUXhlVde4b6j//u//wMAREZG0vQcQohVjj6Pb9u2DbGxsfDy8kLXrl2xbds2AHX34a5du8Lb2xv9+vXDkSNHeO9n25FTp05h+PDh8Pb2Rps2bTB9+nReOwAADMMgNTUVvXv3hpeXFwIDAzFhwgRcuHCBt9+QIUMQExODffv2IT4+HgqFAikpKQDq7qf33Xcf2rVrx53r7NmzUVlZyTsn9vnceDrjxYsXcfHiRYt9CdN7N9s2HT16FBMmTEBgYCCioqIcuhZLqK9CAAAMIS3E1KlTGQDMSy+9xPz222+MTqezuO+zzz7LAGCmT5/O/PTTT8ynn37KtGnThgkLC2Nu3rzJ7ZecnMxERERwv3/88ccMAObvv//mHW/79u0MAOb7779nGIZhDAYDc//99zPe3t7MokWLmJ07dzJffPEFc9dddzHdunVjNBoN996IiAimQ4cOTLdu3Zgvv/yS2bFjB/Pwww8zAJi9e/cyDMMwBQUFzDvvvMMAYFavXs0cPHiQOXjwIFNQUGDxGk+dOsX4+/szPXr0YL788kvm559/Zl577TXGw8ODWbhwIXfcgwcPMgCYCRMmcMe9fPkys3HjRu77PHjwIHP06FG7j8swDFNWVsZ0796d8fb2ZhYvXszs2LGD2bBhA/Pyyy8zu3fvZqqrq5mffvqJAcBMmTKF++ycnBxb/9SEEGKXtWvXMgCYw4cP87az9/LPP/+cYZi6e71EImE6duzILF26lNm1axezY8cOu+/lubm5jFwuZ0aMGMFs3ryZ2bNnD7N+/XrmqaeeYoqLixmGYZiMjAzunvrzzz8zv/zyC/Ppp58yM2bM4M5rwYIFjNCjGXsdubm53LaIiAimXbt2TKdOnZi0tDTm119/ZX7//XcmPz+fCQsLYyIiIpjPPvuM+eWXX5glS5YwMpmMmTRpks3v7O2332ZEIhGTkpLCbNu2jdm4cSMzcOBAxtvbmzl16hTDMHXtwNy5cxkAzNq1a7l799GjR5kpU6YwAJiffvqJa0/sPS7DMMxPP/3ESCQSpmfPnkx6ejqze/duJi0tjXnssccYhmGYy5cvMy+99BIDgNm4cSPXdpSWltq8NkJIy5acnMx4e3tzv9fneTwmJobJyMhgtm/fzvTv35+RSCTM/PnzGbVazWzcuJHZtGkT07lzZyY0NJT3/uTkZEYqlTLh4eHM22+/zfz888/MwoULGU9PT2b06NG883zmmWcYiUTCvPbaa8xPP/3EfPXVV0yXLl2Y0NBQ5vr169x+gwcPZoKCgpiwsDBm5cqVzK+//sr1DZYsWcJ89NFHzA8//MDs2bOH+fTTT5nIyEhm6NCh3PtzcnKYCRMmMAC4e+XBgweZ6upqJjc3l7uHmwLALFiwgPudbZsiIiKYWbNmMTt37mQ2b97s0LUIob4KYVFQirQYhYWFTEJCAgOAAcBIJBImPj6eWbp0KVNeXs7td+bMGQYAM23aNN77Dx06xABg3njjDW6baVCqsLCQkUqlvH0YhmEeeeQRJjQ0lKmpqWEY5k7nY8OGDbz9Dh8+zABgUlNTuW0RERGMXC5nLl26xG2rqqpigoKCmOeee47b9t133zEAmF9//dWu72PkyJFMhw4dzB7Up0+fzsjlcubWrVvcNgDMiy++yNuPbaw++OCDeh138eLFDABm586dFs/x5s2bZg0fIYQ4CxvM+e2335iamhqmvLyc2bZtG9OmTRvG19eXe2BOTk5mADBpaWm899t7L//f//7HAGCOHTtm8VymT5/OBAQEWD1fR4NSYrGYOXv2LG/f5557jvHx8eG1KQzDMB9++CEDgBcAMpWXl8d4enoyL730Em97eXk507ZtW+aRRx4xOyfTgB97DcYDPI4cNyoqiomKimKqqqosnucHH3xg9n0QQohpUMrR53EvLy/mypUr3LZjx44xAJh27doxlZWV3PbNmzfzBqPZzwbAfPzxx7zPevvttxkATFZWFsMwDBdgWbZsGW+/y5cvM15eXszrr7/ObRs8eDADgNm1a5fV666trWVqamqYvXv3MgCYP//8k3vtxRdfFGxX6hOUmj9/Pm8/R65FCPVVCIum75EWQ6lUIjMzE4cPH8a7776LsWPH4u+//8acOXPQo0cPFBYWAgB+/fVXADBLvezXrx+6du2KXbt2Wf2MMWPGYN26daitrQUAFBcXY8uWLXj66ae5qYPbtm1DQEAAxowZA71ez/307t0bbdu2NZtm0Lt3b4SHh3O/y+VydO7cmZta4qjq6mrs2rUL48ePh0Kh4J3DAw88gOrqavz222+Netwff/wRnTt3xr333luvayCEEGcZMGAAJBIJfH19MXr0aLRt2xY//vgjQkNDefs99NBDvN/tvZf37t0bUqkUzz77LNatWyc4baFfv34oKSnBxIkTsWXLFq5NaoiePXuic+fOZuc8dOhQtG/fnnfObB2OvXv3Wjzejh07oNfr8fTTT/PeK5fLMXjw4HpPkbP3uH///TfOnz+PKVOmQC6X1+uzCCGEVZ/n8bvuuov7vWvXrgDqptEZ109itws9p5vWKXz88ccB3Ol/bNu2DSKRCE8++STvnNq2bYtevXqZnVNgYCCGDRtm9jkXLlzA448/jrZt20IsFkMikWDw4MEAgDNnztjz9ThMqI105FqMUV+FGKNC56TFiYuL4wra1tTUYNasWfjoo4/w/vvv4/3330dRUREAoF27dmbvbd++vc1AUEpKCjZs2ICdO3di5MiRyMjIgFar5QW5bty4gZKSEkilUsFjmHZGlEql2T4ymQxVVVVWz8WSoqIi6PV6rFy5EitXrrTrHJx93Js3b/ICbYQQ0ly+/PJLdO3aFZ6enggNDRW8/ysUCvj5+fG22Xsvj4qKwi+//IL3338fL774IiorK9GpUyfMmDEDL7/8MgDgqaeegl6vx7///W889NBDqK2tRd++ffHWW29hxIgR9bouoeu4ceMGtm7dColEYvWchdy4cQMA0LdvX8HXTesz2sve47I1Xtg6IYQQ0hCOPo8HBQXxfmffZ2l7dXU1b7unp6fZM33btm0BgOt/3LhxAwzDmA2KsDp16sT7Xeg+X1FRgcTERMjlcrz11lvo3LkzFAoFLl++jH/84x/17j/YYnoujl6LMeqrEGMUlCItmkQiwYIFC/DRRx9xKwKxjUV+fr7Zg++1a9cQHBxs9ZgjR45E+/btsXbtWowcORJr165F//79ecvNBgcHQ6lU4qeffhI8hq+vb0Muy6bAwECIxWI89dRTePHFFwX3iYyMbNTjtmnTxmbheEIIaQpdu3blBissESow7si9PDExEYmJiTAYDDhy5AhWrlyJV155BaGhoXjssccAAJMnT8bkyZNRWVmJffv2YcGCBRg9ejT+/vtvREREcNlBWq0WMpmMO7alB3NL59yzZ0+8/fbbgu9p3769hW8AXPv3v//9DxERERb3c5S9x2ULylLbQQhxhqZ+Htfr9SgqKuIFpq5fvw7gTv8jODgYIpEImZmZvPs8y3Sb0H1+9+7duHbtGvbs2cNlRwF1RbvtZdzeGGODZ0JMz8XRazFGfRVijIJSpMXIz88XHE1gU1jZB3E2Bfa///0vb9T28OHDOHPmDN58802rn8Pe6JYvX47MzEwcOXIEn332GW+f0aNH4+uvv4bBYED//v0bdF0s9sZuz+iHQqHA0KFDkZ2djZ49e1ocIXKUI8dNSkrC/PnzsXv3bsG0Y8CxayKEkKZWn3u5WCxG//790aVLF6xfvx5Hjx7lglIsb29vJCUlQafTYdy4cTh16hQiIiK4lYOOHz/Oa5+2bt3q0Dlv374dUVFRCAwMtPt9QN2gi6enJ86fP282TaMh7D1u586dERUVhbS0NMycOdNih4baDkKIPRrjedyW9evXY8aMGdzvX331FYC6KYDsOb377ru4evUqHnnkkXp9BhscMr1HmvZHjPepqqqCl5cXtz00NBRyuRzHjx/n7b9lyxa7z6Mh10J9FWKMglKkxRg5ciQ6dOiAMWPGoEuXLqitrcWxY8ewbNky+Pj4cFMo7r77bjz77LNYuXIlPDw8kJSUhIsXL2LevHkICwvDq6++avOzUlJS8N577+Hxxx+Hl5cXHn30Ud7rjz32GNavX48HHngAL7/8Mvr16weJRIIrV67g119/xdixYzF+/HiHri8mJgYA8Pnnn8PX1xdyuRyRkZGCU/8A4OOPP0ZCQgISExPxwgsvoGPHjigvL0dOTg62bt2K3bt3O/T5jh73lVdewTfffIOxY8di9uzZ6NevH6qqqrB3716MHj0aQ4cOha+vLyIiIrBlyxYMHz4cQUFBCA4O5i3pSgghzcXee/mnn36K3bt3Y9SoUQgPD0d1dTXS0tIAgKtV8cwzz8DLywtqtRrt2rXD9evXsXTpUvj7+3MBqAceeABBQUGYMmUKFi9eDE9PT6Snp+Py5ct2n/PixYuxc+dOxMfHY8aMGbj77rtRXV2NixcvYvv27fj0008tTo/r2LEjFi9ejDfffBMXLlzA/fffj8DAQNy4cQO///47vL29sWjRIoe/R0eOu3r1aowZMwYDBgzAq6++ivDwcOTl5WHHjh1Yv349AKBHjx4A6tqj5ORkSCQS3H333Y2ehUwIcS+N8TxujVQqxbJly1BRUYG+ffviwIEDeOutt5CUlISEhAQAgFqtxrPPPovJkyfjyJEjGDRoELy9vZGfn4+srCz06NEDL7zwgtXPiY+PR2BgIJ5//nksWLAAEokE69evx59//mm2L3u/fO+995CUlASxWMwFa5588kmkpaUhKioKvXr1wu+//84F0ezR0GuhvgrhNHeldUKc5ZtvvmEef/xxJjo6mvHx8WEkEgkTHh7OPPXUU8zp06d5+xoMBua9995jOnfuzEgkEiY4OJh58sknuaWrWaar7xmLj49nADBPPPGE4Os1NTXMhx9+yPTq1YuRy+WMj48P06VLF+a5555jzp07x+0XERHBjBo1yuz9gwcPZgYPHszbtnz5ciYyMpIRi8UWV8wwlpuby6SkpDB33XUXI5FImDZt2jDx8fHMW2+9xdsPDqxo4chxi4uLmZdffpkJDw9nJBIJExISwowaNYr566+/uH1++eUXJjY2lpHJZAwAJjk52eo1EUKIvSytEGfKdMUmY/bcyw8ePMiMHz+eiYiIYGQyGaNUKpnBgwfzVmZat24dM3ToUCY0NJSRSqVM+/btmUceeYQ5fvw47/N+//13Jj4+nvH29mbuuusuZsGCBcwXX3whuPqeUNvBMHWrBc2YMYOJjIxkJBIJExQUxPTp04d58803mYqKCpvf2+bNm5mhQ4cyfn5+jEwmYyIiIpgJEyYwv/zyC7ePI6vvOXJc9vtMSkpi/P39GZlMxkRFRTGvvvoqb585c+Yw7du3Zzw8PBxamZYQ0nIJ3csb+jxu7zMy+9nHjx9nhgwZwnh5eTFBQUHMCy+8IHjfTUtLY/r37894e3szXl5eTFRUFPP0008zR44c4fYZPHgw0717d8FrPXDgADNw4EBGoVAwbdq0YaZOncocPXrUrH+g1WqZqVOnMm3atGFEIhGvLSktLWWmTp3KhIaGMt7e3syYMWOYixcvWlx9T+i+bu+1WEJ9FcIwDCNiGIZp4jgYIYQQQgghhBDSIkyaNAn/+9//UFFR0dynQojbqd8yKoQQQgghhBBCCCGENAAFpQghhBBCCCGEEEJIk6Ppe4QQQgghhBBCCCGkyVGmFCGEEEIIIYQQQghpchSUIoQQQgghhBBCCCFNjoJShBBCCCGEEEIIIaTJeTb3CbQEtbW1uHbtGnx9fSESiZr7dAghpN4YhkF5eTnat28PDw8at3AmaisIIS0BtRONh9oJQkhL4UhbQUEpJ7h27RrCwsKa+zQIIcRpLl++jA4dOjT3abQo1FYQQloSaiecj9oJQkhLY09bQUEpJ/D19QVQ94X7+fk189kQQkj9lZWVISwsjLuvEeehtoIQ0hJQO9F4qJ0ghLQUjrQVFJRyAja91s/PjxoQQkiLQNMGnI/aCkJIS0LthPNRO0EIaWnsaStoIjghhBBCCCGEEEIIaXIUlCKEEEIIIYQQQgghTY6CUoQQQgghhBBCCCGkyVFQihBCCCGEEEIIIYQ0OQpKEUIIIYQQQlqNffv2YcyYMWjfvj1EIhE2b95s8z179+5Fnz59IJfL0alTJ3z66adm+2zYsAHdunWDTCZDt27dsGnTpkY4e0IIaVkoKEUIIYQQQghpNSorK9GrVy+sWrXKrv1zc3PxwAMPIDExEdnZ2XjjjTcwY8YMbNiwgdvn4MGDePTRR/HUU0/hzz//xFNPPYVHHnkEhw4daqzLIISQFkHEMAzT3Cfh7srKyuDv74/S0lJavpUQ0iRulFWjuFKHsmo9/Lw8EaiQItRPjlKNDmVVNajQGVBWVQN/Lwl85J7oEKiw67h0P2s89N0SQlxFqUaHwgodyqpr4OclQbC3FP4KqV3vbWn3MpFIhE2bNmHcuHEW95k1axa+//57nDlzhtv2/PPP488//8TBgwcBAI8++ijKysrw448/cvvcf//9CAwMREZGhl3n0tK+W0JI6+XI/cytMqUo1ZYQQoC8okrM/PYY7v84E498dhD3L8/Ea98ew5WiSpRoajB70wkkfZyJRz//Dfd/nInZG47jUlFlc592k6B2ghBCrLtRUoVrpdXQGmqh09f9XCutxo2SquY+NZd18OBB3HfffbxtI0eOxJEjR1BTU2N1nwMHDlg8rlarRVlZGe+HEEJaG7cKSlGqLSGktbtRVo03N53A/pwi3vasnCJcKa3GG5uFX3tz0wlcKdY05ak2C2onCCHEslKNDjpDLWprGZRqauAt88S1kiqs3PU3qvS1KNXomvsUXdL169cRGhrK2xYaGgq9Xo/CwkKr+1y/ft3icZcuXQp/f3/uJywszPknTwghLs6zuU/AEUlJSUhKSrJ7/08//RTh4eFYvnw5AKBr1644cuQIPvzwQzz00EMAgOXLl2PEiBGYM2cOAGDOnDnYu3cvli9fbjHVVqvVQqvVcr/TqAYhpKkUa3TINAk6sbxlYrOAFCsrpwjl1frGPDWX4CrtBEBtBSHE9ZRU1eANk4GNBJUS80Z3x/s/ncGcpK52T+NrbUQiEe93tgKK8XahfUy3GZszZw5mzpzJ/V5WVkaBKUJIq+NWmVKOaqxUWxrVIIQ4Q6lGh/MFFcjOK8b5mxU2R6hLNTpcLbY8vaKi2mD1/eXVNfU6z5assdoJgNoKQohrKNXocPZ6GXJvVljMtF2y7RQe6hOGCp31dqS1atu2rVnGU0FBATw9PaFUKq3uY5o9ZUwmk8HPz4/3QwghrU2LDko1VqrtnDlzUFpayv1cvnzZ+SdPCGnRrpVUYXpGNob/ay/Gpx7A8GV78VJGNq5ZqelRWGE9aOUjF1t93Vcuqde5tmSN1U4A1FYQQprftZIqTP/qKEYuz0SlzoAsK9m0oX5yGrywYODAgdi5cydv288//4y4uDhIJBKr+8THxzfZeRJCiDtyq+l79dEYqbYymQwymcyJZ0kIaU1KNTrM2nAcmecKedv3nSvE7A3HsXJiLG/6BLtKUlGlDqF+ciRGB3PvVUjFSEmIRGxYAOQSMRJUSsFOR4JKCV95i7/l10tjtBMAtRWEkOZVqtFh1v+Oc1O+NTayoDQ6Q6sZvKioqEBOTg73e25uLo4dO4agoCCEh4djzpw5uHr1Kr788ksAdSvtrVq1CjNnzsQzzzyDgwcPYs2aNbwp3C+//DIGDRqE9957D2PHjsWWLVvwyy+/ICsrq8mvjxBC3EmL7qE0VqotIYQ0RGGFziwgxdp3rhCFFTouKHWtpIoXwHp1RDSmDYkCGAZ/5JVgxcRYrN2fi1W7cxDsI8X6qQOwZNspXmAqQaXE2+N7oEOgovEvzs1QO0EIaakKK3TIzCnkBi985Z5IfeIeyCViHM0rRlpWLi9Q5Sv3hI/UesZtS3HkyBEMHTqU+52t65ScnIz09HTk5+cjLy+Pez0yMhLbt2/Hq6++itWrV6N9+/ZYsWIFV3sQAOLj4/H1119j7ty5mDdvHqKiovDNN9+gf//+TXdhhBDihlp0UGrgwIHYunUrb5ulVNtXX32Vtw+l2hJCGkuZlekRCqkYtQyD8wUVKK3SQauvRa+wAPxxqRgAMLxLCDxEwFvjeqCqxoCrJVWYktAJseGBSMvKxRNf/Ib3HuqJOUldUanTw0cuga9UjDCld1NdnluhdoIQ0lKVVOmgkIp5gxcstUqJFRNjMSMjGxqdAWqVEh4iwM+rdWRKDRkyhMuKFZKenm62bfDgwTh69KjV406YMAETJkxo6OkRQkir4lZBKUq1JYS0BH4WpkewnYfFW0/xVthTq5T45Il7EOQjhUarh4EB3t7+F69YrXEHY8q6IwCANclxWLU7BysnxjbuBbkQaicIIQS4WqyB3LMuQ2rt/lyz4ubs7ykJkcjOK8ZkdSQ8RKCV9wghhDQ5typ0fuTIEcTGxiI2tq6DNXPmTMTGxmL+/PkAYDHVds+ePejduzeWLFliMdV27dq16NmzJ9LT0ynVlhAX5+iqda4m2EeKQdHBZtvZzkOmQOfhWkk1Tl4pRc7NSqz6NUewg7F2fy5SEiJ5298aF9OqOhnUThBCWrsrtzR4fcNx/HjqOuI7Kc3aC9b+nCKM7B6K2PBAfP17HkJ85U18poQQQgggYqzlrhK7lJWVwd/fH6WlpbSUK2k12OLbZdU18POSINhb2iTBD9MaSwAwKDoY7z7UE+0DvBr9853lWkkVZm84jn1G1/HV1P54/ItDgvuvSY7j/pvNhLK0H/v69hkJ+Gjn3/jw4V52/9vQ/azx0HdLCGlsN8qq8c9vjyEzpwgKqRhpk/risc9/s7h/6hP3IOP3PCwZG4OOwfZN86Z7WeOh75YQ0lI4cj9zq+l7hBDX0FyBIUdXrXMVQgG89gFeWDkxFtfLqnGluAoAoK+1PEagr2XgJRGjQqvnthmvvKfV10IuESNQIYFCKkZseAD0tQx2ningFU4nhBDSMl0rqcLFwkreanu2VtyLDPbG+Nj2CFS0jlpShBBCXA8FpQghDmnOwJAjq9a5CmsBPG+pGEfzShDiK4NWX4sQP+GpEwqpGJFKb9ys0ELm6cFtEypem6gKxprkOHiIRPj1bAEAoNxKYXVCCCHuj22bJ/YL57YppGIwDINEVTAyc8zbzsToYJy8WooEVbDLtZ2EEEJaDwpKEUIc0pyBIWur1gHWgy/NMd3QVgDvrXEx2Hb8GlfvY/owFRJUSmSZ1P94dlAnLNl2Cr3CA9HeXw61SonY8EDB4rVsx+P1+7vgs70XAAC+FgqrE0IIcW9s23ZLo8NkdSSCfaRQSMUAgBUTY7H+0CUkqzuiFozZ4hiLHuzOrexKCCGENBcKShFCHNKQwFBDWVq1jmUp+NJc0w1tBfCuFFfxOglpWblYcXulPDYwpZCKMaJrKJb/cg5/5JVg9eP3YPpQFWoZ8DKkjGXmFGJyhRYanQGDooMR7EMj4IQQ0tIItW2J0cFIS47Db7m3uIGL3y7cQkpCJFLUkdDqa+HvJYHYA9h6/Bo+2nkOg6KDXXb6OyGEkJaPglKEEIfUNzDkDOyqdfsEAj2Wgi+NNd3QnswrWwE8PcNAIRVzNT80OgNmZGQjJSESc5K64tItDToEeuF6WTX3+otfHcVzgzthYCfz1fuMVdfUBaTee6gndTQIIaSFKdXoMOt/x82m5WWeKwQY4LX77sbyX84BqGs7TAcxtr6k5rJpXXX6OyGEkNbBo7lPgBDiXtjAkJDGzsrxV0jx7kM9zT7fWvDFnumGjrpWUoXpGdkYsyoLu/4qwMXCShy5VIy/r5ejVHPneLYCeGKRCCsmxnJTLYA7nYdLtzSYtv4obpZree/R6Az4aOc5mxlpnYK9sXJiLNq50YqEhBBC7JNfVi1YJwqoy5bVGawXOL9aXM0rgk61BwkhhDQXypQihDiEDQzN3nCcl7HUVFk57Kp1hRU6lFfXwFcuQbCP5fpQzp5uyGZe/XGpWLDQuPG0QGuZXcO6tIFWb0Cwtwzpk/vCSyIGIMLuszfw2d4LUEjEmD5MhTa+MhhqzQvVZl8ugVqlNKspxZ5DO385jXoTQkgLYZydq5B6Qqev5WXamlJIrT/it/Hltw9Ue5AQQkhzoaAUIcRu7ENxhbYGS8bFQKevRaVWbzMw5Gz+Cvs/y9nTDdnMq+nDVIKFxk2nBb77UE+z6YPDurTB7KSuWLL1FLd0N1BXeHb6UBXUUUpIPMXIzivGqt053Ep7DBiu1lRaVm7dKnsQ8YJViTRljxBCWhTB2lGqYKyYGIsZGdmCgSmFRGxx4EKtUsLfS8IFtaj2ICGEkOZEQSlCiF2aq1h4Q9WnDpU1bOZVbFiAxULjxvU52gd4Yd7obrh8SwOtvhYyz7pZ04u3njJbZW9/ThE8ALw0PBof/vQX15kwrjX1whAVDAwDvYGB2ANYNLY7KrR6aGtqEaCQIMRXRgEpQghpISzVRczMKQQDBikJkWZtkVqlxB+XbmH+6O5YvO2U2ap7k9WRuHKrCikJkTh+uYQGMgghhDQrqilFCLHJVrFw4zpKrqY+daisYTOvtPpaq/sVa3Tc9yICMGXdEUxbfxRT1h0BALOAFCszpwg+cgkvgwq4U2vqiS8OoUZfi5T0w3jks0OYt+Ukfj59AxKxCNGhvtSxIISQFqJUo0N+abXFuohZOUWI76TkbWODTgu2nsZ7P51BijoSa5LjkPrEPViTHIfY8EDMyMiGgWEwukc7qj1ICCGk2VGmFCHEJnuKhbtyMMTROlTWsJlXbMaTJaVVNXgpIxtvjYvBMZP6T7YCWmVV1utcGb9/f04RUtSRVA+EEEJaEDY7eWK/cKv7STw9kDapL6prDJB5eiD7cglmbziOlIRIxIYFwFvqCU2NAafzy5CWlQuNzgC1SonsyyVQCqwaSwghhDQ1CkoRQmxydrHw5mBah6pUo8P5ggqUVdfAz0uCYDsfztnMq71/37RaryP7cgn2nSvEG5tOIK5jECarIwHUBZFsBbS8ZWKrrwu9n+qBEEJIy2CcnTwpvqPgPgqpGCkJkVBIxDAYGIgA/JFXjK9/z8O7D/U0W4RDrVJixcRYfHXoEh7vH4EZGdkY3/uuprkgQgghxAoKShFCbHJ2sfDm1tD6WO0DvPBATFsM7KTEvC0necdhp07MyMgGUDe94vX7u6CoQocUdSSeSegEf4UEidHBgtlnapUSBWVas9X2jF/PvlzC23ZXoBcuFlXCp1Jnd3CNEEKIazLOThZaaZVd/EIo8PRFcl+s2PW32YBJXc1CESapO+KljGzERQTSYAYhhBCXQDWlCCE2sVPWhLjbqj3Oqo/lr5AiUCHBAz3a4fvparN6HcarIV0prsLk9MNI258LPcPgmS+PYN7oblCrhGuBLPz+FJaMi0GCyesJKiUWjOmOr3/P47YlqpT46eR1jF19AMOX7cVLGdm4VlLl6NdCCCHERZRV10AhFWP6MBXiwgMxf3Q3JBq1wSkJkYKrv+7PKcKyHWfRrb2/4HHZgY64iEAqbk4IIcRlUKYUIcQmdsra7A3HeavY1bdYeHNyZn2swgod5mw8gTXJcZi2/qjF/djpdmwH4rF+4fjxZD5G92yPFHUktypf9uUSzMjIxtxRXbFk2yn0Dg/EZJPX3/3xDB7rF45Vu3OQoFIi2Sgri72G2RuOY+XEWLf6dyGEkNauVKNDYYUOtQyDzS+qsXjrKazanQOFVIz1U/tjUnxHaPW1CAvysrj6a2ZOISapO1r8DH8vCbUPhBBCXAoFpQghdnFmsfDm5Mz6WOyxhKZXsEyn27GFyb/+PQ8LxnTAG5tO8AJ9apUSPTr4441NJ7Hrr5uCn/vqiM4Y1aMdfjiRb5aVBbhH8XlCCCF3XLmlwZyNx5GZU4Tpw1TIzivm2hSNzoBblTpu9dbUJ+6xeixri2kEKtyv3SaEENKyUVCKEGI302Lh7kioPhZbMDY2LAA1tQzO36wwq83EjmDzCqN71R0rLSsXKybGAgAvMGVaX8rY4rExaHc70JdfWo0LhZVcNtSVYuvT72r0DPQig8WRcgAo1uiQnVfsUBF3Qggh9hFsE+p5n71arMGsjce59iM2LMDs/m48+GFrsYwAL+E6jwkqJeQSqtxBCCHEtVBQihDSqrD1sdjsJEsFY40Ln1sqjP7W+B74+pn+uKWpgcTDAynqSExJ6ASFVIxKrZ6bjmeayRQepEC72wXV/RVSXCis5E3/W5McZ/Ua/C10OIyVVtVwo+qOFHEnhBBiXUMXyzBWqtGhtKoGKepIPNE/AnKJGJ4eIrP9jAc/bGXnhgV6IUGlRJbJIMmk2zULP3y4Fw1UEEIIcRkUlCKEtCqm9bEsFYxlazN98HAvi4XR39h4HL3DA7lgFpsZdfmWBt//eU2wdtWg6GCE+Mp420yzt6x1OIwLyxsH14wlquoK4iqkYmh0BqozRQghTmJrsQxH77PFmhos3X4GmUb3+4xn+mP6MBViwwKg1ddCLhHjaF4xZm84jsf6hWN0z3Z4sGd7LNl2mrdKq1qlxEvDoqGrrRWsScgOktD0bkIIIa6EglKEkFbHuD6WVm95Gty+c4Uo0ejQKyyAKzDLdg7SsnKRlVOEyepIbv/9OUXwEImw7OFeUKuC7SoMX6qpK2q7JjkOIpEIR/OK8fXveXj3oZ7cMS293zi4xk5BHNhJCbFIBAbA188OQEr6YRRW6KjOFCGEOIEzF8so1egwb/MJXkBKIRXDS+qJ7LxiXtukVinxRXJfVOv0uFmuhdJbiheHRWFyQiSqawyQeXrgRlk1Qn1lKKmqsTq925HaiYQQQkhjo6AUIaRVYutjZecVW9xHIRVD7OEh2DlYMTEWMzKyzQrKZp4rRGlVDaJDfW0WhheaAqJWKblg08wRnTE7qQuuFFdBKvaAqo0PN+0PqAuuffBwL+TerECgtxRvbTvNO8+E252Yx//9GzQ6A3VECCHEAntrRDV0sQzjz/GSinkBKQBISYjEBzv+MsuU3Z9TBBH+4mXnJqqUmDe6O/KKNWjjK4O/lwSFlTr4yj0xfZgKaVm5ZtPHAcBXoLYiIYQQ0lwoKEUIadWECp+zUhIisej7k4KdA/Z1oYKzebc08JZ5on2Al8URc0tTQPbnFMEDQNqkvvj59A289cMZrlOxeVo8IuDN27+iWo+s80W8lZpYWTlFEOEsUhIisWp3DnVECCFEgCM1oqy1GYD1gI/p5witoidU5Jxlmp2bmVOEd386gxnDO+O9n/iBrERVMDZNi8f1Ui0OX7rFBaiMp4C3dqmpqfjggw+Qn5+P7t27Y/ny5UhMTBTcd9KkSVi3bp3Z9m7duuHUqVMAgPT0dEyePNlsn6qqKsjlcueePCGEtCButwRHamoqIiMjIZfL0adPH2RmZlrcd9KkSRCJRGY/3bt35/ZJT08X3Ke6uropLocQ0szYwudCBnZSmo1is/bnFGFgJyWyL5cIvr5gy0ncKKvG+YIKZOcV4/zNCpRqdNzr1qaAZOYU4Wa5Fqt25/BGuYU6OwaGwcjuoXiifwTSJvXF9GEqKKRio2MVIjYsgDoihBAiwFaNKOP7NmC9zbB2nxX6HKFBDdPsW1uvd2vvj2UCmVWZOYVYvO00Dl+6hey8YqyYGIsRXUPMppC3Vt988w1eeeUVvPnmm8jOzkZiYiKSkpKQl5cnuP/HH3+M/Px87ufy5csICgrCww8/zNvPz8+Pt19+fj4FpAghxAa3CkpRA0IIcTa28LlpJyNRpYTUxrLbYg8R0rJyedvUKiVOXivFo/3C8c9vj2H4v/ZifOoBDF+2Fy9lZONaSRUA21NATDseQp2dayVVWLL1FMas3I9p648iJf0w1/kwDkwBaHUdERrAIITYw54aUcYstRlCNQNtfQ67qIUxoUCVtddjwwKsDp7EhgVgf04R1h24iLfG9+BNAW/N/vWvf2HKlCmYOnUqunbtiuXLlyMsLAyffPKJ4P7+/v5o27Yt93PkyBEUFxebZUaJRCLefm3btrV6HlqtFmVlZbwfQghpbdxq+p5xAwIAy5cvx44dO/DJJ59g6dKlZvv7+/vD39+f+33z5s1WGxBCiPuytx6IELbw+fWyalwprgsaZV8uQXm13ur7GIbhZTKxq++dvFpqdUW/lRNjBaeAsMXKY8MC4C31RNqkvjiaV4yz+WVYPDbGrED6rA3HzTojxlML2Skg4UGKVtURYQcwUlNToVar8dlnnyEpKQmnT59GeHi42f4ff/wx3n33Xe53vV6PXr16CQ5gnD17lreNBjAIcW/1qRFlvFiGpZqB9nxOWlYuVkyMBXDn3p19uQQJKiWyBAJNapV5dq69mVWZ5wpRUa1HqJ/V3VsFnU6HP/74A7Nnz+Ztv++++3DgwAG7jrFmzRrce++9iIiI4G2vqKhAREQEDAYDevfujSVLliA2NtbicZYuXYpFixY5fhGEENKCuE1QypUaEK1WC61Wy/1OoxqENC3TAJTc0wMHzhchyFsKrb4WxZoa/J57C0M6t3EoGPPWD2d4I9nTh6mgVinNgktA3ah4hwAvrEmOM1tye+XEWCz/5ZzgZ7Aj78E+UiRGB3Ofp5CKsWJiLNbuz+XVE0mMDsZSgdFta6P7+3OKkHK77sig6GCE+Mrs/g5aAlcZwKC2ghDXV98aUexiGQ35HI3OgBkZ2UhJiMS8Ud1QXWOAn5cEj8WFYc6mE7x7fIJKiUnqSMzIyOYdI8DL/gGOSi0tdgEAhYWFMBgMCA0N5W0PDQ3F9evXbb4/Pz8fP/74I7766ive9i5duiA9PR09evRAWVkZPv74Y6jVavz555+Ijo4WPNacOXMwc+ZM7veysjKEhYXV46oIIcR9uU1QypUaEBrVIKT5CBWkTVQFY9rQKExZd4TLXFKrlIgM9oZCKrar4yAU5BEaxQbqAj3vjO+Ban3dZ8klYhzNK+YKydoauS7W1AWlloyNwZubT9QFkRIiBbOrMs8V4o1NJ7ByYizvOuyZ/mdrOklL5EoDGNRWEOL62BpR+wSC/M6sxWfpczQ6A45fLsEzCZG8e/V7D/VEbmElSqtqIJeIEewjxfJf/uZl5w6KDkaEUsE7rqUBDrVKiQn3dHDKtbQUIpGI9zvDMGbbhKSnpyMgIADjxo3jbR8wYAAGDBjA/a5Wq3HPPfdg5cqVWLFiheCxZDIZZLLWNXBECCGm3CYoxXKFBoRGNQhpeqUaHUo0NZi7+YTZlLXMnELUguFNWWODO++M62FXUEYoyGM8ij3r/i64Wa5Fh0Av+Mg8seD7U/jlTAG3r1qlxIqJsZiRkS04cs27lqoavJSRjaXje2Bc77uQoo5EG1+ZxRWX2Owq4+uwNbrfKdjbLJDVGrjSAAa1FYRY1pAp187E1oiaveE4L2Dk7KC+o5/TPsALekMtPtmTg6ycIi77aUpCJ8g8PRCokHJTBo2Pa2mAY39OEeZvOdkq2wVTwcHBEIvFZm1CQUGBWdthimEYpKWl4amnnoJUav179PDwQN++fXHunHDmNCGEkDpuE5RypQaERjUIaVpsdtSk+I5WC7qmGC2VzW6r1FmvC8WyFOTR6AxYtTsHo3u0Q1xEIABgeka2WVbV/pwieIhE+HFGIuRSscWRd7YmyL5zhZiz6QSW/qMH5mw8gcf6mdc6MmZa18TW6H47f3mr7ni4wgAGtRWECBPKeB0UHYx3H+qJ9s1Q/64+NaKa4nPCld5Y9khvFFfqUFath5/cE4HeUoT6yS0et1pvcGiAozWSSqXo06cPdu7cifHjx3Pbd+7cibFjx1p97969e5GTk4MpU6bY/ByGYXDs2DH06NGjwedMCCEtmdusvmfcgBjbuXMn4uPjrb63Pg1Iu3btGnS+hBDnMF5G29a0OImnh9mqc8ZTHazxkXviq6n9kfrEPUib1BfTh6m4YxkHeazVcso8Vwh9LYNQP7ng6kxsIXR2xb595wpRXVOLlRNj0SnY2+r5mdY1qe8KUC2dKw1gENKUSjU6nC+oQHZeMc7frECpRmf7Tc3A+J5ujF0IornO218hRVSID3qHByIqxKfR7qGOfk6onxxd2vmhX2QQurTzMwtImR5XZ6OdFCrc3hrNnDkTX3zxBdLS0nDmzBm8+uqryMvLw/PPPw+gLtP16aefNnvfmjVr0L9/f8TExJi9tmjRIuzYsQMXLlzAsWPHMGXKFBw7dow7JiGEEGFukykF1DUgTz31FOLi4jBw4EB8/vnnZg3I1atX8eWXX/LeZ6sBGTBgAKKjo1FWVoYVK1bg2LFjWL16dZNcEyHEslKNDvml1ZjYLxyT1ZHwk1u/ZYlFIm4KHRuM8rcxlQ4QHrVnp+N983seb+W70irrHabSqroHfnbk+mpJFS4WaXiF0I0DZeXVNYgK8QEAh+uaNNXovjuhEXDSGrla5pE11gL7lMnTcPUt3N7aPProoygqKsLixYuRn5+PmJgYbN++naslmJ+fj7y8PN57SktLsWHDBnz88ceCxywpKcGzzz6L69evw9/fH7Gxsdi3bx/69evX6NdDCCHuzK2CUtSAkNbKVWpvNCWhTtY742OQqApGZo7wtLiDF4qQnVfM1ZZKtGPlOUuj9ux0vA8f7sUbmVZIrd82jTO12MyqaeuPWtyf7SDUt66JoytAtQY0gEFaE1uZR65WQ8jWIg2tLZOnoe276ft95J5NUri9JZg2bRqmTZsm+Fp6errZNn9/f2g0GovH++ijj/DRRx856/QIIaTVcKugFEANCGl93GkE3FksdbLe+uEM1iTHASKYZTVNvr1UtkZnwOykLogNC0BYoMLmZ9majldRrUeo351tHh4iqFVKsyKy7HmIPfh1ixxZ2Ykyn5yDBjBIa+JumUeUyXNHQ9t3ofeP6BqCt8bFYO7mk41auJ0QQghxFrcLShHSmrjbCLizWOpkaXQGTFl3BFumq5FXpIFWXys4Le7yrSouO8nWA76jo/aeHiJMvl1Q3TgwxQbGTINSjmZAUeaTc9AABmkt3C3zyJFAfUvWkPa9VKNDQbkWebc0mKyORK+wAKRl5UKjM2Dn7VVhP3i4Fyqq9TTAQQghxOVRUIoQF+ZuI+D1ZTr9wFrdJo3OgKIKHaasO2JxH5nnnTUc9p0rxKwNxzFvdDeIPURmUyNsjdp7mRROV3pLsXT7GcSGByJFHckLjH3zex4+fLiX2TEoA4oQ0ljcLfOovlOV3YEjU/Hq275bq4HIDs7sPFOA2Ul6rl4hIYQQ4sooKEWIC3O3EXBT9jygCz1gfzW1v9XjBigkFkfa1Solsi+X8LZlnivE5VsaTFl3xCxzytqovVqlxNG8ErT1k3Pn7a+QYtHYGMzecJxbdlshFWPe6G4Y07MdLhRWws9LZ3atlAFFCGkM7ph51BIC9abtm9zTAwu+P4VfbmcqAdYzdevTvlurgQiAq6do6f2EEEKIK6KgFCEuzN1GwI3ZUyvD0gP2gQtFSFApkSVQt2lQdDDa+ckFR9qNa0uZ0t5eJtt0aoS/QorFY2Pw5uYTgtPxZmRko1/HIF5nybhDVamtgZ+XFPM2n8ScjScsXishhDQGd808cudAvVD7lqBSYpI6Escul+CxfuGIDQuAVl+LS0WVEHuIeAtmAPVr361lV+3PKULK7anllt5PCCGEuCIKShHiwtxxBBywv1aGpQfstKxcrJgYCxFEvJX2jDtZ/grwRtrlEjG2ncjn1ZYyZjqlz3hqRGmVTnA6Hnus0irzEWe2Q3WjrBr//PYYMk0CaC297hchxHW0hMwjV2acFRXkLcXcTSfNVoHNyimC1NMDXyT3xQc7/uIylgAg8XbbZTwg4+khQmJ0sGAbaKl9t5VdxQ6+uPLzASGEEGKKglKEuDB3HQEvKNdarZVRUK6Fv0Jq8QFbozNgRkY21k/tj0nqjvD3kiBQITXrZBmPtJdqdDh+uUQwICU0pc94aoNcIuZ1IExV1xhwraTKLOvpWkkVLhZWmgWkjK+1pdT9IoS4NnfOPHJlxllRCqkYX6b0MwtIsbq198eyHX9hf04RFFIxUhIizTKmamsZvL7hOP64VIwVE2NRyzC8LF1r7but7CqZp4fLPx8QQgghpigoRYiLc7cR8GslVci7ZXkVMwDIu6WBt8zT6gO2RmfArcq6guabp8WbFWwVqlflyJQ+dmpDqUaHYk0N1k/tj9Kquoyro3nF3EpGiSolDlwowqd7z/OynthssIn9wq1eK9X1IIQQ98Te5/+4VIxXR0QjqXs7XC623L7FhgVg1e4cKKRirJgYi7X7c80ypl4cqsIfl4q5wZeUhEhu2l14kAIhvjKL7bu17OnE6GCo2vhQdi4hhBC3Q0EpQtyAu4yAsw/wk+I72tx39obj+ODhXnYVLDetjWGpXtXb42Iwpld7JMd3hMTTA2KRCAcvFJlN6TOe2lCsqcHK3efM6kmtmBiLrw5dwuykrhi3ej80OgMv64mdemjrWqmuByGEuKfCCh2X0VRQVo1F207x6jaZYqfPpSREYu3+XF67AtQtulHLMFxBco3OwAta7Zo52Gpbbyt7uh3VMCSEEOKGPGzvQggh9mEDNdmXS6BWKQX3YYNN+84VolKrx7sP9cSg6GCzfSarI5GWlWtWG8Navao5m07gWmkVsi+XoNbAINhHij/zSswCUu8/1BMAcKmwEvNMCpwDdQVj1+2/iCf6RyC3sJJ7v3HWEzv10Nq1Ul0PQghxX2XVNVyAKdRPjv05RVbv+f5edYMQsWEBZu0Ka39OEWLDAgRfsyezls2e3jVzMDZPi8eumYOxcmIsBaQIIYS4LcqUIoQ4DRuoYQuVewC8ekumU+nKqmrQ6fZ0g+tl1bhSXAUAXJHxuIhAs9oY1lYfOppXgvmju2PRtlPcFIqUhEg8PyQKMk8Pri5Vpc6A6RnZmBTf0WI9qMycQkxSd4Snh4jbZpz1xE49ZK8VAK8Tkkh1PQghxK35ySXclLwn+kcAsHLPVynhK/eEWqXkMqYssfS6vZm17pI9TQghhNiDglKEEKdhAzVsrYyvnx2ASeVawRXtgDsP4OwDdls/OQordFB6SzG+912CtbOsrT6UkhCJJdtOcR0FdmrEqt05SIwOxqrbHQk208pWPSgA3BRC06wn49oexnVBtPpaBHhJEBXiY7YEOCGEEPcR7CPFxaJKAHdWcDWtBcW2b218ZUhJP4x3H+oJhURs9bjGq8GyKLOWEEJIa0VBKUKI0xgHajQ6A34+fQPZecWC0xiEHsDtGf31k0vMVjVii5PHRQRaXEUv8/ZKeOx/A8IdA2MhfjJuCqFp1pNpbQ/2c9l9KSBFCCHNR2gxDEezi/wVUnQIrJsWx07b259TZFYLSq1SIjY8EIUVOnz9ex7mj+6GxOhgwazexOhgFJRredscWTHPGddFCCGEuBIKShFCrHLkAdg0UMNOcxAByLJzyWtbgn2kSJvUFyt3n+N1CoZ1aYPBndtYfW95dQ0Yo9+NOxmmEqODIfP0wNbpCRZXO7R3ZcSGdCKoA0IIsQfdK+6wtBjGuw/1RHsHay+19ZNjUHSw1Wl7ybenpSeolHisXzj+8ckBvPtQTzAMI9j2KaRi9OsY5PCKus68LkIIIcRVUFCKEGJRfR6ATQM1fl4SLHukNyqq9Q4/gFuyeneOWSCpW3t/6GzU8TCt12Gpk6FWKTFvdDd88NNf+PDhXjZXQ2KVVdcAIv72hnQiqANCCLEH3SvusLYYxuwNx7FyYizvvm0rmMcOtszacJw3bQ8A2vl7obaWQUm1Dl88HYcDRqu9svtOG6KCXCKGvxe/7XO0DXT0ugghhBB3QUEpQoighjwAC03DC/VzznkVVuiQmWM+JSI2LAAHLxRZzXxipwsaTzE07WT4e0mw5++byC2sxM4zBSis0Fl90LfWGfSWiuv9HVIHhBBiD7pX8FlbDGPf7Wnc7PeRX1KFPX/fRIivDFp9LYo1Nfg99xaGdG7DW82ufYAX3hobg5ybFVyR8uzLJXjpdgBqTXIcpqw7wvss45qGu2YORlSIT5NdFyGEEOJOKChFCBHkqg/Algqda/W1VjOfFj3YHf4KKa4VazB/dDcs2noKmUa1QRJVwZic0BFPp/0OAPj2uQH4froa1XoDDl+8hQAvCUJ8ZWYj7NY6g0vGxtT7O3TV758Q4lroXsFnbTEMoG4aN1B3/750S4Ntx6+ZtReRwd5QSMW87y1AIcG6Axexz8J3bc9nNoS910UIIaT+aCp886CgFCFEkKs+APtZWDJb5ulhcVUkdgW9K7c0mLXxOLLzSpCSEIlJt7OjQvxkOHOtDCeulgIA1k6KQ3m1Hqt+5U8TTLxdD4SdDmOrM1ip01u9Fmvfoat+/4QQ10L3Cj5LbQSLncZdoqnByt3nzDJrs/NKcOFmBQIUElworOR1SoxrJrIGRQdzxdBtfWZD2HtdhBDSGjkjmERT4ZsPBaUIIYJc9QHYeIU/ANxKfG18ZUhUBSMzp9BsBb5B0cF4tE8HzNl4nOuACK2cFBsWgLmjuuLCzUpsO5Fv1lnJNJkOY6szqNEZrL5u7Tt01e+fEOJa6F7BZ6mNiA0LAADUMgxKNTpoavRm93iFVIwVE2Oxdn8u3th0kttu3CkRWtyC3Ucoi0popVlnXFdjfAYhhLgjZwSTaCp887K+HjohpNViH4CF2PMAXKrR4XxBBbLzinH+ZgVKNTqnnBc7Wj0oOpjrQGTnFeOxz39Dsroj1Colb//E6GBMG6rC+ZuVyBSoNQXUTfWLDQuAt8wTnUN9EeInF6xLBdyZDgPY7gz6yDyRWM/vsKHfPyGkdaB7BZ+lNmLKuiOYsu4IRny0Dy9lZEMiFkMhFfPem5IQibX7c83u/2ynpFRTNxUyKsQHvcMDERXiw9VQZD/TWENWmrV2XY31GYQQ4m5sBZPs7X/YMxWeNB7KlCKECLI2VcHWAzA7YvHHpWJuhPpiYSXCAhUI9ZPV++HZODV37qhu8PQQ4Z3tp7kOhGnR8rBABf7IK0ZK+mF8+HAvq8fW6mtxV4AEZdV6rpCtJex0GGsj12qVEj+duo7k+I4WlwW3tapffb9/QkjrQfcKc95SMeaN7gYDw+DtbacFg0yLtp5CSkIkL2s2NizALNPW+D3W6nMJrTzrLfNEWVUNDl+8BW+pGN4yTwR4Ser9b2IpU6s1/hsTQgjgvLqKNBW+eVFQihBiUX0egNkRiz8uFXPTIIwf8us7N1soNTdRFYxkdUccuHALGp2BK1rOTtdoH+AFfy8JVj1+D4J9pFBIxRan1AV4SdDOXw6JWGez4WGnw1jqDKpVSkxWR2JGRjYAWF0W3BrqgBBC7EH3ijuM24o1yXEWM2QzzxXihcFRvPbJ1oBEaZX1tsF45dlrJVX457d/8laLVauUeGlYNCKCFLzV/RwhtLotIYS0Vs4KJtFU+OZFQSlCiFWmD8DstDxLhQTZEYvpw1RWp0E4MjfbUmpuZk4hasHwRruNa4IYdzYSVUpu2W7TwFSCSokIpYI7n98v3oJapRScwmc6Hca4M1is0aG0qgbZl0sw4/ZS4QAatCw4dUAIIfage4V5W2EryCSTePCyXWWe1qtaKGRiq+0f7zz+d5wXkALurAo7umd7PBDTttX/exFCSEM5K5hEdfuaF9WUIoTY7VpJFaZnZGP4v/ZifOoBDF+2Fy9lZONaSRW3DztiERsWYFddJntqT1lLzWXrQbEs1QTJzClC6q/nMXdUV972xOhgvPuPnrgrUAGgrmM3pHMbvDQsWrA+ldB0GLbGiNhDhCnrjmDV7hzBjCxK/SWEEOdj25G/CyowWR2J6cNUUEjFNoNMAV5SfPBwL3w1tT9Sn7jn9oIZSsF9E1XByL5UbLX9YxVW6MwCUqz9OUUI8ZVRfRIXkJqaisjISMjlcvTp0weZmZkW992zZw9EIpHZz19//cXbb8OGDejWrRtkMhm6deuGTZs2NfZlENKqOauuItXta15uF5SiBoQQyxqruDh7bHsKCQYppFiTHAeF1HoiZnl1jc0gF3s9RZXWr0Orr4VCKsb0YSqM7B6KJ/pHIG1SX65jwsrMKUTnUF+sSY7DmuQ47Hx1EFZNjEWHIAXveO0CvNC1rS/eGdcD22ck4H/PD+T2tTblglJ/XQe1FYS0DsbtyMOfHkRK+mFk59VNHz95rdRscIGVGB0MH7knKrV6PP7FIUxbf/T2ghmR5gMSKiWmDVVhyQ9neNstFdK1NZ1Eq6+lQYpm9s033+CVV17Bm2++iezsbCQmJiIpKQl5eXlW33f27Fnk5+dzP9HR0dxrBw8exKOPPoqnnnoKf/75J5566ik88sgjOHToUGNfDiGtljODSezsh10zB2PztHjsmjkYK208+xPncKvpe2wDkpqaCrVajc8++wxJSUk4ffo0wsPDLb7v7Nmz8PPz435v06YN999sA7JkyRKMHz8emzZtwiOPPIKsrCz079+/Ua+HEGdyxnKo1tgqJFhUqUOlzoC5m08iM6euloc13jJPi0GuBVtOYsGY7piz6QRXF8SaQIVEcMqeWqXEiomxvKl0BeVafP17Ht57qKfVRqY+U2Eo9dc1UFtBSOtgabBkf04RPADMSuqKwZ1DAPzFy55Vq5RIju+IuZtOYPYDXbl6gxqdATMysvHc4E6YdX8XAEB1TS185Z7Yceq64DkIFdK1NUAh8/SgQYpm9q9//QtTpkzB1KlTAQDLly/Hjh078Mknn2Dp0qUW3xcSEoKAgADB15YvX44RI0Zgzpw5AIA5c+Zg7969WL58OTIyMgTfo9VqodVqud/LysrqeUWEtF7OrKtIU+Gbh1tlShk3IF27dsXy5csRFhaGTz75xOr7QkJC0LZtW+5HLL6TOWHcgHTp0gVz5szB8OHDsXz58ka+GkKcx1nLoVojNPLLZietSY5DUaUOl4oq0Ss8AAqpGNmXSyyOUA+KDoZU7GExyHV3Oz/M2XjneqwdS61SwlvmiXUCU/b25xRh7f5cpCREcts6BXs32qgHpf66BmorCHF9zsjstTZYkplThBtl1Vix628sfLA71t+eorcmOQ6x4YGYkZGNnWcKsPD7U7w2AgC6t/fHez/9hQdX7ccjnx1E0seZOHzxFlZMjOVl37JMs56sTSdRq5QoKNfSIEUz0ul0+OOPP3Dffffxtt933304cOCA1ffGxsaiXbt2GD58OH799VfeawcPHjQ75siRI60ec+nSpfD39+d+wsLCHLwaQghwp5RG7/BARIX4NPozd2POTmmN3CZTim1AZs+ezdtubwNSXV2Nbt26Ye7cuRg6dCj32sGDB/Hqq6/y9h85cqTVjgaNahBX46zlUK0xHfm1VFCczU6aveE43n2oJwDwgkVsgKagvNriZ5kuy52WlYsVE2MFj7V4bAw0Or3FFZb25xQhRR3J7d/OX+5QgfXCCp3NorbGaBWs5kVtBSGuz1mZvfZMk9v9101MSeiEJ74QnkJlugqfpbqE7O/GC2uwTLOe2AEK02tkV9/rGKSgNqEZFRYWwmAwIDQ0lLc9NDQU168LZ8S1a9cOn3/+Ofr06QOtVov//Oc/GD58OPbs2YNBgwYBAK5fv+7QMYG6bKqZM2dyv5eVlVFgihAX19izU1ojtwlKuVIDsnTpUixatKiBV0SI8zhrOVRrTKem2Xpwf6xfOGZkZCMlIRIp6kj4yiVQeku5AI1QIXCW6YpJ7JQKS8fKziu2eu5afa3D2UoNaXAo9bf5UFtBiGuzldnryMqs9kyTA4DSKuttoPEqfKaDIsaMBzlYlqZmtw/wwqqJsSgo16K0qgYKqRjeUk8EKCTUPrgIkUjE+51hGLNtrLvvvht333039/vAgQNx+fJlfPjhh1w74egxAUAmk0Emk9Xn9AkhzcCZbRi5w22CUixXaEBoVIO4mqYosM2O/M7ecNzuB3eNzsDts2vmYESF+HD7GAe5FFIxUhIiERsWAK2+FhEmhccBWD2Wretnp+w5kiFFDY57o7aCENfkzMxea3X81Colsi+XAIBdq/CxGa72LKzBsjXYQQMUrik4OBhisdhsUKGgoMBs8MGaAQMG4L///S/3e9u2bRt8TEKIa2uK2SmtkdvUlHJmA3Lu3Dnu9/o0IDKZDH5+frwfQpqTs5ZDtcV4VQpbgS7TB3fTc2CDXCO6hmDFxFhk5xVjyrojmLb+KH48dR0JVupRmR7L1vU7MmUPsK/BIa6J2grSWrlLfQtnZvZaquOnVikxWR2JtKxcAHV1CRNV1ttIth6J0tt6W9Ep2Bubp8Vj56uDsGRsDArKq136+ybmpFIp+vTpg507d/K279y5E/Hx8XYfJzs7G+3ateN+HzhwoNkxf/75Z4eOSQhxbU0xO6U1cptMKeMGZPz48dz2nTt3YuzYsXYfx1IDYlwrhBoQ4m5Ms5hYjVFgmxv5Laiwuh87Mm3tHNoHeGHR2BhcLKzEE/0jMCWhE47mFePr3/O4elRZJjWk3hnfA0WVOlworOTVeXLm9VOD476orSCtkavXtzCuz+clUCjcmKOZvexgSUG5Fnm3NADqglDGq66evlaK10bejVowgjUOjdsIW6uotvOXo1JncOnvm9g2c+ZMPPXUU4iLi8PAgQPx+eefIy8vD88//zyAukzXq1ev4ssvvwRQt9hFx44d0b17d+h0Ovz3v//Fhg0bsGHDBu6YL7/8MgYNGoT33nsPY8eOxZYtW/DLL78gKyurWa6REOJ8TTE7pTVym6AUQA0IIdY0dYFtaw/uidHBCA9SYNfMwVbP4VpJFWb9709ekXK1SskFmB7rF465o7qhusYAX7kEcokHFnx/Cr+cKeD2N+4IOOv6qcFxb9RWkNbE1acbmwbMpg9TIUGl5A04sOqb2csOlnjLPM0GJ9QqJR7vH4Gp6w7jtfvuxsIx3VGp1Qu2EaUaHW6UV2PuqG5Ysu00MnPuHCfxdgALgEt/38Q+jz76KIqKirB48WLk5+cjJiYG27dvR0REBAAgPz8feXl53P46nQ7//Oc/cfXqVXh5eaF79+744Ycf8MADD3D7xMfH4+uvv8bcuXMxb948REVF4ZtvvkH//v2b/PoIIY3D1sAFraxaP24VlKIGhBDrmrp+xeKxMXjrh9Po0s6PqwcVqJAgPEiBuwLN60IZ4zpSVgqlr9qdg3u7hKB3eCBKNTpMz8i22RFwxvU3ZYNTnxX+iHXUVpDWpCnrWzh6vxIKmBmvpmqaCVvfzN4bZdUortShQqvHoge7Q2eoxbWSatQyDJc1FRcRiCGd26CdhUymukGS48jMuVPn8PkhURB7iKDRGXCjrBoKqZjqibQg06ZNw7Rp0wRfS09P5/3++uuv4/XXX7d5zAkTJmDChAnOOD1CiAtqytkprYmIYRimuU/C3ZWVlcHf3x+lpaVUM4S0OEKdEHbqwpn8MnyR3BfLdvzFCy7ZM43hfEEFhv9rr8XX1yTHYcq6I1xRc1v7mxY/b6hrJVUWGxxLnZr6fIarTQGh+1njoe+WNIbsvGKMTz1g8fXN0+LROzywwZ9Tn/uVpfs2G/QZ3aMdlwlb38zWvKJKzNl0gjctL0GlxNvje0BfW4vyKuGsKGOWBj2Aukyr2PBArNqdg10zB6OsuqZJvm9XRveyxkPfLSHuge0fNcXsFHflyP3MrTKlCCFNS6gTsvQfPbD9eD4ycwoxfZgKH+z4i9cZACxPYzAOcMk8PTB9mAppWblc3Q9jWn0tLyupqes8NfZ0SFefckMIcQ9NMd24vvcrS/dtdjVVNhPWkfMoKNeipKoG3lIx/GSeeNMkIAXUZWC9uekEpg+LRniQwmaQ31r2E7uaLFDXztD0bkIIIbS6qnNRUIoQwsMGjkqrdNDqa9ErLAB/XCrmAkchvjKuzkZsWABW7c4RPI7pNAahAJdapcSKibG8grSsAC8JLw22OToCjdng0BQQQogzNMV04/rerxpy3zZuixQyT4gAlGh0+C33FhgG6NkhAJUyAyYndEKv8ECzAY6snCLMSupiV5Df1qAHu5osOzhB9UQIIcS1UXkM90JBKUJaCGfcfO0JHLEP5wB4/y2EzV6yNMrOjm6nJETygluJ0cGICvFBqJ+c29bSOgK0wh8hxBmaor5Ffe9X9b1vW2qLpiZ0woBIJVbtPoflv5zjvSY0wKHRGjBJHYkSTY3V78FW8Ezm6cGdL9UTIYQQ1+aK5TGIdRSUIqQFaMjN11ZmlGngSObpwb3X+L+FsKPg9k6NAOo6F4se7M4LSAGN0/FqzlEUmgJCCHGWxp5uXN/7VX3u29YGMUb1aIftJ/LNVu6zNMChkInx6Oe/cSvnse2h6b3fR+6JEV1DsNNoZVeWWqVEQbmWd75NvdotIYRYQ1lBd1B5DPdEQSlCXJS9DUxDbr72TqkzDhxlXy6BWqXE/pwi3n+bcqQelK9cgi+n9IPewOBoXrHF/ZzZEWjuUZSWlvlFCGlejTnduCH3K0fv29YGMUL95GYBKZbpAEeiKhgFZVoAQKZRe8gu1GF6739rXAwA8AJTidHBWDI2BoEKidn5Uj0RQograO7nWVfDtiHsghrs6uByiRhH84pRVEnlMVwRBaUIcUGONDD1rfXh6JQ6dqpeWlYu0ib1hVgk4i3tvd/K0t4+Muu3mvLqGqTtz8VkdSTO5pdBmRBpcV9ndARcYRSFpoAQQtxFQ+9X9ty32YGYokqdxX1sTRlnX1erlFg0tjse+ewg99q+c4Uo0dRg7paTgvf+uZtP4oOHe2F2kh6V2hr4e0mhM9SiWKOD4fZC1XRfJoS4Eld4nnU1ZdU1UEjFWDExFmv35/L6MmqVEuNj72rGsyOWUFCKEBfjaANT31ofjkypA+5M1YuLCETHIAU38l2prcE743pAZ6hFpdZ86e1rJVU4cqnYYkaVWqVE9uUS7M8pgghokoCMtWs/cqkYJZqaJkmDpikghBB30Zj3K+OBmDXJcRb3szVlvEOgF9Ykx6GgrBo/nsxHYQU/wFWh01sdxKmo1iMqxIcyDwghboEWzTHnJ5cgJSESa/fnmvU79ucUYeH3p7CqFQbrXB0FpQhxMY42MPWt9WHvakNA3RSG8CAFds0czOuE2DPyPWvDcfxxqRgrJsbCA0CmUQOhVikxWR2JGRnZAOpWS6qusT4S7gyWrp0dWZm7+QTvPBuzM0JTQAgh7qIx7lemAzHWpoXfKKtGokrJuz+z1Colfj59A9l5xZisjsSSH86Y7VNRrbd6LuXVNSjV6LD375uYFN8RE/uFc1M+0rJyW23mASHENbX2RXOESp0E+0gR30lpcXXwzFYarHN1FJQixMU42sDUt9aHPasNscd476GeaFePgIxxgG1GRja+fnYA/g/AleIqyDw9kH25xGy1JOMV+xorW8nStVsaWWnNadCEENKYTAdiLE0LV6uUaOfvhenDogGRiPeexOhgLHqwO2oZBncFeJm1K+z7xR4iq+fiK5egWFODbcevmX02W2uROjOEEFfRmhfNsZbRaiurtqUH69wRBaUIcTGONjD1rfVhLZhlKTPKUcYBNo3OwAWjpq0/avE9vnKJU6ZOWAtqWbr22LAAiyMrrTUNmhBCGpPpQIxGZ8CMjGykJERiSkIn+Mk9IZN4QG9gUKqpwW+5RegTEYhJ8R2h1deiU7A32vnLuXuzSCRCbHiAWVBpsjoSh3KLkBgdLJiNPCg6GD5yT/zz22NmAxPZeSUY1aMaX6b0q6t5dbOiVa9uRQhxDa1p0Rzj5/ogbynmbjqJzBzhUifzRnezeqyWHKxzVxSUIg6jZUcbV30amPrU+rAVzKpPZpQp0wAbmx1laWpGItsp+O7PBhVttBXUsnTtttDICiGEOJfQQIxGZ+AGCPb+cwjmbTlpsU00bRNEAGLDA5GijoRWX8u1O7M3HMcHE3qhT3ggahmG1wYl3m73KrV6s6mBxgVz39h0kvfZVGOKENKcWsuiOabP9WuS48wCUqx95wohFXu0mmBdS0FBKeIQKv7Z+Cw1MInRwVjwYHduZSJnLE9tLZjljOCjaYAt+3IJTl8rxeTbRdSNOwUJKiWWju9R1yloQNFGewvFC1177e0VliyhkRVCCHEuWwMxAQqJQ50upbcUxy+XmGW9Th+mwhdZF5CdV4KUhEhe0KqgXAuFVIzrZdVm50DTugkhrqylL5oj9FxvayXW0ipdqwjWtSQUlCJ2o2VHm463VIx5o7uhpKoG3lIxAGDnmRsYszILGp3BqYFAoWCWs4KPbIBtwZaTuLudH+4JD0RCVDAgYpCirpuaUV1jQICXBB2VCnjLPPF3QYXVYxpnKwkFzm5V6tArLICb2mFcpNY0qGV67aUanUuNrFBWIiGkpbNnpN9fAbs7XZaOZ1z4Vmiadr+OQYJZWzStmxDi6lryojlCC0DJJWKr7/GWSVp8sK6loaAUsRstO9o0hAJCbD0MVmMGAp0ZfCzV6FClM+C5wVGoMdRi//kipGXlQqMzIDE6GAsf7A4R6ka2K3UGTM/IxqT4jlaPyWYrWQqcLR4bg9PXSnmdCOMitdam4LlSGjRlJRJC3F2pRocSTQ0qdXpU6uoGIEJ8ZdDqa3GrUoeyaj38vDwRqJDa7Dw40ukS6oyUVumsvqe8ugaRwd5mAxO2R+RrcL6gggYPCCGkEQgtAMUwDBJUSmQJlAJJUCnhI68LcbTkYF1LQ0EpYrfWvuxoU7AUEGKnDaQkRHLBFmcGAo0zcrykYvQKC8Afl4rNVi+y9zNLNToUa2owb/MJXn0O4+BQ5rlCLPr+FFbeXmWJve5eYQEWa06x2UrWAmdzN59A7/BA7P7rJrfd+PuzNQXPFUZWKCuREOLu8kuqcOmWBit3nzOr3zRtSBSmrDvCtTEJKiXeGd8DUSE+Tvt8087IeRtZuL5yieDAhK1VnKprDPjHJwe432nwgBDSUjVHBr9QBqtYJMIkdSQYmK/SOkkdiUqtvlHPiTgfBaXcTHNO52nNy442FWvZaPtzipBilC0FOCcQaCkziw0emQamijU6lGosB6aulVRh7983zZbUZq8BuBNcY4NcALjPt7QcuHG20vmCCovfU1ZOES+rzPizXxyismsKXnOPrFBWIiGkOTjrGaNUo8MeC+1A5rlC1DIMb5AlK6cIb2w6gWWP9Eaon9wp12LK3kVETAcmAhWW35egUuLABao1RQhp+ZyVwe9oOyN079bUGPDP7/40qw+YfbkEMzKy8dXU/vW7SNJsKCjlRpp7Ok99lx2lujj2s5WNZjqNoKGBQGuZWR4Avn52APJLq9He3wtavQE3K7SQS8TYfvI6hnRuY7ZCH3u8SfEdBTOd2GOzwTWFVIxahkGNoRapT9zD1X+aveE4HusXzjU0HZUK3HV71TzA8e+JJZN4uMXfHmUlEkKamjOfMQordAj1k9vVDrCycopQXKlrtKCUI9OzTQcmLC0+khzfETMyss0+iwYPCCEtSX0y+IX6f5U6g8V2xlsq5u3vI/NEpVaP0qoazB3VDX/kFWPJttPQ6AyQeXrwVmk1RYkS7oeCUm7CFabz1KfeTnMH0tyNrWw042kEzii8bS0jJzOnCJMrdBB7iPDuT2fM0mMjg72hkIp5/+7s8Sb2C7f6uVp9LbfM9uKtp8ym+L37UE9eltaumYN5n+PI92QswMt2g+kKnQjKSiSENCVnP2OUVdfA00NkdR+hwYOy6sadclHf6dlC7zMwDMat3m+WTcyiwQNCSEvhaAa/UP9v6T96YPvxfGTmmLczszYcxwM92mHOxhPc9oTbU/HY/sCg6GBsn5GIsiod/L3qlyhBXBcFpdyEq0znceSBzhUCae7GWjaaWqVE9uUSAM4rvG0rI8dTLMJney9YnIb3zrgevHNgj2erBofM08PiMtumU/yEGhdr31OC0fdkzPQ4rhwwrW9WIiGE1IeznzH85BJ4iq0HpYTaCT954z+W1nd6tlCNKjYgpZCKkZIQidiwAG7V10B6viGEtBCOZPBb6v+F+MrMAlKszHOFZgsdZeUUgQG/5Mf8LSe5/qOrLExEnIOCUm7Clabz2PtA5yqBNGtcLVPG2k128dgYlFXpML73XU4rvG0rIydQIbE6/UJTY+DVl2KPl325xGKxcja4Zrw8t9CxU9SRFhsXa9/TW+NisGTbad7+psdpzoCpPX9z1NgSQpqS6TOGaZBFpzdYrSVoKthHiku39DbbAWMJKiUCvd3n3sYOHhy5VIwVE2Oxdn8ur01zlUEOQghpKEcy+C31/2ytZCr0uulUb+P+oyssTESch4JSbsIdp/O4UiBNiKtmyli/yXo79bNsZWbpDYzV9+cWVmLp9jPcd8Yez1Kx8sToYCx6sDsAoERjfXlufy+J1eCQte/pw4d7WW2kmitg6sjfHDW2hJCmYvyMwU6trm+QhQ281+hrsWBMdywxmaKdGB2MF4eokLLuMLeNXX2vsepJNQZ28GDv3zcFs34pK5wQ0lI4ksFvqf9nzywKIabBKuP+Y3MvTESch4JSbsIdp/O4ciDN1acWWrvJOjO7y18hxeKxMXhz8wmzmlGT1ZEo1dy58QtNTwj2keLIpWIs2HISb43vgYpqPWYMj0aNoRaHcm+hX2QQN8LRIdALbf3k3LnaWp470I6GxtL3ZKuRao6AaX3+5qixJYQ0BeNnDEtTq4XuVabtkdzTAwu+P4VfzhQAqGs35o7qijdGdUN+aRUYBjhxtRSHLhbhi6fjIPX0gI/cE4EKqVsFpFjtA7wQFxHIq4NizFWywgkhpCEcyeC31P+zZxaFENNglSsmYpCGo6CUm3DH6TyuHEhzh6mFQhpjOVa5xAMp6kg8k9AJmhoDQnxl+PtGOWZkZCMlIbKuocgrERw5T1Qpsfrxe8CAwT+/PWY2Gr7wwe4QAVAKBM6a8++jOQKm7vo3Rwhp+YyfMWLDAixOrd53rhDXy6rhr5AKtkdsYdoD54ug0Rmg0RnwxqaTSFAp0Ts80Oy4g6KDm30QqKEqtNaLszd3VjixLDU1FR988AHy8/PRvXt3LF++HImJiYL7bty4EZ988gmOHTsGrVaL7t27Y+HChRg5ciS3T3p6OiZPnmz23qqqKsjl7hd0Ja2LrUFvezP4LT3fp2XlIm1SX3iIRLx2I1GlxLSh0ZhilD3LMg1WNXf/kTQe63l0Lig1NRWRkZGQy+Xo06cPMjMzLe67ceNGjBgxAm3atIGfnx8GDhyIHTt28PZJT0+HSCQy+6murm7sS3EYezPYNXMwNk+Lx66Zg7FyYizauWi9AvYhd1B0MG+7KwTSXH1qoalSjQ7nbpTjTH4ZJqsjMX2YCgqpGMCd0etSG9PhWFduaTD9q6MY/q+9GJ96AEkfZyFtfy70DIP5W04iK6cQPTr4Y+XEWPQJD8Ss+7tg4ZhugiPnmTlFyC+tQlpWLi8gBdQVLVz0/SnBgBTQ8L+PUo0O5wsqkJ1XjPM3K+y+fuBOgymksRo8d/ubc3etua0grVND7onAnWcMPy/rQfkrxVW4UVaNWRuO449LxZg+TIU1yXFIfeIePJMYBR+ZGP+Z0g+pT9yDtEl9MX2YCkfzShAbFmB2LDYg39jX1phsDXJ4y2j81xV98803eOWVV/Dmm28iOzsbiYmJSEpKQl5enuD++/btw4gRI7B9+3b88ccfGDp0KMaMGYPs7Gzefn5+fsjPz+f9UECKNDdb99BrJVWYnpHN9Q2GL9uLlzKyca2kirefv0KKqBAf9A4PRFSIj0PP93ERgegYpMC80d24NmNNchz6dAxCdY0BseEBvP0Tbs/aSMvKBeAa/UfSeNyqpWQbkNTUVKjVanz22WdISkrC6dOnER5uvgQ924C88847CAgIwNq1azFmzBgcOnQIsbGx3H5+fn44e/Ys772u2oC423QeV62L48pTC00JjUarVUqsmBjLLZNqb6bN1WINZm08bnHFu7RJffHeT39h+S/nuNcSo4Px5qiueH2D8PSEUD85sgRScRVSMXqGBSC/tBoXCivh5yWBj8wTlVo9SqvujMLY+vsQGrmp1BkalDHWHJmH7vQ35+6orSCtjbOyaP0VUgTZcf8rrtThj9sFvr86dAkAcE94IGSeHqhlGPx69ibSsnKh0Rm49kpfK1yj0FZA3lXrP7Js1WY8cqkY3jJPlzhXcse//vUvTJkyBVOnTgUALF++HDt27MAnn3yCpUuXmu2/fPly3u/vvPMOtmzZgq1bt/LaCZFIhLZt2zbquRPiCFv30MYoaWKt/1d+oxxT1h3h7c+WCElRR8Jb5gmNzgCGYSAWifDhw70Q4CVBVIiPW07zJvZxq6CUqzQgWq0WWq2W+72srMzBK2ldXDGQ5spTC41ZaijYIBK7TCpg+8G+VKPDpSKN1dX0Kqr15tlQ5wpxtbhK8D2A8GoZlgrlslM72GAa2yhGhfgIHluoIV36jx7YfjzfbFlZRxvPpg6Y2vqb8/QQITuv2CVWgXR3rtJWENIUnN2hCPaRIjE6WHC6MTuVwlcuQUpCJL46dAmP94/g3evZOlLfPDcAV4qrIPMU43ppFXp28Bf8PGsBeVep/2htWoulQQ62NuOMjGz8GBHo9tMUWxKdToc//vgDs2fP5m2/7777cODAAbuOUVtbi/LycgQFBfG2V1RUICIiAgaDAb1798aSJUt47Ygp6lOQxmTPPdTZ5SVM75eRwd7c+6+VVOHIpWKz2lIanQGrdudArVIiVmCqNwDsmjkYoX52nwZxM24TlHKlBmTp0qVYtGiR4xdBXIa71Oiy1lCYLpNqK9OmsEKHkirrgStbrwsRWi3DUqHcrJwiMLgTTLPWsbDUkIb4yswCUixHG8+mDJha+ptLjA7GtKEqJK3IhEZnAOBaWQDuxpXaCupskKbg7A6Fv0KKJVYWwJiRkY3RPdpx0/GM7/XGAxJvbDrJe2//SCUUUjF3nwNsDwK5Qi0+ezK12gd4YcnYGOTcrIBWXwuZpweyL5c4nM1MmkZhYSEMBgNCQ0N520NDQ3H9+nW7jrFs2TJUVlbikUce4bZ16dIF6enp6NGjB8rKyvDxxx9DrVbjzz//RHR0tOBxqE9BGpM991Bnlpewdr/0loq5ad+WVuhOju+IGRnZZsd19DyI+3GboJQrNSBz5szBzJkzud/LysoQFhZWj6sizclVpxYas9VQsFlK9mR3lVXX1Hs51uzLJRZHzgvKtWYZQNYK5ZoG0yw9rFtqSIUys4w52mg5czVDW0z/5rxlnjhyqRgp6Yd5HTVXWQXSHblSW0GdDdIUGqNeXaBCgtE92yNFHWkWZImLCESgtxRXS6rM7vXsgER2XgmmD1PxVmv9PfcWnhvcCR/trJsebjwIZOk+3Ny1+BzJ1Lql0ZlNSWnKcyWOE4lEvN8ZhjHbJiQjIwMLFy7Eli1bEBISwm0fMGAABgwYwP2uVqtxzz33YOXKlVixYoXgsahPQRqTPfdQZ5WXsHW/XDI2hnuNXUzJuI3pFOyNUSuzeM/D9TkP4p7cJijFcoUGRCaTQSaT1fMKiCtxNFOmKQMYgO06RDJPD7uzu/zkEuz6q8DicqyJ0cEWl2NNy8rF9hmJmL/lpFlm2dDObTC4cxteBpCtwJHp60IP65YaUluBNUcareaoVWL8N3e+oIKWEm8krtBWUGeDNAUfG4W061No218hNbuvA3cCSXJPD9wV6IULNyt574sNC0BaVq7g9G21Som3xsZgaOc28JbdGQSydh/2t1F0vbE7KY5kalHdQPcRHBwMsVhsNlBRUFBgNqBh6ptvvsGUKVPw3Xff4d5777W6r4eHB/r27Ytz585Z3If6FKQx2XNfclZJE1v3y0rdnZVK2el6xja+EI+4iECXL61CGofbBKVcqQEhrVNzBDCsNRSJ0cFQtfGxmE1jGkDzkXvir9ur9wH8lNkElRLzRnfDuz+eETyPuIhABCokVjPLVk6MRUG5Fnm3NAjxs/6AZRpYEnpYt9SQZl8usRhYG9E1BD5yT5wvqLAZOHSFWiXNnQXQErlSW0GdDdIUpGIPi/dEtUoJqbh+Cy1byibW6AyYnpGNPhGB6NeRP8VVq6+1OH17f04R5n9/CquM7q227sMfPNyrWes/OnKPdpdalQSQSqXo06cPdu7cifHjx3Pbd+7cibFjx1p8X0ZGBlJSUpCRkYFRo0bZ/ByGYXDs2DH06NHDKedNiKPsuS/Vt6SJaT+jtMr6qqiWMqBY/l4StyitQhqH2wSlqAEhzam5Ahi2Gop2FoJhQgG0EV1DMG90Nyzeegqx4YFcyqy/lwS+ck9MST+MBQ92h1ZfazbH27gxsHSd/gopCivqpi9MH6ay2kkyzsiy9LBuqSFNy8pF2qS+EItEvNfY6/vnd3/aFTh0hVolNLLufNRWkNampEonONjA1oCq6yh41+vYptnEpRodXr/dtvxxqRjDuoQgQaXkVmCVeXpYnb6daXJvtXUfLquqweKxMZi35aTZfb2+nRRHMp4duUe7S61KUmfmzJl46qmnEBcXh4EDB+Lzzz9HXl4enn/+eQB1ma5Xr17Fl19+CaCujXj66afx8ccfY8CAAdzAh5eXF/z964r4L1q0CAMGDEB0dDTKysqwYsUKHDt2DKtXr26eiyStnr33JUdLmgj1M76a2t/6uXhJ7AqQuXppFdI43CYoBbS+BqSpp4oRy5ozgOFoQ2EpgLbzTAFknh5YNDYGpZoalFXr0dbfE+XVNUhJP4zCCh1vjjdQ14D4e0ksBr9MsaPK7PQNwDwji119D6hrhBaPjcHFokr4VOrsWtEoLiIQHYMUZt+Jj9zTLCAFWA4cukKWEo2sN47W1laQ1s1HJsHEfx8yq8/B1oDaOj2hQcc3fhZRSMX4v5F348kBEZCIPZCVcxP/N7ILRKKzyDxXiOzLJVwBdEuM76227sM3y7WY8XU2HusXjknxHQEAHQK90NZPXq8219GMZ0fv0e5Qq5LUefTRR1FUVITFixcjPz8fMTEx2L59OyIiIgAA+fn5yMvL4/b/7LPPoNfr8eKLL+LFF1/kticnJyM9PR0AUFJSgmeffRbXr1+Hv78/YmNjsW/fPvTr169Jr40QY8b3pUptDfy9pNAZanG9rBqaGgP37G32jHy74oG9CxEduFDEG6QwlhgdDD87M6FccdV20vjsDkodP37c7oP27NmzXidjS2tqQJpjqhixzBUCGADAAFwjYYmlAFqwjxRTB0VhzobjyDTJhFo5MRZT1h3h5ngP79IGc0d3w6UiDRgA529WmAVFhYKm7KiyRmcwK2Iol4gR3cYbNbUMvpraH15SMY7mleABK6vO2XrANz6f8wUVDgUOXSFLiUbWG0draisICfaRIi5CeAnthga380uqsOfvmwjxlXH38cLyanRr74eCch3uDvWD2EOEKQmRmJ10N26W6dDWX271mMb3Vlv3YQbAuw/15FaxY69p5UTLq15aUp+M5/rco6lD5T6mTZuGadOmCb7G3vtZe/bssXm8jz76CB999JETzowQ52LvS5b6l+891BMMYFff01I/gx2QFolEvNfVKiWS4zti7qYTWDw2hgL3RJCIYRjGnh09PDwgEolgaXf2NZFIBIPB+pzRlqasrAz+/v4oLS2Fn59fg49XqtFheka24P/w7MMY/c/b+IyDLl5SMbYdz0daVq7gnOhdMwcjKsSnUc7D0QBldl4xxqce4G1TSMX4+tkBeO+nv4SLnKuU+L/7uyC/tBp3BcjhJfHEwu9P8oJXxp95tViDmxU6VOsM8JaJAYjw1/UyxEcpMWfjCYujyuzfbmP8jQtdt7HN0+LROzyQ+71Uo8NLGdk2z7UpsH9rrtBAO/t+Ru6g75Y0lmslVXZP87Y3C7tUo8OZ6+VYufuc2ZTuF4dEIeX2QAZQ14ZMToiEKtgHjAiYu/mk4P09MToYHz7cC6F+cu4zLN2H1SolYsMDkZ1XjNhwftCtPm3u+YIKDP/XXouv73glEXe3Nf//slSjQ4mmBpU6PTQ6A/y9JAjxlbXq5zC6lzUe+m5JY7H27L30Hz2w/Xg+MnNsPxNbe95WSMXYPE2NwgotSqpquKxdtv9E/djWxZH7md2ZUrm5uQ0+MWIfV6h109oJBYISVEqsmBjLG7EFGneaVX1GdoVGnlMSIlFerRcMSAFAZk4RplToIPYQ4fiVUvxwIt9s333nCjF/y0nMHdUN8zaf4AWs1Colpg9VIb+0Cu+M74E3Np2wOqrcGH/jjmY+uVKWktDIOk3fJaT1qe//9/ZOG3NkkKNEU2MWkALq6kLVMgxSEiK5QFFmThEYAMse6Y1QPzneE7i3Go+WLxobg/YBXtx92PSc2HpYbHvLTiln1Sc72VbG85XiKrNpgVZXBlQ4fAqEENJsrD17h/jKBANSgGMrjWp0BtQyDB7/4pBdxyKEZXdQip32QBpffaaKUQfWNkdGh4UCQewcaeMH8cYOYNQneCNUAyM2LAClVdb/rvwVEnz481mkqCMtBq+6tPMzC0gBd+pGje7RDsHeMswd3Q21DAONtm5U2bRz1BjTIetTn8lV63/Q9F1CWp+G/n9va9qYPYMcALh2Ui4R385UKjHLEN6fU2QWKMrKKUJFtR6hfnX31g8e7oXzBRW80XI2yKTV3xlUaR/ghXmju+HyLY1ZPSz2c7X6Wt5n1Wd6ta2BC/ba7V0ZkEb7CSHuxNqzt+k91pQjK416eFivM0IrSxMh9S50fv78eSxfvhxnzpyBSCRC165d8fLLLyMqKsqZ59cqOZrxQR1Y2xz5jqwFgrJyijB3VDfc2yWkSQIY9QneCGUAsQ/61niKRdifU4Qn+lsOQFtbVYntpJwvrMSUdUcAGI8o287mMlafDkd9M5/sLezYVKgjREjr0xT/3xu3bQqpGM8O6oQEVTD0Bga+cjGKNTWYt/kkb7RcbSFDGBDuxBi3SRXVem60XCEVIyUhEisnxnK1qUo0Ndw1iUUirt0QYtx+1Tc7OdhHisToYMH2nV0VVul957iUtU4IaUmsPXvb6iOYrjT6zvgemLPphGBtqqoa62V8aGVpIqReQakdO3bgwQcfRO/evaFWq8EwDA4cOIDu3btj69atGDFihLPPs1VxJOODOrC2Ofod2QoEVdcYeLWJGlN9gzemGUByiRjbTuRDrVIKZkGpVUoUV9Zdt7WGydZIilZfiyBvKVKfuAdyiRhH84qxYMtJfPhwL9533FirztUn88nVgrrUESKk9XHG//e2soHZtk0hFWPV47FYm5WL5b+cAwBMH6ZCdl6xWfuwXyBDmCXUVhi3Scaft2JiLNbuz+UdI/F2B6Z9gJfVNoENGAENy072V0ixZGwM3tx8gnedxlMFx/e+y+z8LaHRfkKIO7F2ny0o19r9XH6tpAoLt55Cr7AATIrvCK2+FgFeEkQoFWgX4IVSjc7isRKjg+EpFqFUQ8+yhK9eQanZs2fj1Vdfxbvvvmu2fdasWRSUaiBHMj6oA2ubo9+RK6zKxmpI8MZ4KkepRoez+WWYfHu6Ba9orSoYLw5TcaPg2ZdLLAav/L2sX7vM0wOVWj2mrT96+9h1xW+LKvnfcWPWc3Jk5SNXDOpSR4iQ1qeh/9/bE1xn27aUhEikZeXylu22JwvWmHGgyPjzjNsk489buz9XsDaV8X3WUpuweGwMyqp0GN/7rgZnJwcqJBjdsz23KqzxVMG4iEDB87eERvsJIe7E2n12aOc2GNy5jc3ncuPn5l/OFPCOb1zEXOhz2LqCSR9nIi4ikGb0EJ56BaXOnDmDb7/91mx7SkoKli9f3tBzIrA/44M6sLY5+h01VhaPI9gR7wptDRaPjcH8LScbFLzxV0ixaGwMFmw5idjwQO6BPMBLgo5KBbxlnijR1CAxOphb0hUwDV4p4Sv3tJptdaOsGtdKq7ltdbWnRJg/ppvZ/s1Zz4n9frV6g8sFdVtCR0iv12P9+vUYOXIk2rZt29ynQ4jLa8j/9/YG19m2TSgAZU8WLCtRFYxpQ1WYsu7wnW0CbZK1zzM+x8IKHYC6LGTL9Qi9rZ6fvfwVUqijlHhj0wleUC5BpcRb42KaJKOXEEKai61nb1vP5fYO9LOfU1CuRd4tDQDwagXSjB5iql5BqTZt2uDYsWOIjo7mbT927BhCQkKccmLEvoyPltCBbWzutiqb6Yi3QirGvNHd8OaorqjSGeDnJYG3zBMV1Xpk5xXbLGzPBmA0uhrMH90NlToDyqr1uMvLE4EKKbc0NwAsGRuDeVtOYkZGNlISIrnR8RA/GXadKUBK+mG8+1BPADCb/jB9aDSqawx464czvM/PzCmEgWEEz82RrCZnMf5+U5+4x+q+zRHUbQkdIU9PT7zwwgs4c+aM7Z0JaQEauthIQ/6/t7eTwLZtZ/LLzPazVU8kIkiB1CfugczTAyeuluLKrUpsnBaPimo9/L0kCPGVmV2vtc8zVlKlw8KtpyyscOfc+12pRofF206jd3ggJptkSy3Zdpo31by5nwUIIaQxWHv2Np1lUVihw4XCSq5dK6uu4WoExoYFcDUCj+YVIy0rl/fc7K+QorBCZ7FeIM3oIcbqFZR65pln8Oyzz+LChQuIj4+HSCRCVlYW3nvvPbz22mvOPkdiRUvowDY2d1qVTWjEW6MzYM7GE1xabKXOgH9+96ddNZDYAMwfl4qxYmIs3v3pLC+YxL5PBOD12/ulJERiUnxHAECHQC/4yDyx8PtT2Hk7TXdGRjbmje6G+aO7obxaD4VUDJmnGNtOXMNney+YFcMFgPJqvRO/pfoz/X4dKezYVFpKR6h///44duwYrdxKWjxn1KVryP/3jmQDtw/wQqXW/H5sbdq2WqXE9bJqyDw9oNXXosdd/igo16Kdnxz+ba3fjyx9njFtTW2TTaEurNDhlzMFZtNOjF83/jxXXaGVEEKcRWhQRaMz4HWBdm3u6K6CNQLZRTH8TMp80IweYq96BaXmzZsHX19fLFu2DHPmzAEAtG/fHgsXLsSMGTOceoLEupbSgW1MDVmVrSmnkpVV18BLKrY64l2iqcHcLSfteoA3DsBMH6YSrOnBvi+pRzsuIMUf+SjBAzFt8eHDvaw+lJ++VoqPdp6zeI3eUnF9vx6nMs0osNYRa86gbkvoCE2bNg0zZ87E5cuX0adPH3h786ff9OzZs5nOjBDncWZduvr+f+9oNnCIr8xsoIadti0CeNPaEqODMSepC55O+52bZufo84XQ5xkf/8AF8/sv0Dij6PVd0dad7r3uoqysDD4+PvDw4A8OGQwGVFZWws/Pr5nOjJDWw9KgyrShKvxxqZi3775zhbhVWSPYn9ifUwQRgGWP9OZtt9Q+sdlWconYrlkfpOWrV1BKJBLh1Vdfxauvvory8nIAgK+vr1NPjNivJXRgG5urfkemjYGt6WQVOr3dNZCMAzBCNT2M02+9ZZ749rmBOH6lBC8ZLf2tVikxsJMSHYO9rX5X3lLrtaa8pfW61TidaYfEUv0sVwjquntH6NFHHwUA3kCFSCQCwzAQiUQwGKwvGUyIO3D2YiP2/n9vPJgR5O1YNjA7UGPc9mh0Bnx16BLeGheD/NJqFGtquGlt/9r5N757biBKq+rXdlobGFrwYHeMWZll8b3OHkWnkgeuYdOmTZg1axaOHTsGhULBe02r1aJv37748MMPMWbMmGY6Q0JaPmuDKgaG4RbFMB6w9pF5IjY8ENl5JWYzI7JyilBRrUeoUTxZaLaKpRVZm3Pla9L8GtxTpGCUa3D3DmxTcLXvSKgxsDWdrLzK+jSIYo2OW2bVOABjWsTWUoPApt+yhQj35xRh3paTWGVjtD9AIcFLw+pqzJnWmnppWDQCFK7xoG/aIdHoDLz6Wf5eEgTeLgjsSn8r7ig3N7e5T4GQRtccUxOE6g6mTeoLBjAb7TZdNYkNZPl7SfDhw71QqqlBaVUNFDIxfGSeWLL1FH7566bZZ+r0tVazvmzV1LI0MFRUqROc8s1ydpCISh64hk8++QSvv/66WUAKABQKBWbNmoVVq1ZRUIqQRmRtUGV/ThGeSeiE3hMDbPYVjJm2eUKDEpZWZKXi561bvYJSN27cwD//+U/s2rULBQUFYEyKGNMIOHFnDS1Yay+hxsBWXQ9PscjqMUuravBSRnZdgVijed3GwS6FVIyVE2ORbiH9FqhrMNgGKNOO0X5/hRQRQQqzpbYLyrXoGKRwmcZFqEOi0RmwancObylb0nBUS4q0Bk2deWOp7mBK+mHMG9UVLw+PRkG5lrv/siwFslbvzkFmTt22NclxggEpwHrWl701tSwNDDVlkIhKHriGkydPIjU11eLrgwYNwty5c5vwjAhpXUo1OtzS6Kzu46+Q4MOfz9rVV2AJtXmmgxJyidjmiqx0L2596hWUmjRpEvLy8jBv3jy0a9cOIpH1jjIh7sIZBWvtJTTCbmk6mVqlxGR1JLJyCq0GrbIvl3AjDR883It72GeDXdl5JVgxMRZyiRiZAsdgP3dKQifeNntG+9sFeOGBmLa8kfC4iECXalioQ9L0Tp8+jby8POh0/IefBx98sJnOiBDnaerMG0sj2xqdAXM2ncSa5DhMW3+Udw4fPNzLrF1LSYjEyt3neG2JaUatKaF2oKE1tZrjnuyq0/lbk+LiYuj1ljO/a2pqUFxcbPF1Qkj9sX0ddlEjSzzFIsH+BlDXV2BX6GZZa/OMByWy86z/v03Fz1unegWlsrKykJmZid69ezv5dAhpPs4sWGsPoRF24+lk80Z1Q1m1HhVaPRiGgVgkQtd2fnigRzss2XqKF1Rig1YzMrK5c66o1nMP+2ywa1SPaqzdn4sn+lvPYjHNyLJ3tN/VpkgKoQ5J07hw4QLGjx+PEydOcLWkAHCDGJRRS1qCpg6q2JouaBpY2neuEMWV5oEsoTqDlqaPWytI64yaWs1xT3aHtqol69ixI44cOYIuXboIvn7kyBHKtiWkERj3dXqFBVgc6E6MDkaZjZIhxu2NI20e1fYjQuoVlAoLCzObskeIu3N2wVpbLI2wa3QGHL9cgmcSIiH1rJtGaDz3WiEVY+6orpid1BWXbmm4YrSmc7vLq2sQFeLDPexXamvQIdALb2w6aTa6YSrQqAZUS6yzQR2Sxvfyyy8jMjISv/zyCzp16oTff/8dRUVFeO211/Dhhx829+kR4jRNGVSx9TAvFFgq0ZgHsoSyooSmj9sqSOusmlqm9+RSjQ7nCyoafRo9aR7/+Mc/8Oabb2LEiBEIDQ3lvXb9+nXMnTsXTz75ZDOdHSEtl3Ffx9piP++M74EKrfWgVKdgb2yeFu9wm0e1/YiQegWlli9fjtmzZ+Ozzz5Dx44dnXxKhDSPpi5Ya88Ie7W+1qwYoEZnwBubTmL91P68aRqm2JEGoZRZW7Wr9AbG7FwIccTBgwexe/dutGnTBh4eHvDw8EBCQgKWLl2KGTNmIDs7u7lPkRCnaapAt7WHeXYKtylvudhsm1DwSqiDYqsg7bzR3ayeb31GvJtyGj1pHrNnz8aWLVsQHR2NJ598EnfffTdEIhHOnDmD9evXIywsDLNnz27u0yTEZdW3/q1xX8d0sR+tvhYdlQp4ScTIKaiA0keGRJVSsNzHoOhgtPOX16vdo1IaREi9glKPPvooNBoNoqKioFAoIJHwHzpu3brllJMjpCk1RzqprRH2imq9xfncBy8UITE6WDC7y9JIg0Ja1zmxNDqSqApGsroj5BIP7Jo5mKa1kXozGAzw8fEBAAQHB+PatWu4++67ERERgbNnzzbz2RHiniw9zCeolPi/kV1QXKlD6hP3QC4R42heMf66Voab5VqzQQihgQm2gzJvVDfMHNEZJZoatPWXWy1IKxV7OHXEu6mn0ZPm4evri/3792POnDn45ptvuPpRgYGBePLJJ/HOO+/Q6t6EWNCQwL3QKtTG9/ivpvbHA19kAajrM6xJjgMg4hbEYD+rocEjKqVBTNU7U4qQlqa50knZEfYbZdUortTh7I0K+Hl5IlAhhUZnOTsrLSsXW19KwKLvT9k10lCq0eFoXgkSVcHIzCk0Gx3x95KgusaAjN/zsOzhXtQwkAaJiYnB8ePH0alTJ/Tv3x/vv/8+pFIpPv/8c3Tq1Mn2AQhp5SyNhLMP8wXlWpRW1UAhFcNH5omFW09ht9HqeQkqJRY+GIPdZ69jakInjO7ZHiG+Mmj1tfCSiDEqpi2W/fw3fvmrgHtPbHgAOgZ743xBBYJ8ZMi7pbF+jlU6p454N/U0etJ8/P39kZqaitWrV6OwsBAMw6BNmza0eBIhVjQ0cG+tr5OgUuLABf5AxZR1RzB3VFe8fG/dyq6dgr3rnSFlikppEGP1CkolJyc7+zwIaXbNmU6aV1SJOZtO8EatE1RKvDWuB4J96orJmtLoDBAB3EgD2znx8BChqsaAUg3/4b2wQocl207jq2cGgAGDrJwibnSELZSecegSFj0YQ41EE6tvGrYrmzt3LiorKwEAb731FkaPHo3ExEQolUp88803zXx2pDm1xL93Z7M1El6pM2DxttPIPFeI6cNUyM4rNsuqzcopwoLvT2JOUhcUlGux/fg13jSMRJUS/xzZBU8OiICmxsDVJ5yy7jC+TOmHp9N+x8rbGbWWeMskTh3xbupp9KT5iUQitGnTprlPgxC30NDAvaW+DjtTgl0wicWWDGFXdt08LZ7aa9Io6hWUMlZVVYWaGv5Dgp+fX0MPS0izaI500htl1WYBKaCuQzF38wmsevwePPb5b2bvGxQdDOXtzlylzoCFW09ZTeUtq66BRmfA1HWHkTapL6Zp9dDXMghUSKA3MNDWGLB4bAzuClQ02rUScy21fsrIkSO5/+7UqRNOnz6NW7duITAwkEbCW7GW+vfuTNZGwhdsOYlFY2NwsbASE/uFY7I6En5yT4tT7PbnFEEmEWNNlnldqMycItTiL8SGB5q9v6Bcy/03m11rKkGlhFxSV5vKWSPetCpT61BQUIC5c+eirKwM8+bNQ/fu3Zv7lAhxCw0J3LMDQhXaGix6sDuKKnW4WaGFVOyBIG8pnvjiEG/BJGPs4hh0DyaNRXj9XxsqKysxffp0hISEwMfHB4GBgbwfQtyZv0KKqBAf9A4PRFSIT6OPCBRX6izWjcrKKYK/lwSDooN5242zt2yl8pZq6rKs2If9wgodHvv8Nxw4X4QafS0u36rCrUod2vl7NXtAil1xKTuvGOdvVnDn3lLZ+2/n7i5fvowrV64gKCiIAlKtWGv5e28oSyPhCqkYj/YLx6z//YnHvziEaeuPIiX9MEqrrHdSdDW1FtuY/TlFiA0LMNsepJBgxcRYrD90CcnqjlCrlLzX1SolJqkjsfD7U079d2OnlgihVZlajsmTJ6Nt27YYP348kpKSaEVvQuzkaOCefa4+cvEWTueXYdOxq5iy7gg2ZF+FTl+LYG8Z2vrJuZqzlsg8PegeTBpVvTKlXn/9dfz6669ITU3F008/jdWrV+Pq1av47LPP8O677zr7HAlp0cqqrS+5Wl6tt5q9VVSpQ6+wAEyK7witvpYrcJuWlctL5TWeR25a2HBQdLDNaRqNrTVmULTk+il6vR6LFi3CihUrUFFRAQDw8fHBSy+9hAULFpgtkEFavpb89+5MlkbCLa2EZ4ulkW8WOwIO1AW+5o3uhlA/OVZvOYnMnCL8duEWr/5ggJcEbfxkuHCzEhP7R6BEU2Px383RqZq0KlPrkJ2djffffx/dunXDU089hZs3byIkJKS5T4sQl+dI/Vvj52qFVIyUhEgkRAVjcOc20BsYaHR66PS1uFmhRaBCgo0vxOPJNYfMSoaoVUoUlGub9R5M0/5bvnoFpbZu3Yovv/wSQ4YMQUpKChITE6FSqRAREYH169fjiSeecPZ5clJTU/HBBx8gPz8f3bt3x/Lly5GYmGhx/71792LmzJk4deoU2rdvj9dffx3PP/88b58NGzZg3rx5OH/+PKKiovD2229j/PjxjXYNrqg+/7Oz7ymt0kEh84SHSARPDxE3payxPteZn9/Qc3CE8ef4e0ngLfNERbUefl6emD5MhdiwAF5Q6evf8/BYv3C09fFEWVUNdIbautcNtSjX6qGr1OFadQ28ZRJk5xXzgkxqlRIrJsZiRkY2l8pr/LB/5FIxUhIiuRHyMDszpIyvwUfmCamnB3SGWhhqGWi0+rrgVz3+DQ0MgyVbT5ktO2upcKMj/2bW9hV6DUCj/T2Yfl5plfUMA3eunzJ9+nRs2rQJ77//PgYOHAgAOHjwIBYuXIjCwkJ8+umnzXyGpKlRvSBhpveFIIUUCqnYLJgUGxYgOE2PXUkvO6+Eu6+zbcmN0mpuip0lMs+61xVSMdIm9cXq3TkI8ZVx92PTQQwAWJMch+f+8wcAIPF2wMh08KC+Aw20KlPLN27cOMyZMwcRERHo2bNnswWkqE9B3I29gXvjzGSFVIwVE2Oxdn8u716ecDvj9Z/f/QmNzoAElRJfpvTDhE8Pcu1PYnQwloyNQaBCYvUe3Jh9qdY4aN0a1SsodevWLURGRgKoqx9169YtAEBCQgJeeOEF552diW+++QavvPIKUlNToVar8dlnnyEpKQmnT59GeHi42f65ubl44IEH8Mwzz+C///0v9u/fj2nTpqFNmzZ46KGHANR1kh599FEsWbIE48ePx6ZNm/DII48gKysL/fv3b7RrcSXXSqowf8tJdGnnh9iwAOSXVqNAIUF4kMLidC6hGwRbLHvp9jNYNDbG5o2iITcZZ3x+Q8/BEqEbs0ZnwOsCjUN2Xgk2v6gWDCqtnzoA+87mo1YkxpsWiqC3l4sxc8tJs5Fz9veUhEheKi/7sF+sqcG8zSfMsqWsXbfQd5WoCsa0oVGYsu4I14DV599wTXKcWUCKZZpB4ci/maV933uoJxjA/Hqig/HiUBVS0g87fD22CJ3LV1Ot32Pcee5+RkYGvv76ayQlJXHbevbsifDwcDz22GONHpSizobroXpB5oRGsuM7KbF2Ul9odAb8cTvrVaMz8DKajKVl5WL14/fASyLGyl/P8e7ridHB6N8pCPd2CcGBC0XmQauyakS38cHmafEIVEgxd/NJZOYU4vEB5s9UxnSGO+eSKTB40NAVomhVppZt1apVyMjIQElJCd5+++1mOQfqUxB3ZU/g3jgz2VKWbVZOEZjbr6/anYOsnCIs/fEv/PBSAkqr7B8QaMygUUPbEuI+REw9JnL37NkTK1euxODBg3HfffehZ8+e+PDDD7FixQq8//77uHLlSmOcK/r374977rkHn3zyCbeta9euGDduHJYuXWq2/6xZs/D999/jzJkz3Lbnn38ef/75Jw4ePAgAePTRR1FWVoYff/yR2+f+++9HYGAgMjIy7DqvsrIy+Pv7o7S01O2KvJdqdHjtuz/xWL9wsxtWgkqJd//RE75yT16QxUfmiX9+96fgNAy1SonY8EAcv1xi9UZRqtFheka24DHYqWT1ea+9n9/Qc7DE0o15mlGgw3ilpOnDVDiWV4wsgYBMgkqJpeN7YLZAEXTj1xM/2GPxfL6a2h/d2/uZZRk5et32fOdC0wHt/TdMfeIeTFt/1OJ1bJ4Wj97hgSjV6LD95HVuWXPjqYpxEYFmnSJL57z0Hz2w/Xi+YPHe+lyPLZbOxdq/f0M/s76cdT8LDQ3Fnj170LVrV972M2fOYNCgQbh586aFdzbcN998g6eeeorX2fjiiy+sdjZiYmLwzDPP4LnnnuM6GxkZGbzORmJiIq+zMX/+fIc6G+7cVjhDqUaHlzKyLU47aG0Pl8b3BePBCuP7PTvYMiMjG2uS4zDx34cAgAtgsQGm8CAF3vvxjGBwP1EVjFlJd6O8Wo9Vv+bwjm+c5XSpsBI5Nyug1deio1KB7SevcwExFvu5STFtcalIw7sHb52egKgQHwDA+YIKDP/XXovXvmvmYG5f4n5awr2M+hSkJcvOK8b41AMA6jJbp6w7YnFf09d/ejkRVTUGuzKeGqMvZYzaEvfmyP2sXoXOJ0+ejD///BMAMGfOHKSmpkImk+HVV1/F//3f/9XnkDbpdDr88ccfuO+++3jb77vvPhw4cEDwPQcPHjTbf+TIkThy5Ai3YqClfSwdEwC0Wi3Kysp4P+6qsEKHLu38LEbQ52w6ge0nr2P4v/ZifOoBDF+2F+cLKizWBWGLprLZLdY+11Ztkfq8197Pb+g5CLEWzV+5+xxSEuqyC2PDArjv+p7wQMGABFD3/VfoDFaLoFfYqBUik3iYNQb1uW57vnNLxxEqXl5UyT8eO33Ekv9n787joir3P4B/hoEBBmRARhYThITcUMPIDVDTNDWX1BaXaxhm3czMa91S01wyNeu2mHXr3kTtVtrv3twzy7LcMxfMNRNF0YQQhEEYYFjO7w+a0wxzZoNhhoHP+/XilTNzzplzDvQ85/k+z/N99CMoCrQV2H7yOqasOyom+U3PKsDK8fE4eqXA6NwtnXPN1JS6XU9dmDuXtP2ZmJwYjWQLiezd1dNPP41XXnkF5eV/ruJVXl6OV199FdOnT2/Q737zzTcxZcoUPP744+jYsSPefvttREREGDU+DH3wwQeIjIzE22+/jY4dO+Lxxx9Hamoq3njjDXGbt99+G4MGDcKcOXPQoUMHzJkzBwMHDsTbb79t9jyaUl3hCPppB5YWbmhObOnJPpCRj3UHL2Pns8mICFIiKSZYDGClZxWIZeHvRWVmR5vuy8iDIMjwXq2AFFAzymnBltO4dlOLeZtPiccbtnI/TvxRtuoT4Bp+7/0r95uUwSXlf06/dNepms1tsY3mim0Kaso0Wh18veR4f2J3pE2+G15yy8/YtUfhXsorEdt8z6xPx/XCUrP7OrotVZu71iVkvzpN3/vb3/4m/vuee+7BL7/8gqNHj6Jdu3bo1q2bw07OUF5eHqqqqhAaGmr0fmhoKHJyciT3ycnJkdy+srISeXl5CA8PN7uNuWMCwLJly7Bo0aI6XknjUlRWYTZPBVDzwDq5T5TRe4VWVvrRF26WCor6FDLW9rXl++t7DlKsBW5SE6ONzk+pkEPpZXm1iyIr99raOfp5e0KjNU4eXJfrtpb7SGpaSUl5hdmRYwtGdjbKmaLPiSIVgNMnbtRodZi/2XTUmOFURcNzt3Sd5qbBWPq8PhWfuXPR6qowY306tjydCA+ZzO3zp4wZM8bo9bfffos2bdqI9cLPP/8MnU6HgQMHNtg56Bsbs2fPNnq/Lo2N1atXo6KiAl5eXjh06JBR3affxlJQqinVFY7CfEF/MiwXrNXD2ooq5GrKMXtoR2h1Fbicp8XUpNvx/OD28JR7QFtuecEMAYLZDpD24QGYs/GkSVBrv0HZump3hsXAGQAsfaCL+J47TtVk3pLmg20KaqqkyrFPraSKqN0xbPja2jS5hg4auWNdQnVTp6BUbZGRkZJTIhpC7eXEBUGwuMS41Pa137f3mHPmzMGsWbPE10VFRYiIiLB+8g2kPsnlAny8kK0ps7hN7Qa6tVEt+s8tFRT1KWSs7WvL99f3HKTYGixTeskxfUAM+t/RCt5WEtAG+Fo/R3PBnMSYYGw/mY2TVwuNHqrrct1KheWiQupvQuWrMDtybOHWM2JDB6gZMbTyj9X/DK/FcATFxdxisyMB9EE/w3O3dJ22/g0bqk/FZ+lctLoqeMhkTWL4sUqlMnqtn/qm54xysjE1NhpbXdFYMF9QDcNywVqg/LeCUggAJq/5CasmdMc3Z3IwrmdbvPHNeRzIyMfqlAQAptP69NPryiyMqrUUENufkY8Xh3ZAp/AARLT0NbvdgYx8ozxT9qwQ1VDsXRCDeUuaH7YpqCkxV44dupSPgR1aoWNrlUndcPa6BulXC8Vtk2OCjV4DllfHbeigUWOoS8g56hyU+u677/Ddd98hNzcX1dXGD1NpaWn1PrHa1Go15HK5SQMgNzfXpKGgFxYWJrm9p6cngoODLW5j7pgA4O3tDW9v77pchsPVt2dP7a/A70W2BXn0LI1qSfyjMLNWUNSnkLG0r63fX99zkBLg42W2QZC2PxPenh5QKuQI9FOIic2nD4gxey+TYoLhr5AjKSbYbM4pf4Ucj/0xAstcHhKtrsroobou1+3hIbP6O699HF1VtdmRY/su5OGpfu3EBo5+xFBqUjSe7h8DHy85VL7GIyisBf0AGJ27pevMvVVu9W+o9vXUp+JrLpXqmjVrXH0KosbQ2GhMdQU1PoblgrVAOQCsO5CJ1x/sind3X0B8ZJDRqKX0q4UY0KEVJvRsK7nC0ug7b5Nc0Q+wHhC7erMU0z49jvcndre4XYnBaC1bV4hqKPY+G9kyBYVBqaaDbQpqisyVYxt+ysKnj/fC4u1nTOqG+cM7Y+JHPwKoyTH4WGIUpn+WbnIMcyOeGvr51tV1CTlPnXJKLVq0CIMHD8Z3332HvLw8FBQUGP00BIVCgbvuugu7du0yen/Xrl3o06eP5D69e/c22f6bb75BQkICvLy8LG5j7piNibWevdq5EKRyJaiUCrQNrslTIUWqgZ62PxOPSeTB0QdCzmcXWS0o6pNbxNy+9nx/fc9BitpfgbTJdxvl+dDn20ibfDduluiQmhSN17/+RWxI6O9l4h95QqYPiMHqlASsTknA/OGdcCW/BK8+0MXk95MUE4xXR3fBnl+yMWN9OuIjg/DZ4z3x8ZQeWJ2SgPjIIDEgBRjP667LdXt6yMTzNJQco8b0e2KRtj/T5DjFVqaTeHt5GJ2DVleFk1cLEa32Q/e2QWgX4m90LtZ6Y9oE+Rptb+k677mjleRnybFqPDNA+nrqU/Exl47zNKbGBpElhuWCvrNHir4e3peRj3CVL87n3MLgTqFITYwWc4Z4esjwt3vbm80PuXDraaRNvhurUxLEfaYPiKnpKKk1ItewLnp/YndEtlRi+oCazgJLaveI66dqfjerHzZP64PvZvXDu+PjEd7AU+HsfTYCmLekuWGbgpoic+XYuB6RWLz9jGTdsOTLs/hkSk98PTMZvW5viemfpUt2Xpgb8eSM51tX1SXkXHUaKfXBBx9g7dq1mDRpkqPPx6JZs2Zh0qRJSEhIQO/evfGvf/0LWVlZ4rLdc+bMwW+//YaPP/4YQM2qGKtWrcKsWbMwdepUHDp0CKtXrzZaAePZZ59F37598dprr2HUqFHYsmULvv32W+zfv9+p11YX9vTsWeo1vC1IieVjumLOplNmV40zpNVV4fOfsvDGQ91QXFYJTWkFlAo55B4yyD1keOOhbjYVQvXJLWK4b12/v77nIOW93aaJZA9k5MNDVnNeN0t0Rr0U+hFCT/a7HQtGdMYr24x7MZJjgvHKqDgsH90Ft3RV4jn6K+TY80s25m07DwA4kVWA0XfehhGr9ktWJgBQaJAXyt7rDvZTYNmOc4iPDEJqYjR0VdVo5e8NH085IBOw8ak+0OqqjEY3mTsPvUBfhV3nYK03JizAx+R9a9cp9RkAbJue5PB8N8yl4xyGjY3Ro0eL7+/atQujRo2S3Kd3797Ytm2b0XvmGhuGeaXY2Gie6jNlvjZ9uZBfosMDd96GRVvPGC3CYDjqFQBulujwyeM98VtBKWQyGc5mFyFtfybiIwMxsGOI2YUx9mXk46n+MUYrLCXGBGN1SgKClAokxwRjX0a+0SqARnVRrBoP39XGph5xk/vjr3Dq9OS6jHpi3hLnKykpwWeffYaDBw8iJycHMpkMoaGhSExMxPjx4+Hn59eg3882BTU1/t7SzXprOQurBQFeHh5o6Sc9Ys/aiCdnPN9y2n/TV6eglE6nc8mD+COPPIL8/HwsXrwY2dnZiIuLw44dO9C2bVsAQHZ2NrKyssTto6OjsWPHDvztb3/De++9h9atW2PlypVGeU769OmDDRs2YN68eZg/fz7atWuHzz//3OYlvl3J1p49W3IltGmpxCqJAkWrq0JC2yCTIZOLR8UhNMAHofVcrdbeQqYhHnZtPQdrDZG8Yp3ZFd32XchDcVklSnWmo4e0uipUVAlYvO2MyTS9fRn5eGnLadzfJRw3istRUSUgPiIQAT5euOv2EOx8NgSCIMDT0wP5xeWSS3eLUwk95fi9qAyhfwRv7L33L93fCfO3nDaq2PQ9IVK9FbYM6bXnHOo6hNfSd5j7rKEqPlaqzsHGBjWUhkiGrS8Tvjn7O+YM64DJmjKUV1bD29MD6VcLjUa9CgCGvL1P3DcxJhgrx8djxvp05BaVSx1eVHuRkgMZ+fAA0KtdzRSORdvPmEwL1Nt3IQ+vbD+LpaO7YO6mU2bL4MaQLLwuo56ayxTrxuLs2bMYNGgQtFot+vXrh8jISAiCgNzcXPz973/HwoUL8c0336BTp04Ndg5sU1BTo5B7SKbasDZF+3K+FtM+PY7kWDXSJt+N1LVHxDrH1hFPfL6l+pIJ+sQZdnjxxRfh7++P+fPnN8Q5uZ2ioiKoVCpoNBoEBNQzSmOHi7nFGPjmHrOffzerH9qF+Nu8nTn6YIy56Lcje40tceXDbu3vVirkmD+8E7pHBkKrq0KArxc0Wh3G/POQ2WNsntYHLXy8JH8Xq1MSjHqwa0ubfDfaBPpiUa3ht8mxajw3uD0eX3cE43pE4uerhdh3Ic+ot7v29q/Zeb/0137sSoEY5AJqpsuFBfhApVSY/Ru4XlhqNohU12G31v4eqX5cVZ452vvvv48VK1aIjY233noLffv2BQBMnjwZly9fxg8//CBuv2fPHvztb3/DmTNn0Lp1a7z44otiEEvvf//7H+bNm4dLly6hXbt2ePXVV01WHLSkqdzb5kqj1WH6+nTJUTh9Y9X1SoZ9MbcYI1btx4YneuH1neclOziSYoJxZ2SQSY93Ykww4iODEB8RaLEeMVfPrE5JQGW1gPzicnSLCMT9K80HWnc/1w/BfgrJMrgh74896vrM0xD1VVNV37LsnnvuQVhYGNatWweFwvhvQqfTYfLkycjOzsb333/vqFN2G6wnmjd721T67TWlOvh4yVFZLeDtb3/F7l9uiNt8+nhPTPzosNljGNYNfWPVeGVUHAq0Oj5jU73ZU57ZPFLKcGWI6upq/Otf/8K3336Lrl27itMb9N588007T5nqwtaevfrmSrAU/XZWoMiVK+PU/m6lQo73JnRHtqYU1wpKUV5ZjQJtBcICvM0mkgUgFu5SvzNrvRiechlekZgPrh92O65HJNL2Z2Lr9CQs2HraYm+3PfdLo9Vhz683MLlPFMb3iDRK3J7QNgjvjo/HtZtak+XEDf8GHD2kl70xZItp06Zh2rRpkp+tXbvW5L1+/frh+PHjFo/54IMP4sEHH3TE6ZGTOLLTpCGTYReVVUCrq0Lq2iP4/IneeHnraeMOhRg1UhKjxGl8hg5k5ONv994BhacHkmPUkgEtqfyQeuWV1Qj09YLK1wtZN7WWz7O0Are38pe8Tkfen/r83uo66olTrJ3n8OHDOHr0qElACqiZgj137lz06NHDBWdG5Dr2tqmktk+MCcbf7+uAR3tFQVtRBW9PD5RVVNm8WNHeC3morBZwZ2SQYy+OyAqbg1Lp6cYPQnfeeScA4PTp0w49IbKdrdOZGipXgjMDRa5cGaf2dz/Z73b4eHngy1PZtRoNwUhLSUDquqMmgSnD6WpSv7PaiWZrC1J6GQV9DB3IyEdqYjS0uiqUV1YiPjII93UONTt/3J77VaCtwPaT101W9ls5Pr4mYWxpBeZsOmVS0dX+G+BDff04azSio7g6VwgR4PhOk4ZMhq2vp/OKddh+6jru7xKO1MRocRpfSz8FJn502Gynh6a0As+sT8fK8fGohmAyQjalTxRmf3ES0wfEmKwO21LphehW/qiuFlBdbXnwvKXnBUfdn/r+3uqzWhPrK+cICgrChQsXzE7Py8jIQFAQG8XUfNjbpjK3fU3Z/wviDUbVKhVyrE5JgAdg1JaonbNQjws7kCvYHJRqjkNo3YEtPXsNlSvBmYEiV66MU/u772kfgtd2/mI6CikjH4AM8+7viLmb/gzWJtd6EJb6nfn7eJr9HSXGBMPaJNvyymokxgTjVlnNCnadwi0PkbTlfmm0OszfbBpw0r9+bWxXXCsoNZtYl8toO0ZjyNFij8aQK4SoITpN6trBY0tQ2bCe/nDPJawcH480g9Guq1MSrC4eoV84IzUpGqmJ0QAAla8XVEovvL3rVywf29UkgXlSTDAeuquNmGvQw0OG5Fi12Sl4lp4XHNEB5qjfG0c9NW5Tp05FSkoK5s2bh0GDBiE0NBQymQw5OTnYtWsXli5dipkzZ7r6NImcxlqbKltThkt5JWIdYml7fWe1XnxkIMoqqnFXVEtMToyGn7cnSsorTXIW6nFhB3KFOiU6T01NxTvvvIMWLVoYvV9SUoJnnnkGaWlpDjk5so21nr369Bpa4sxAkStXxpH6bvMrHOXh2XtjsTolQezhzr1VDrmHzGg7qd/Z8rFdJYfhTr8nFnIPy+eo8vXCMwNiEd1SieVju+JyXonF7W25XzWJ282Pzpo9tAOu3iy1eIzG0tvibiON9Fw5bbWunn76afTt29dirpCnn36aHR3UoBqi06QuHTy2BpVr19OzvziJtMl3QyYDrt4sRasW3uIKebUZTr/Q6qqMgk6rUxKQX6LD84PbY96W05JLgs/ffFosS0IDfPBaHZ8XHNEB5sjfG0c9NV4LFy6Er68v3nzzTbzwwguQyWqekQRBQFhYGGbPno0XXnjBxWdJ5DzW2lSX8kow7dOaFAN9Y9WYMTDW4vYBPl74vyd74VZZTfDp6c+Oi8Gn6QNikJ5VINmW4cIO5Cp1CkqtW7cOy5cvNwlKlZaW4uOPP2ZQqhFqiF5DZwaKXLkyTu3v1pZb7q3OvVUuVhx6nz3eE5XVgsWRLa0DffHy8I7QlFaislqAv7cnPGTArnO/QxBgdj54cqwakUG+CPD1En+fcjt6u80FbKxVkCXlNXPVLWkMvS3uNtLIkCunrdYVc4VQY9AQnSb2dvDYGlTWl8HF5RVY8kAcBEFAtQAU6yrhARmmfXpcXLyiGrA51xQAsXOkRFdl86jWuj4vOKIDzJWjosm5XnzxRbz44ovIzMxETk4OACAsLAzR0dFW9iRqeqy1qQyft/deyMNf+7WzuH1RWQV+LyrDV6dyTPIMpu3PRNrkuyGXyYzK6uRYNRaM7Iz8Eh2AhluJmkiKXUGpoqIiCIIAQRBw69Yt+Pj4iJ9VVVVhx44dCAkJcfhJkmM4utfQmYGihhrtVZfv9pTLLG4vFagpLK2wOrLlemEpbtzSYcIfK2QYroahb5AAMMkVskJiZSBbe7ulAjbJsWosG93FagWp8vXC/ow8i8EyV/e2uONII0Pu2EBjrhBqDPTll1IhF1cNNcyjFGAlj5859gRsbAkql+iqxDJK7a9A2uS7oS2vxLvfZ+BARj6mD4gRy1jDqXn65OStWnhj1HsHzE7tU/l6IStfCy8rw21rlyV1fV6obweYK0dFk2tER0czEEXNnqU2leFoWH2d5uPlga3TEyGTyVBQokNVtYBjfyxEFB8ZiPSrhUjbn4nVKQnw9pShQ2uVWA8GKr3QxqCsLizVobyiGgcv5WPEu/uh1VW5TectNR12BaUCAwMhk8kgk8lwxx13mHwuk8mwaNEih50cNW7ODhS5MkeE4XdXC4LZUUjmVjjy9vTA0SsFKNRWSI5K0mh1eHnLaYzvEYlPH+8JTWkFQlp4Y/qAGKTtzzTJFVJeWY2Ilr4IaeEj5gKxdM5S98tcwGbfhTzM3ngSy8d2tRh0bOmnwPnsIjz2x7x1w8BUUkwwlo3u4vKAjzuONDLkjg005gqhxkDtr8CgjiF4pEekZB6lcQkRdT62rQEba0FlTWkFFm47g30X8qBUyJE2+W6c/k1jtIhG2v5Mow4J/XUkxwTj8eTbUVZRhY8eTUBhaYXR6qhaXRWSYoLRUqlAgI8nbhTrLJ6LI8uS+nSA2dLZ5a7Tscm8goICrFu3DhcuXEB4eDhSUlIQEVH3/0eJ3I2+TbVgy2m0Dw8wCiD5e3side0RsYP6s8NXcGdEoMkq24kxwVidkoCyimpxut4z69Pxf0/2xoItp43qQX3QSe2vEOshQ+7SeUtNh0wQrKVQ/tOePXsgCAIGDBiAL774Ai1bthQ/UygUaNu2LVq3bt0gJ9qYFRUVQaVSQaPRICDAcoLpxsRRD3b64zSnZKLXC0tNgnFJMcGY/McqFoa91okxwegR3RKdW6uw7kCmUU4QfaVQXlGFi3klkhXMYxLHBICvZyajfVjd/94u5hZj4Jt7zH6+YWpPtAlSYu6mU5JBx/BAX1wvLDWtQH290DZYiduClHU+N0dJzyrA6PcPmv1887Q+jXrZW41Wh2fWp5ttoDXEw4IjyrPXXnsN77zzjrjyHvBnrpCZM2c221wh7lpXuKvfCrR44YuTZvNm1J4+5+ggh7UyduezyRjyzj4AwMx7Y3F3VEuUVVSJI2T1DEd76RPUtg70QbamDKv3S9cZG37KwkvDOqK0ohKPph3BuB6RFnOINKaGh1T92vePUcHVgNtOx25K6luWtW7dGqdOnUJwcDAyMzPRp08fAECXLl1w7tw53Lp1Cz/++CM6dOjg6FNv9FhPNG/XbmoxZ+NJHMsqFMt9oGYGRO6tMnzy4xV0aq0yW54nxwTjrqiWePvbCwBq8kf9nFUgmY+wb6war4yKQ783fjB7Pt/N6od2If4OuTZqfuwpz+waKdWvXz8AQGZmJiIjI8XGBrkfR+bZaY7JRKVGIfl4eWDB1jNQKuR4d3w8QgK8UVJWBZXSC5VV1Xjr21/RLTIIk/8Y6aTv1V6w5TReur+jSUAKqOkZ9/WUY/PTiSivrBaH6OYUlSFIqcDF3GK7GlKGja9KK0t/39RWICSg2uJoq9aBvnjjoW6NNijpjiONDLly2mp9MFcIOVpdAkdlFdVW8ygZTp/Tc1SQw9Kon0EdQ+Dt5YG1k+9GoJ8XvD3luFVWiQBfL6MRsoBx8vL3J3bH+p+y8NrYrlj65TnJOsNDJsOiEZ1xJV+LaX/0lpvLIWJPWeKsEUrmRvkCwPT16ezRbwJycnJQVVXz9z137lx06NABX375JZRKJcrLy/Hggw9i/vz5+O9//+viMyVyHo1WhzmbTuFYViFWjo83GeWbHKtGSp8oeMhkRu8b2peRj8mGK+9FBJrddu+FPBTrKi2eU2NME0FNU50Snbdt2xb79u3Dhx9+iEuXLuG///0vbrvtNvznP/9BdHQ0kpKSHH2e5EDunmfHVaQeyNuF+Ivv5xWXY9HwTqgQBLy02XiVo/VTe2JCz7YmFYy+V7usUrrxpFTIMa5nJF7ZdsaolyM5Vo3b1X54bO0RseFirSFVOxC5OiXB4vV6e3qgqLQCt7fyt7q6Y2P9e3FlgnxHceelzZkrhByhrp0o9kyfM1SXutBcwEYqqDyoYwjmD++ExdvOYFzPtnj96/Mmo51Wjo+XHCGr8vXCopGdUaqrMrs66r4LeSivqsaJa4XiewltgxDVUlnnssTZC0ZI1SsXc4vdejo2STt8+DA++ugjKJU1o6u9vb0xb948PPjggy4+MyLn0qecmD4gRrKjet+FPFQLAp7saznJeXlltc3feavMclCqsXfeUtNRp6DUF198gUmTJmHixIk4fvw4ysvLAQC3bt3C0qVLsWPHDoeeJFlnTw+mu+fZcQVzD+RLHojD4u1n8e25XABA2uQEk+kUAODjJceqPxLXGtK/njdMOil0alK0xYopNSlaDHJZakhJBSLTrxYiOUZtsioH8GdurNF33mbxvjR27jrSqLbGHPiTcu7cOfz444/o3bs3OnTogF9++QXvvPMOysvL8Ze//AUDBgxw9SmSm6hPJ4q1kZJKhdwhdaG1gE3tQJC/jyee/+/P6CaREwT4s14wLN+Bms6IVi28UVFdjRIrDYnMvBIcu1KAbc8kQQYg2OCZwN6ypLF0ZLnjwg9knn62RXl5OUJDQ40+Cw0NxY0bN1xxWkR1Vp/RpBqtDuWVVXh/YndEtqwJ0KZnFZp0TBzIyMfsoZanteoXXEqMCcZtQZY7DTw9ZGYXLHKXzltqGuoUlFqyZAk++OADPProo9iwYYP4fp8+fbB48WKHnRzZxt4eTD7Y2cfwgbz2Sk7XCksxvkckDl7Mh1ZXhVYtvCULdk+5zOw0kgMZ+RDMzIS1NOz2QEY+UhONR6GYa0hJBSLT9mfis6m9IEDAfomcJJ//lAV1kvuPcnHnkUbuaOfOnRg1ahT8/f2h1WqxadMmPProo+jWrRsEQcB9992Hr7/+moEpskl9OlGsjZT08LCcgsCWutBawOb1h7qhuKzSqJGSX1JzTZP7RNlcvifHqvFYYhQe+GOlvc8e72nxvLw9PbDvQh4WbT1T76BRY+nIcvfp2GRs4MCB8PT0RFFREX799Vd07txZ/CwrKwtqtdqFZ0dkn/qMJpXa19KI2coqwfzK1zE1CxGtTklA+tVCyGUyi6v67c/Ik1ywyN06b8n91Skodf78efTt29fk/YCAABQWFtb3nMgOdenBbM4PdnXpxdA/kOtXvTCZ4x2jFiuO4jLpZbkLSiw3bopKKyRX9LM2BFfqc6mGlFQgUqurwuPrjiBt8t2YVlaJwtIKeHt6IP1qIT7/KQuLR8U1mcrI3UYaubPFixfj73//O5YsWYINGzZgwoQJeOqpp/Dqq68CAF566SUsX76cQSmySX06UayNlCytkC6v9WypC60FbC7mFmPCR4eNvnvBiM5QKuRWy/cWPl74/IleCPD1wu5ffsf0z/5snBy8lI+kmGCjDgU9w1VgHRE0aiwdWU1hOjbVWLBggdFr/dQ9vW3btiE5OdmZp0RUZ/UZTWpuX3MjZgGgrKJKMpCUGBOMlMQoTPzosFhXjIm/TbIeNFxISf89Lw3rCF1lNTtvySXqFJQKDw9HRkYGoqKijN7fv38/br/9dkecF9moLj2YzfXBzlovhrmAlf6B3OxUuow8VKNmKp2/j1zyu60lFS+rqMLiUZ0xf/Npo0aGytdyo0g/RNeQVEPKXCAyr1iHcf/6EV/NSEZogA9ulVVg9J23QZ0UzcqI6uTMmTP4+OOPAQAPP/wwJk2ahLFjx4qfjx8/HqtXr3bV6ZGbqW8nirnpcyXllaisFiQ7AwDb60JrAZvCUuPP917Iw8JtZ5CaFC1ZfhvyVXhALpNh7D8PmvSUp+3PxMrx8ZDJZCa964YNDaD+QSNrv4MAXy+nJEFvKtOxyTQoVdvrr7/upDMhqhvDMs+3HlPBLbXjpGZEJMYEQ6urgqdMhucHt8fsoTKU6qpRXF6J41kFRiOr+saqxanb746PR7amDJfySsQOaMNtV+3OwOg7b0On1qq63hKieqlTUOrJJ5/Es88+i7S0NMhkMly/fh2HDh3C888/j5dfftnR50gW1KUHszk+2FnqxViw5TQWjOiMOZtOSQas9IEhW6bS5RaVS/ZeH88qQHJMsGRi2sSYYGRrynCjqAx3RgbhscRoeHnWNEbKKqrMDtE17A03PGephpSlQGRC2yAEKr2a5O/dEmetJNWceXh4wMfHB4GBgeJ7LVq0gEajcd1JkVtxRCeK4UjJ64WleP6/PxuNfhUE4ynM9tSF1gI2UoGnfRfy8FS/djh4Kd/iFIyS8iq08PHEGw91E1dr1a/Kp9VVYcb6dGx5OhFV1QIy80vQyt8bCk8PZGvKsGpCd3H7+o5+traKoELuYbIqXkMlQed0bCJytdqd3O9P7G5xe0sdA9bacYYjavWdDs/UmtL39cxkrNp9wWKbTv/fpTvONbtBCeQe6hSUeuGFF6DRaHDPPfegrKwMffv2hbe3N55//nlMnz7d0edIFtS1F7m5PdhZ6oloHx6AORtPmgSM9l7Iw4tfnMT8+zti/dSeqKiyPNqpvLIay3acw8epPXBdUwZNaYXYkMjMLcYrD3TB/C2nTXq1nxkQi/AAHwxduU+sZPSNpc8OX5Ecopsco8a0e2IwZd0R8b1BHUOwcGRn5BXrcCmvxCjQ0hwDkZY4eyWp5iQqKgoZGRmIiYkBABw6dAiRkZHi51evXkV4eLirTo/cjCPLrtqdE/rATmpSNKb1j4GPlxwqX/vqQksBG6mOAz0PDxnOXdeYnYLxygNxWLL9LL79JdfofcMcI1pdFTxkMoSovFFYWoG3vv3V5Dhpk++ud0PD0u9g4cjOmL3xVJ2mrdTnfJpbnUVEjYNUJ7e1Ua+WOgastePatlTii6d6o7yiGgcv5ZvkmOobq0ZYgI9NbTq2Bagxq1NQCgBeffVVvPTSSzh79iyqq6vRqVMn+Pv7O/LcyAb16UVuTg925noilAo5+t/RyuwIqH0X8nC1oBRT1h3Fp1YSyyq95FgwsjPmbzGegpcco8Zz97XHpNWH8cyAGMy7vyNulVVCqZDDT+GJQKUXLueXGFUyho0lT5kM8+7vhGpBQH6JDpVVAk5eK8RPl/Ox8ak+KKuoQoCvFxRyD5PGgWGgpaEDke4y8qixrCTVVD311FOoqvrzbzkuLs7o86+++or5pMgujiq7pDontLoqrNqdgVW7M/DdrH5oF2Lfc4y5h/zkWDVS+kQZTaOr/b0dW6vgp5Bj7rCOqBYEFGgrUFklQBAELNl+Bt/+Yrz6WO0cI4Z1/Hu7pVd39ZDJsGp8vF3XJMXc76CxJEEnInIGqTIv/WphnVewU/srzE4jT4wJxldncjD6ztvgq5Ljgz0XTQJSUqOhLGlugxLIfdgVlEpNTbVpu7S0tDqdDNmPUW/bSPVE6EcjaUptGzp7yEJi2eRYNaLUSpOcUMCfOadGxd+GF744hb6xapPAh3+xzuSY+sYSAGx7JhGPfPijSWU0uXcUVEoFNFqdyfQJwDTQ0lCBSHcaecRGVMP661//avFzfcJzIns4ouxqqITdUg/5vgo55m8+ZZILCqhpaBzPKhCDYatTEjBl3VHx888e72kSkNLTTxU3rOMv5hZjX4Z0mbbPgWWa1O/gUl6JxX24mi8RNSVS9Yg+xx9g/wp2KqUCC0d2xstbTpuMdNXnB7y3Qwjahfg7LJjUnAYlkPuwKyi1du1atG3bFvHxNTkYqHFg1Ns6qRFl+sTltZMI1qYflismloXMqAGQGBOMRSM7o6oakjmjAONkhVKBD7W/AoM6hqB9eADiIwJRXlktTv37JbsIv2Tfstg74spAi7uNPGosK0kRkXM15MqztR/yL90oxviebVFWWW22oaFnmDOkb6za6lQQla+XUbnqyjKtOa/mS0TNj1SZZzi7Yf79nVBWUWVXW0wGID4yCKmJ0SivrDZJRK4vRxlMoqbMrqDUX//6V2zYsAGXLl1Camoq/vKXv6Bly5YNdW5kBxZUlkmNKNMnLo+PDLIpmbhWV4XZX5zEZ1N7obyyCsVlVfD38URuURlkADR2JCus3UhQKRWYP7wT5mw6ZTSVMCkmGEtHd4HK1wvdZ/UzG3R0dqOk9qoj3SICcexKgcmogMY48oiNKKLmyZkrz2pKK8RGyuyhHXD1ZqnkikcAcLvaD5un9TGaEmdJUK363pVlWnNdzZeImidzZZ5WV4WTVwsxtQ6rVwf7KXDyaqFkKhHDctRd0mQQ1YVdQan3338fb731FjZu3Ii0tDTMmTMH999/P6ZMmYLBgwdDJpM11HmSg7miYHN1YVp7RFlFdc1oP3PDbmv3aCsVciwf2xWvbDtjNCIqKSYYy8d0tWsVptqNBI1Wh5c2nzYJjO3PyMe8zafx7vh4i7lOnNkokZqqVzsBr6HGNvKIjSii5smZ090DfLyMpmCnZxWYzTcSrvIx+W57yihXlmlMIUBEzUlDlHkqpQJLHojD3E2njFKAJMUEY8kDcVApFW6VJoOoLmRCPebhXblyBWvXrsXHH3+MiooKnD17tlkmOy8qKoJKpYJGo0FAQICrT8cqVxRsjbEwvZhbjIFv7gFQE3BKTYpGfEQgvDw9IJfJcOhSvrj8NgBMHxBjsWHx+kPd8Pf//mx2Fab4yCAxOW3tKW2G5yLFWgJejVaHZ9anm22UOGoKnbncVYDxNdpz7q5wvbDU7ANFeDOv3N2tPHMnvLeNg76DpD7T3a11svxWoMWLX5zE/ox8MX/hmgOZkvlGpMoce8soV5dpjrin5D5YljUc3lv34MgyT6PV4bn//owOBik89CNrz2cXYcnoLnj+vz9LPns78hmfyNHsKc/qvPoeAMhkMshkMgiCgOrqaus7kMu5Iv9PY805ZNi7rO/RVirkeKLv7RjUMbRmet+E7jieVYC0/Znoc3uw2VX69l7IQ0l5pWTvieGIK3M9KZam3ykVclQLAi7mFpttADmrt9pS7irDvFmG398YRx4xDxtR81Xf6e7WOlk0Wh0WbD2DyYnREFBTNuqn8k3rHwNvTw8EKRUWyxx7yyhXl2lMIUBEzYUjZ35otDpka8owpnsbMZesYYc4ADw3mAv0UNNnd1CqvLxcnL63f/9+DB8+HKtWrcKQIUPg4WE5OWd9FBQUYMaMGdi6dSsAYOTIkXj33XcRGBgouX1FRQXmzZuHHTt24NKlS1CpVLj33nuxfPlytG7dWtyuf//+2LPHeITKI488gg0bNjTYtbiSKxJiN9bVzmoHcgx7s9/+9oK4XXKsGl/OSEK+lTwfRaUVuL2V8eoYft6eUMg9oCnVYdv0JLONBHPT7/TntLjWlEGpUWbOaJRYy11VO2FvY56+wUYUEdnLlk6WvGIdvj2Xi4MX85GaFG2UvPbQpXyMib8Nt7eyPnq0rmWUANRkziUiIoeyZeaHPmilKdVB6e0JD5kMnh4yBNcKXtmaDqOorNLiOTW2NBlEdWFXUGratGnYsGEDIiMj8dhjj2HDhg0IDg5uqHMzMmHCBFy7dg07d+4EADzxxBOYNGkStm3bJrm9VqvF8ePHMX/+fHTr1g0FBQWYOXMmRo4ciaNHjxptO3XqVCxevFh87evbdKfvuGKVntrfaThVrryyGrrKKmi0rglMGQZyqgUBi7edMZmet+9CHuZvPo2Z995h8Vg+Crl4HabX4mdxX3M5QfQrBNY+J3OjzBo60GItd1XthL0M+pCzsQODHMFcT7gtnSz6Os8wp5ShezuEOPx8G+MUeaLGivUE1YUtnRIluirJQNNjidFYtuMcFo2KE0fUSh1L/7yfmhQt1h8BPpab61ygh5oCu4JSH3zwASIjIxEdHY09e/aYFLx6GzdudMjJ6Z07dw47d+7Ejz/+iJ49ewIA/v3vf6N37944f/482rdvb7KPSqXCrl27jN5799130aNHD2RlZSEyMlJ8X6lUIiwszKHn3Fi5YpUew+80HI1k+LDuyodnfSDnYm6x0WgkQ/sz8vHCEA+Lq/RtP5mNk1cL63Qd5qbfWZsy6OxRZtYS6kol7CVyJnZgUH2ZC/AsHd0FRWU6TB8QI3aq1J5ucauswun1bGOdIk/UWLGeoLqw1imRe6sci7efNRtoio8MMhpRa0s6jL6xagT5cYEeavrsCko9+uijLllh79ChQ1CpVGJACgB69eoFlUqFgwcPSgalpGg0GshkMpOekE8//RSffPIJQkNDMXToUCxYsAAtWrQwe5zy8nKUl5eLr4uKiuy7IBcyF1RQKuSYP7wTqgUB6VkFDl0dz/A77R35U1/2zPu2NoosW1OGx/6oJMyt0qfVVYnXAcCuOedS0+80pZanDDp7yC5XWqLGrLF1YLhzXdFcWQzwbDyJV0bFIT2rwKizwHC6hX6UqDMbEI11ijxRY8R6giyx1G6w1k4o1FZgfI9IPJYYbZIbSh9oWrU7w2hErTnlldXis3VogA+fvanJsysotXbt2gY6DctycnIQEmI63D0kJAQ5OTk2HaOsrAyzZ8/GhAkTjLK/T5w4EdHR0QgLC8Pp06cxZ84c/PzzzyaVj6Fly5Zh0aJF9l9IIyAVVFAq5EibfDfe252BORtPids6avSS4XfGRwQ6beSPvdMZrPVue3rI8MwfyWpnD+2AqzdLxdUxDOd+772Qh5yiMiz58pzdUylqT7+7mFts8ZxcMWTX1Ql1icxpbB0Y7lxXNFeWAjz7M/JxXVOG9KxCk9FSOZpSLBrZWSwLndmAcMW0fCJ3xXqCzLHWbrDWTigqq8C0T48DkM4Npc+7asuI2tvVfkYd9Xz2pqauXqvv1dfChQutFsRHjhwBAMkRWoIg2DRyq6KiAuPGjUN1dTXef/99o8+mTp0q/jsuLg6xsbFISEjA8ePH0b17d8njzZkzB7NmzRJfFxUVISIiwup5NBa1C7YgpQLzNp/GvoyGG/qv/85frQRZCq2MDLKVRqvDy1tOo1tEICb3iTKaZrFgy2m88VA3k2uy1LudGBOM9KuFYo6QTuEBYsUjpUBbgccSo9EtIlDsKanL/XR2j7utmCScGqPG1oHh7nVFU2LrqFlrAZ6isgrJKeiJMcFY8kCcSxoQrpiWT+SuWE+QFFumQdvSTtCTyg3l7VmzIJgtI2ql0mHw2ZuaMpcGpaZPn45x48ZZ3CYqKgonT57E77//bvLZjRs3EBoaanH/iooKPPzww8jMzMTu3buNKg8p3bt3h5eXFy5cuGA2KOXt7Q1vb2+Lx2nsDAu2mlxKDT/0X6VUoKWV45RXVDsk6Xl+iQ7jekRKNhweS4xGfonpd5jr3U6KCcbkP6bn6ekrFnNKyisxZd1Rk56SvRfykF9SE3izpYHE6XJE7tuB0RTqiqbAnlGz1gI8rfy98da3v5pMQT+QkY+Xt5zBKoNOB2c1IBpr5wWRM7GeoPqwZRp0uxB/yWdywzQehgxzQ+mDVvoymc/3RMZcGpRSq9VQq9VWt+vduzc0Gg1++ukn9OjRAwBw+PBhaDQa9OnTx+x++oDUhQsX8P3339u0UuCZM2dQUVGB8PBw2y/EzTlz6L/aX4HkWLVkwZ8YE4yDl/IRGlD/ZNmV1YJk7ir964UjOkvuJ9W77e3pgYXbzojDbwHg96IyJMeoJYN5yTE1f9NKhdykp0SpkEMAMH19us1T+zhkl5o7d+3AINezNwm4pQBPcqwaCk8PycUugJqVWl2Rv4mNGyLWE1Q/traFaj+TKzw9sON0jtE0PUPlldVi0Orzn7KMymQ+3xP9yaVBKVt17NgRQ4YMwdSpU/Hhhx8CqFkpY/jw4UZzvzt06IBly5Zh9OjRqKysxIMPPojjx49j+/btqKqqEofltmzZEgqFAhcvXsSnn36KYcOGQa1W4+zZs3juuecQHx+PxMREl1yrKzhz6L9KqcDCkZ3x8pbTZpOFO2K57OpqwWzD4UBGPqqqBYvnqK8QrheW4uUtpxF3mwrP3huL3KKaZJSnr2vwWFIUBAjYX+s6UhKj8OnhK+IIKcOektSkaCzcctpklT9rU/ts7XG3J7E7kbtgBwbVlb1JwC2NmH1+cHvcLG5ci0/osXFDzR3rCaoPe9pCtWebmMuVCwDRaj8sHNEZcg+ZZOoQTskjquEWQSmgJnHgjBkzMHjwYADAyJEjsWrVKqNtzp8/D41GAwC4du0atm7dCgC48847jbb7/vvv0b9/fygUCnz33Xd45513UFxcjIiICNx///1YsGAB5HJ5w19UI+Hsof8y1CyLmpoYjfLKapNk4Y4Igml1lVY+N+3NqM2wh/3bc7n4195LSE2KRnxEIOJaqxDZUokVD3bD5bwSFJZWmFxHeWW1OEJKn9ywz+3BDZbo3d7E7kRNDTswqLa6jAQ2DPAUlupQVlGNQ5fyMWXdEax57G6Lx3Nl/iY2boisYz1BUuraFrK2X2uJ3FBEZMptglItW7bEJ598YnEbQfhz9EtUVJTRaykRERHYs2ePQ87PWRpiJIyzh/4H+ylw8mqhZHDG3iCYufuh8rV8DJWvl8X9AdMedn2Sc73vZvVDqa4KEz46LPkdhiOkvD090DdWbTUXVV172e2dokLUVLEDgwxZ6/32Ucgl8xjqAzy/ZBdh7D/3ie9/dy4XyTHBJqNdAeZvInIXrCeotrq2hTh9msgx3CYoRQ07EsaZQ//1BfiCLafRPjxAXFY7SOmFyJZKm7/T0v2wpcfD2v20pYfdctizZi55cqwaMa38xftrSV172e2dokLUVLEDgwxZWy1p+8lsnM8uwsKRnVFWUW3SQVFUZjzq9l97L2Hl+HhUA0ZTxNkAIXIfrCdIir1tIcOO7fnDO0Eh94CmVAc/b06fJrIXg1JuwhkjYQz3LyqrqJlnV+t9R2kd6IsFIzpjzsaTRqOPbA2y2XI/LPVcALC6vyNybQX6emHF2K4IN7geS0l0PeWyOq0+6Mxk9URE7sJcL7Y+j+HsL05i+diueOGLkyZBpuVjuyLA1/gxSaurwoz16UhNikZqYjQCfLzQ0k/BBggRURNg6zRopswgciwGpdyEM0bCOKuA1Wh1KNRWYN7mU3Yn/NazdelWcz0eF3OLre5v6/xyS0GmdiH+CA3wEd+z1EBK6ROFoe/sQ0LbILvvuTOT1RMROZu+R1pTqoPS2xMeMhk8PWQItmEKu773O1tThkt5JUb5/1KToiVXatXXRcvHdkVSTLDRghb6qdxJMcH4x8N3GpXxXGyCiKhpY8oMIsdjUMpNNPRIGGcVsPrA1+Q+UZI5OfTfqZ/mZu7hXup+KBVyMRF5fokOuFEMtZ8C7UL8Tba15X62C/G3aZ64pW0MGyt6+gZS7q1yZN3UAoBRgvS63HNnJ6snInIWqQ4T/UinZTvOYdGoOKtBfJVSgUt5JZj26XGj9+MjAi0uPnGrvAKvju6ClzadMgpMJcUEY+noLkZlPHvOiYiaPqbMIHI8BqXcREOPhHFGAWsY+BrfI9LitoWlOizcdsbsw33t+6FUyLFyfDzWHMhE2v5MMTh1Oa8EEUFKhAZ4G52/rffTlvnldcnHpVIqkFesw5R1RyU/t/eeM9EiETVFGq0OL/7vJPZlGNdP+pFN8ZFBNgfxpcp9/cqo5lzMLcGm49ewfExXFOsqcausEv7enpDLgMpqQZxuzZ5zIqLmgSkziByPQSk30dAjYZxRwBoGvqytQldeUW3x4b72/dBPwUjPKhSDU5ZyVdlzP22ZX16Xpbgdfc+dmayeiMgZcorKTAJSevoVTlftzrApiK/2V2BQxxCjBTYiWyoxfUAM0vZnQqurMtnH29MDu87loryyGsvGdMGrX56T7Cwp1VWx55yIqBlgygwix7McGaBGQz8Spm+s2uh9R42EcUYBaxiESb9aiMSYYMntkmPVOHjJ8tS+2vcjPiKwpoFiJT/I70VluJhbjEt5JZh3fycsG9MFSsWfS/U6c2RRQ9xzlbJmuuKdkUFoF+LPRhARNRoarQ4Xc4uRnlWAizeKodFaXo1Uo9XhWkGpxW30I51sCeKrlArMH94J6VkFmLLuKKZ9ehzD392PE1kFWDk+3qguAGqmCKZfLQRQU4dcydea7SzRlFq+FvacExE1DfqObSlMmUFUNxwp5UYaciSMM3ISGQZh0vZnYuX4eACmy2ovGNkZI97db/Y4+od7w/uRX1LTILCWH+RibjEmfHTY6Pt2zEhGkQuWcGUeKCJqLuqSb0mfW9AS/ahbW4L4Gq0OBy7WjK6a2LMtfLzkOJ5VgLT9mQBqpn3r6w99zqoZ69PF/QtLpQNLey/kYe6wjha/mz3nRETux9ziFUyZQeRYDEq5mbpME7P1uA1dwBoGYWovqw0AkS2VCPD1QqFWJzmNQs9HIRfzeIj3I7cYgPX8ILUbFXsv5OHlLaddku+DlRoRNQd1zbdUVFYhjqqtPfoV+HMkk61B/AJtBbafvG50rMSYYKwcH48Z69Px0v2d0Ck8wGh1PsO6yNK0c7mHjJ0MRERNiLXOFKbMIHIcBqVI1NAFbO0gjH5ZbX0QBgCe/+/P6BYRaLERsv1kNk5eLZTMEWUtV5XU5/bk+3D0ct+s1IioqavrQhoBPl5mR9XqRzJ9/lOWTUF8jVaH+ZtPmdQr+tepSdEo1VVhw09ZkoGl5Fi1OJVPitxDxk4GIqImwtbOFJbtRI7BoBQZaegC1lwQBgCmr0/Hvgt5OHalwGIjRN97XbtSWD62K/b8esNqr7oUW/J9NNRy36zUiKgpq+uiDmp/BRLaBomjaqck3Q5PuQxBSi8IQs2qq2881M2mgFS2pgz7JOoF4M+E6SpfL7OBpaWju2DRtjOS+/eNVSP4jw4KdjIQEbk/Z6xKTkR/YlCKnE4qCHMxt1gs/A2n9s0e2gFXb5ZKTqeoXSm0DvTFsLgw9L49GPO3nDaqTJJj1UjpE2WUH8SQtXwfXO6biKhu6rqog+Ho2tqrqb42tivCLXQGaLQ1uQYFAAu3nMb4nm2tnqc+gGQusLRoVBzKKy2PhGInAxGR+3PGquRE9CcGpahRqF3466f2dQoPwLRPj5vdr3aloG8QrKrVqPD38cS8Tackc1UZ5vswNz2PPSZERHVTn0Ud6jLFWT+qtVtEINKzCnAgIx+T/8hdaE6bIF+rgSVOtyYiah6csSo5Ef2JQSlyiPrmWjJX+FvLEWWph73291vr5bY0Pa+4nD0mRER1Ud9FHewZfWQ4qnVynyhxhJWlhOl9Y9UIC/Cx+VoYhCIiatq4QjaRczEoRfXmiFxL5gr/9KuFSIoJxn4zDQl7KgVLvdzWpue9MirO4rHZY0JEZJ6zRhkZjmo1XI3VXML02oExRy9mQURE7ocrZBM5F4NSVC+OyrVkrvA/n12EpaO7YN7m0w6pFMz1cucV63DsSgGmD4hBfEQgyiur4eMlx/GsAqTtz4Suqpo9JkRE9eCMUUaGU8ENR9oa5ipMTYxGeWU1blf7IVzlI55TQy1mQUREjuWMDgRO2SZyHpkgCIKrT8LdFRUVQaVSQaPRICAgwCHHdJfe2ou5xRj45h6zn383qx/ahfjbfDz9dUuNZGrISuHnqwW4UazDmgOZkiv+hfgroG7hY7bHxFLCXSJ30hDlGdXgvW14V/JKkHGjGOWV1QgN8MH5nCIs+fKcST7BvrFqo04TjVYnrgBbW+1tiZo7lmUNh/fWOnYgELkHe8ozjpRqhKwVto0pYOXo1SnM9aQ3dA97oK8CK74+b5JvRP966QNd2GNCRNSIXS8sxbzNp7Evw2Dl1Rg1VqckYMq6o2JgSmqkrbXFLHKKyljWExG5mKNXw7bUpmpM7S2ipo5BqUbGUmG7YMtpLBjRGXM2nWo0vQONcXWKulQiuqpqyQS4QE1gSldVk5vEUnCMlRcRkWuIdWeGcd1Z81rA//7aG6UVVQj0VcDfxxMl5ZVIzyoQy2prHSz5xTpotFxllYjIlRy5Gra5QQCvje0KAeBoLCInYlCqkbFU2LYPD8CcjSexr1bwpK69A9bYEmSxd3WKhg7c1HVIb3F5pcXjllj5nEOJ3R+DikSNl7X/Py3Vnfsy8vGy3AOdWqtwvbAUz//3Z5Oy+qX7O1r8fgFAgbaCZQIRkQs5aoaGpUEAP/x6AztOZpt0cjRUe4uIGJRqdCwVtvERgeLy1rXZ2ztgja1BFntWp2jowE19hvTWZ8SXo4cSk/MxqEjUeNny/6e1hkpJeaXFsnpoViGSY9WSga3EmGAcupSPn68WYhXLcyIil7H1eb0+HRkhLbxNAlJ6jm5vEVEND+ubkDNZKmwNl7eWYm/+JnOsBVk0Wp3R+/pcS9/N6ofN0/rgu1n98O74eKPk3/Yesy5sGdJrjn7El5TkWDX8fczHb+vzveR6zvjbJGpONFodLuYWIz2rABdvFNfr/yFb//+0paFiqax+ZftZLB7ZGckxxvWAfrGLtP2Z2MfynIjIpSw9r+tnaFwvLMX09ekY+OYejH7/IAb+Yw+eWZ+O64Wl4raWOjKc1d4ioj8xKNXIWCpsA32dk7+pLkEWlVKBdiH+uDMyCO1C/E16EJwRuKnPkF79iK/a9z4xJhgpfaIwb9Mpo8rMUd9LrsegIpHj2NIYsIe1/z9zb5UDsK2hYqms1uqqoCmtwN+HtMfqlAS8P7E7VqckID4yCDPWp4tJ0lmeExG5jrnndf0MDcA0FxRgX0eGt6fl5rEr8uUSNXVuE5QqKCjApEmToFKpoFKpMGnSJBQWFlrcZ/LkyZDJZEY/vXr1MtqmvLwczzzzDNRqNfz8/DBy5Ehcu3atAa/EMkuFbdtgpdWHbkdoiCCL1SSyJbp696jXN+l660BfvP5QN3z2eE+TBsmuc7lmR81Y+94AXy+Hjhwgx2JQsWlpLnVFY6TR6vDi/xw76tDa/59ZN7W4XlhqtaGiUipsqiO8PT0wZd1RTPv0OKasO4pVuzPEgJR+GyIich1LMzRs7Wi01JGRe6vcKe0tIvqT2wSlJkyYgBMnTmDnzp3YuXMnTpw4gUmTJlndb8iQIcjOzhZ/duzYYfT5zJkzsWnTJmzYsAH79+9HcXExhg8fjqqqKjNHbHjmCtvbgpRWH7odoSFW1LN2zFtlFfXuUbelp9ya4rJKTPjosGSDxNyoGUvfO6hjCBRyD4eOHCDHaowrSFLdNae6orHJKSqzmofDXtb+/wQgBrysTSW3pY4IC/BhY4SoiWPnhXsy7ODNK9FB7a8wmaFha0ejpY6Me+5o5ZT2FhH9yS0SnZ87dw47d+7Ejz/+iJ49ewIA/v3vf6N37944f/482rdvb3Zfb29vhIWFSX6m0WiwevVq/Oc//8G9994LAPjkk08QERGBb7/9Fvfdd5/kfuXl5SgvLxdfFxUV1fXSzFIppVf+0j905xXrcKusAi18vKD2d+wqYfauqFffYybGBCP9aiGA+iUHtyfpujl1GTVj6XsXjuyM2RtPMQl6I9YQf+/kGo2trmhONFodrhVYDrTXZdShLXWHYeJZc3UnYHsdUd96hIgatwkTJuDatWvYuXMnAOCJJ57ApEmTsG3bNov7DRkyBGvWrBFfKxTG5cHMmTOxbds2bNiwAcHBwXjuuecwfPhwHDt2DHK53PEX0ozYuiCNPR2N1tpUDd3eIqI/uUVQ6tChQ1CpVGIjAwB69eoFlUqFgwcPWmxo/PDDDwgJCUFgYCD69euHV199FSEhIQCAY8eOoaKiAoMHDxa3b926NeLi4nDw4EGzDY1ly5Zh0aJFDro6+1l66HbU8evzUG5uxQupY+qTyM5Yny6+V5+VLeobtKvrqBlz32vLMGJWcK7liGAmNQ6Nra5wRgdGY2HLKKi6jDrU//9ZuzFSu+6wNeBlSx3hjM4fInINdl64H3tWuba3o9FaRwbLfSLncIugVE5Ojtg4MBQSEoKcnByz+w0dOhQPPfQQ2rZti8zMTMyfPx8DBgzAsWPH4O3tjZycHCgUCgQFBRntFxoaavG4c+bMwaxZs8TXRUVFiIiIqMOVNR5SgaS6PJRb68nQHzO/pOa46VcLjZLI6tUnj099KpH6jJox/M6isgpABmhKLTfUmK+ocWAjtGlobHWFqzswnKnoj/I8MSYYBzLyTT5PrseoQz+FHItHdsat8kpodVXw9JBhf0aeUd1hT8DLljqCjRGipomdF+7Hng5edjQSuSeXBqUWLlxo9YH9yJEjAACZTGbymSAIku/rPfLII+K/4+LikJCQgLZt2+LLL7/EmDFjzO5n7bje3t7w9va2eN7uxFIgqV2Iv83HsbUnQ6VUALnFePjDQ2aP5ao8PvWpzKTu42eP9zS7PcB8RY0JG6GNl7vWFU2xA8OcAB8vpO3PxMrx8QBgFJhKjAnGK6Pi6vT/l1S5qh8lpefqabbmRgcTUePDzgv3Y29qDXY0Erkflwalpk+fjnHjxlncJioqCidPnsTvv/9u8tmNGzcQGhpq8/eFh4ejbdu2uHDhAgAgLCwMOp0OBQUFRpVIbm4u+vTpY/Nx3Zk9Q2Ktsacno7Hm8dFodSjVVWHmvbGYe39HyGUyyD1kCLbSyDB3Hw9eykdSTDD2S4wccHVDishduGtd0dQ6MCxR+yuQ0LZmtdLUpGikJkajvLIa3p4eyL1VjiClcQDelkCOuXJVH/BKTYrGyauFLu39tjXPCRE1LHZeNF11Sa3BjkYi9+LSoJRarYZaLb3KjaHevXtDo9Hgp59+Qo8ePQAAhw8fhkajsSt4lJ+fj6tXryI8PBwAcNddd8HLywu7du3Cww8/DADIzs7G6dOnsWLFijpckftxZM4je3oyzI1ISo5VY/GoOMn9G7o32lLjwtr3mLuP+pEDMpnM5LgcRkxkG9YVjZ9hmb5qd4b4ft9YNZaO7oL8Eh0u5ZVA5esFhdwDczadshrIsVQ/HcjIx/z7O2FqUrTLylFHduoQUf2w86Lpaqwd2UTkOG6RU6pjx44YMmQIpk6dig8//BBAzUoZw4cPN5r73aFDByxbtgyjR49GcXExFi5ciLFjxyI8PByXL1/G3LlzoVarMXr0aACASqXClClT8NxzzyE4OBgtW7bE888/jy5duohJCpu6uqw2Z469PRn64bU5RWXiqk3pVwsxbOU+JLQNMmqgNHRvdH0bF+buo1ZXhRnr07Hl6UR4yGQcRkzUgFhXuJbUlAkfLw8s2HoG357LBQBMHxCD9KwCk7xThmUtADH3YNrku3E8qwBp+zNNcg+WVVS5tBzlQhZEjQc7L5ou5okiavrcIigFAJ9++ilmzJghJhAcOXIkVq1aZbTN+fPnodFoAAByuRynTp3Cxx9/jMLCQoSHh+Oee+7B559/jhYtWoj7vPXWW/D09MTDDz+M0tJSDBw4EGvXrm02S7fWdbU5Kbb0ZNQe7eTv7YnXvz4vNlgAQKmQo2tEIC7nlSBHUwp/Hy8cu3wTx64UGB3Tkb3R9W1cWLqPWl0VPGQyu/JzEVHdsK5wLcMpExqtDtPXpxuVrfERgUYjqZQKOVKTohEfEQhdVTVyispwPKsQr2w/KwahEmOCsXJ8PGZ/cRLjekQiPiIQ5ZXV8FHIodG6LvDjyE4dInIOdl64J32nR6G2AiW6SpToqhDo6wWlgnUwUVPgNkGpli1b4pNPPrG4jSAI4r99fX3x9ddfWz2uj48P3n33Xbz77rv1Pkd35MghsdZ6MrS6KrxQazRScqwaKX2icPBiPrS6KigVcqwcH481BzKNGi76Rkntlfoc1Rtd38YFhxYTNQ6sKxoPqWB/eWW1+G+p8l6pkGPe/R3x+ZO9cK2gFN6echzPKsAXx67io5S78frXv5hMD3RV/iZHduoQkfOw88I9leiq8MqXZ9EhPADxEYG4cascecXliGypxG1BSlefHhHVg9sEpahh1GVIrKXcTuZWvABg0mMOAPsu5KFaEJCaFI1VuzOQmhSNNQcyTaZ2GCa2NWyQAI7pja5v44JDi4mIjEkF+709PcR/1y7vDYNUczedFrdLjAnGi0M64PWdv1ic9ufscpadEUTuiZ0X7kej1eHlLacxrkekScd1Ukwwlo/pijYtGZgiclcMSpFdS6fakttJP31DH7y6lFcCX4Uc3SICcexKgUlekAMZ+Uj9Y3nv2lM7zG1nyBG90Y5oXHAJWiJyB/VZNMKefWsH+/XTLJJj1NiXkWdS3lvqlLhVVol9EquYApZHzDbkAhnsjCAico68Yh06hAdI1hH7M/IxZ9MprOLiEkRui0EpAmDb0qn2JAOXCl6Zm4IH/Dmlw3Bqh5TanzuqN9pRjQsuQUtEjVldFo3QaHXIvVUOTWkFKqqqceBivph43NK+hsF+/SioTw9fQUpiFKohmJTnljolNKX2T7Fu6AUyAHZGEBHVhb0dBkVlFRbriH1cXILIrTEo1YQ5oofY8BiWRjsZ9lSbC15ZmoIX6FvTo244tUOK4efJDu6NZuOCiJqyuqwyer2wFC/+7yT2ZUh3MFja1zDY3zUiUOzh/vHSTaQmRSOipXFgyFKnhLW6ofaI2fquqGoPdkYQEdmuLh0GAT5eyNaUWTwuF5cgcl8MSjVRjughtne0k74ysLSSndQUvL6xarQL8cd3s/qhWhCQHKuW3D85JhitWnjj/YndEejrhXYh/ggN8LHpWmzFxgURNVXWVhn9rbAUeSU6sQNDo9WZBKQA0w4GS9Pn9MH+bE2Z2Bmh1VWJ/06MCRaPZynwlH610GzdIDVitr4rqhIRkePVtcNA7a/A70VcXIKoqbLc9UhuyVqBr9Hq6nyMAxn5WHMgE6lJ5nM7WVvJzrA3XD89LjTAB+1C/BEb2gKvje2KvrFqo30SY4KRkhiNcf/6ERt+ykK02s/hASkioqbMWtl8OV+Lgf/Yg2fWp+N6YWlNYCfDfAdDfESg+NpSD7VKqUBpRZXJ+2n7M/FYYjQSY4IB1ASe9P+u7Xx2EZaN7mJSN5ibYl3fFVWJiMjxbOkwkKJSKtA2WIkkM3UEF5cgcm8cKdUEOaKHuC6jnfSVgbWV7G5X+2HztD5mp8fVnkbn5+0JhacHKqqqsfGpPtDqKqGtqIJGy55uIiJbWSub9SOV9B0YM++Ntbi9YQeDtR5qqe/W6qow+4uTeG1sV8y7vxNKyisxtvtteHnLGZNRvotHxSHcjinW9V1RlYiIHK8+HQa3BSmxfExXzNl0yqSO4OISRO6NQakmyBE9xHUZ7aSvDKytZBeu8rFacdSeRne9sBTzNp82Ox2xIVdYIiJqCiyVzYkxwUi/Wii+3nshD3OHdbR4PH0QKykmGP4+lh8npL5bqZBj+diuSDNYTUmpkGP+8E6Yd39HlOqqTAJPtk6xdsSKqkRE5Fj17TBo01KJVcz/StTkMCjVBDmih9jqaKdWftj1t76oqhZMRi7Zs5KdLcEka9MRl43pgtkbTXtNHLnCEhGRuzNXNifGBOOxxGjMWJ9utL3cQ2Y1iJX8x9TqkvJKq9/92tiu+OHXGwhp4Y3yymqEBvjgfE4R0rMKxe20uirM2XgKfWPV9UpG7qgVVYmIyHEc0WHA/K9ETQ+DUk2QIwp8a8do4e1pMRBky0p2tiZjtzYd8Uq+1ikrLLkSR4IRUV1IlR2vP9QNF3OL4eEhQ0l5JdKvFkouXiH3kGH52K4m5XRyjBrzR3RCRVUVPD1kmLE+HZ893tPquQgAdpzMNruSn+H3OyIZOVdUJSJqXNhhQERSGJRqghxR4Fs6xtLRXbBg6xmrgSBLPRn2rL5hbSphYan0501lhSVHrKRIRM3P9cJSvLzlNDqEByA+IhDZmjLkKr0QFuCDxz8+itSkaKRnFYhT5wwlx6oR/Efwe9X4eGQXlaFQWwGlQg4A+Op0Nj7cc0kMJFkbgSuW+VZW8jPkiGTk7FEnImpc2GFARLUxKNVEOaLAN3eM/BIdvj2XK7mPIxKp1z6Grcl5pbj7Ckt1XTqXiJo3jVaHl7ecxrgekVhzINMo4JMco8bK8fGY/cVJLB/bFQCMAlPJMWosG93FKI8TACz98lydRuBqtDpka8rsWjwDYDJyIqKmih0GRGSIQakmrK4Fvsl0D38F2oX4i59fyiuxuL8jEqkbHsPSVMLkWLVRct7a3L1R44iVFImo+ckr1qFDeADWGCQR1zuWVYChXcLwwV/uwo3icswa1B4vDpEhW1MGTw8Zblf7oU1LpdE+dR2Bqx/pOb5HpMXzNVw8Q39cJiMnIiIiavoYlCIjtkwVszZyycdLjvSsAou5j+xJxm5tKuGibWckj9EUGjWOWEmRiJqforIKxEcEmkyJUyrkWDk+HmsOZGLuptPi+/pk5xt+ysIbD3WTPKa9I3ANR3pO7hNl8XwNR7wmx6qxYGRn5JfoAICBdyIiIqImjEGpJqY+CbFtnSpmaeRSUkwwtp/KFhtC5nIf2ZuM3VJjaNGoOJRXNs2EiY5YSZGImp8AHy9ka8pM3k9NisZnh68gPjIIqYnRKK+sho+XHMezCrD+8BUsHhVnsdy0ZwSu4UjP9KuFSIwJlsxf1TdWjZhW/vjiqd4or6jGwUv5GPHufmh1VU7Pn8dFJYiIiIici0GpJqS+CbHNTRVTKuTo+keS3Et5JQjw9cKyMV2wcOsZ7DLILZUUE4zJtZYVN5f7qC5TQcw1hppywkRHrKRIRM2P2l+B34tMg9YJkUG4MyLQJM+UfqRU7Wl0daEP7OhHOgFA2v5MrBwfD8A4f5W+zFcq5Ji35bRL8+dxUQkiIiIi52NQqomwNsrp9Ye6obis0mLvr9RUMcOpHoYNGP3UuTnDOqKotAI+XnJsP5Utuay4udxHjgwmNdWEiVw6l4jqQqVUoG2wEkkxwdhvEARSKb3wxjfnTUYs6V8vHNHZ4nGtjSQyDOysTkkQ39fqqjBjfTpSk6LFEVq3q/0QrvKBSqnAxdxil+bP46ISRERERK7BoFQTYS0h9sXcYkz46LD4nlTvr9RUsdSkaMlEuXsv5GHuplN4d3w8bm/lj/SsApPcJYbM5T5qqsEkR2rKI8GIqOHcFqTE8jFdMWfTKbF+8JTLJKfQATWBqcpqwWxOQHMjiRaPioOmVAelwhNHrxTg2JUCAKZT9rS6KqOp3YaBHlfnz+OiEkRERESuwaBUE2Htgb6w1Phzqd5fqaliUolyDY+hf1Bn7qOGxeAdEdlLo9VBV1WN+cM7oVoQoC2vQnmF5el5N4rL8ejqnwDUJBxfNroL2rRUWhxJ9NLmU4iPDMKq3RlIjAnGyvHxmLE+3eqUPcMyzdV1iKuDYkRERETNFYNSTYS1B3rDlY30avf+Sk0Vs5ZfRP+g7orcR0xIS0Qkzdyoppfu72hxv8oqQfz3vgt5mL3xJF4b2xVlFdVmRxIdyMhHamK0+G8PyPDp4z1RoK3Aqd8KcXdUS6QmRqOFjxeC/RSSIz1dnT/P1UExIiIiouaKQakmwtIDfWJMMNKvFkruV7v3Vz9VLKeoDNcKShES4G3xe/UP6vqA1oItp9E+PADxEYEor6xGkNILkS2VDg8WNbWEtAywEZGjWBrVNDSr0GJdcTyrwOi9/Rn5uJKvhY+XaceGIcMOjH0ZeZicGIUp646KCdSfWZ+ObdOT0C7EX3J/V+fPc3VQjIiIiKi5YlCqiVApFVjyQBzmbjpllNQ2OUaNlMQooxXxDEn1/pZVViO/WIfyymroKgUsHR2HJV+eM0lgXvtBvXWgLxaM6Iw5G0+aJEV3ZLCoqSWkbWoBNiJqeJYC2ZbyI72y/Sx2zEjGy1tOGwVg9MEjqbqisLQCt/v5ia+VCjlSk6LFzgcfLznU/gooFXKxntAHqfTT9uYP72Q1sOPK/HmuDooRETUF7GQlorpgUKqJ0Gh1WLz9LO6MDBKX9dZP2fvs8BWTgBIg3ft7vbAUL/7vZ+yrFdhanZKAKeuOiseRelDXaHU1CXUlkqI7MljUlBLSNrUAGxE1PGuBbEv5kbS6KhSV6oyCP5ZWTwVqpn/LPWToG6vG0SsFkiuyJhvkktLqqoymjB/IyMfLwzvZVJa5Mn8eF5UgIqo7drISUV1ZHo/fiBQUFGDSpElQqVRQqVSYNGkSCgsLLe4jk8kkf15//XVxm/79+5t8Pm7cuAa+GsfLK9bh23O5WLU7A1PWHcW0T49jyrqjeGZ9Osb3bIvkWLXR9uaCSi/+76RJUGlfRh7e/z4DG57ohfcndseOGUl4d3w8wmtVMLYEixyhKSWkddY9I2oumnpdYS2QrdHqrOZH8vP2gkqpQLsQf9wZGYRwlQ9+vlooGZDST/+We8iwfGxXzB/eSXJF1n0Z+VhzIBOpSdGSU8ZLJY7dGBnel3Yh/gxIERHZwJa6iYjIHLcJSk2YMAEnTpzAzp07sXPnTpw4cQKTJk2yuE92drbRT1paGmQyGcaOHWu03dSpU422+/DDDxvyUupEo9XhYm4x0rMKcPFGsUnhbi5Qo9VVYcb6dLw8vBO+m9UPm6f1wXez+kkGlXKKyrAvQzpAsi8jHzdulWPap8fh7SmXfFB3VrCoKSWkbUoBNqLGoKnXFdYC2dlFZfD38UTfWh0RelIjZFVKBZaN7oKkmGCj9/VT+s5nFyHYT4HWgb5IaBtkEpDSO5CRj9631+yTtj/T6DN3KpeJqGlr6p0XrsBOViKqD7eYvnfu3Dns3LkTP/74I3r27AkA+Pe//43evXvj/PnzaN++veR+YWFhRq+3bNmCe+65B7fffrvR+0ql0mRbS8rLy1FeXi6+LioqsnnfurA0HNZPIUdesQ6V1QLSJt+N41kFSNufadTjrdVVwUMmM5tgFqgJel0rKLV4HuWV1RYTvjorWNSUEtI2pQAbkas1trqiIVgLZF+6UYJNx89jyQNxmLf5tM35kdq0VOK1sV1xJV+LwtIKeHt6IP1qIT7/KQuLR8WJ+xSXV1r8/ipBMJkG6G7lMhE1bRMmTMC1a9ewc+dOAMATTzyBSZMmYdu2bWb3yc7ONnr91VdfYcqUKZKdF4sXLxZf+/o2j2lr7GQlovpwi6DUoUOHoFKpxEYGAPTq1QsqlQoHDx4029Aw9Pvvv+PLL7/EunXrTD779NNP8cknnyA0NBRDhw7FggUL0KJFC7PHWrZsGRYtWlS3i7GTpeGwL35xEsO6hGPOxlPi+4m18noAtjUIbOnBCPT1spjw1VnBoqaUkLYpBdiIXK2x1RUN0YFhLZDt7emBXedyAQCvP9QNxWWVZvMjSSWk7dw6QMypNPrO26BOijbax9r3y2Uyo4BUUkwwljwQ51blMhE1Xc2h86IhmUtkzk5WIqoPtwhK5eTkICQkxOT9kJAQ5OTk2HSMdevWoUWLFhgzZozR+xMnTkR0dDTCwsJw+vRpzJkzBz///DN27dpl9lhz5szBrFmzxNdFRUWIiIiw8WrsY2k47L4LeZjcJ8roPf20itSkaKzanWFzoKaorALpVwuRGBMsOTUjOVaNdiH+CA3wMXsMZwaLmkpC2qYUYCNytcZWVzREB4alQLZhLqdd53Ixe2il2RGylkbgWhpVa+n7k2KCUVZRhdUpCeJiG+lXC/HK9rN446FuLM+IyOWaQ+dFQ7FUb7CTlYjqw6VBqYULF1p9YD9y5AiAmrnctQmCIPm+lLS0NEycOBE+PsZBlalTp4r/jouLQ2xsLBISEnD8+HF0795d8lje3t7w9va26Xvry9pwWP2y24YOZOTjpWEda3q5bQzUBPh4IW1/JlaOjxePoZcYE4xXRsVZDEjpOTNY5MpVmhypqQTYiBqKu9YVDdGBYS6Qrc//NGN9uvieuekS9Vn109z3J8eqkdInCs+YWcHPnVZFJaKmqzl0XjQEW+oNdrISUV25NCg1ffp0qwkAo6KicPLkSfz+++8mn924cQOhoaFWv2ffvn04f/48Pv/8c6vbdu/eHV5eXrhw4YLZhoYz2TJVQ4qushqdWqsAmB9qa0jtr0BC2yDMWJ+O1KRopCZGiz3dubfKEaS0fdit4bGLyioAmen7ZKypBNiIGoK71hUN1YGhD2Rna8pwKa9EHJFUO5eTuekStiSktVQeSQXSqwQBD7x3QDIgBTCfCBE1LHZeNCxb6o12If7sZCWiOnFpUEqtVkOtll4hyFDv3r2h0Wjw008/oUePHgCAw4cPQ6PRoE+fPlb3X716Ne666y5069bN6rZnzpxBRUUFwsPDrV+AE9g6VaM2H4UcF36/BU1pBXy95NBVVaOotBLf/ZKL89lFWDQqDq0NVt8z7P1etTtDfL8uPRyWhve2DmweCR+JyHFYV5jSl8lLd5yze7qEIxLS1g6kX8wtNhuQAphPhIgaFjsvGpat9QY7WYmoLtwip1THjh0xZMgQTJ06VVyC+4knnsDw4cON5n536NABy5Ytw+jRo8X3ioqK8N///hf/+Mc/TI578eJFfPrppxg2bBjUajXOnj2L5557DvHx8UhMTGz4CzPDcGSTytcLS0d3wdxNp4ynSsQEY9o9sZiy7ojJ/skxahy/UoC5m06L7+mndpy9rsGEnm2x9MuzmD+iM4rLKo1GUNW3h6M+00KIiOqjudUVdclJp9Hq4Oslx/sTu8PHS47jWQXY8FMWxvWIRHxEIMorq+GjkEOjtW+6nSPyidgyqpeISAo7LxoWE5kTUUNyi6AUUJM4cMaMGRg8eDAAYOTIkVi1apXRNufPn4dGozF6b8OGDRAEAePHjzc5pkKhwHfffYd33nkHxcXFiIiIwP33348FCxZALpc33MVYIDXKaFDHECwb0wVlFdXIL6kJGJ36TYOyiirERwYa5X9KjlVjWv8Yk2CVfpv4yCB8dvgKZgy8A8//3wnsM9jXliS31tR3WggRUX00l7pCz5acdBqtDvklOggAFm45bVTuJ8YE49PHe+G1nedMRsnaM7q1vos2cIQtETlDc+u8cBQmMieihiQTBEFw9Um4u6KiIqhUKmg0GgQEBNT5OBqtDtPXp2PfhTwoFXKkJkWLPddBSi/c3sofxWWVGPjmHgAw2cbb0wNtg5UYucp8Xo9tzyQht6gMaw9kGjVM9PrGqus1mik9qwCj3z9o9vPN0/rgzsigOh2biBqeo8ozMuWKe6sP9nSLCER6VoHk6qpJMcG4MzLIKCgF1K0+0I92sme0rWHdV1t96yQicjx3rydu3ryJGTNmYOvWrQD+7LwIDAwUt5HJZFizZg0mT54svvevf/0LM2fORHZ2NlQqldExr169ir/85S84ffq0SedFy5YtbT63xnxvrxeWmu14CGfnARHVYk955jYjpZoD/SgjpUKOlePjseZAplEjITlWjSUPxCE5Vo19F/Kg1VWJnysVcsy7vyNCA3zwxkPdxGkZafszjQJUV29qofL1kgxIAfUfzcThvUREDUMf8Ckur0CgUgFdZTWKyyvNTnXTaHV4ectpdIsIxH2dQ9EpPABTkm43qRv2Z+TjscRok++rS31Ql3wiHGFLRM7UsmVLfPLJJxa3keqzf+KJJ/DEE09Ibh8REYE9e/Y45PwaK64WTUQNhUGpRkSfRDA1KRprDmSa9Gjvu5CHRdvO4LnB7SEIAvb/8blSIcfqlAS8/32GSR6plePjjVZk8vb0gKa0/kluzfHx8kBSTLB4boY4vJeIqG70I56OXSnAyvHxWPH1eaM6YlDHECwc2RllFdUoKquAv7cnvDxkmNAzEqv3G3dwSNUN5ZXVkt/rjFXzHJF4nYiIGh4TmRNRQ2BQqhHRjzKKjwjEqt0ZJtPz9KOfbmkrcGdkEKb1j4GPlxwt/bwwf/Npk9FP+gZLalI0Vu3OEFfri48ItHge1kYzmUtGq9HqsGDrGUxOjIZg8P1AzfSQpaO7sCIjIrKT4QIS0wfEmHRaKBVyPNIjEi98cdLo/WWj47DjVLZJB0ftugGo6bCQ4ozRrRxhS0RERNR8MSjlIlKBHX0SwfLKarNT+BJjgjGiazjS/uj5/m5WP1RVw+x0vPSsQrw4pAN63x4MuUyG8soqBPkpcG+HEHz7S67J9tZGM1lKRluqq8K353Jx8GI+UpOikZoYLea6Sr9aCF2VdE88WcdVqYiaL8PpbVKdFi39FHjzm/MmwaeQAB+zdcOBjHyk/jFlL+mPDovanDW6lQl0iYiIiJovBqVcwFJg57WxXZGZV2J2Ct+BjHws2X5O7OG+VVYBc5nqlQo53pvQHWd+0yAkwEccbXXmNw1eGNoB1RCw+5cbRudgaZUkw956Q3sv5GH2Fycx895YADDKdWXo3g4httweqoWrUhE1b4bT26Q6LVanJEgGn8xNyTP8PDEmGC+P6IwVO38x+szWVfMcob4r9xERERGR+2JQysmsBXbeHR+PdiH+ACAZ2FEq5OgWWZO0tsttKqh8vVBeWY33J3YXp/dt+CkL43pEYkD7VvD39kLa/ksmS4BHqf3waK8oTOzZFuWV1Qj09UK7EH+EBviYHZVjLRnt3GEdxXOUmnYY4MspGPay5e+FDTaips1wepu3p4dJp4W54JO5KXl6kS2ViI8Mwspvf8Wro7tgztBKlyWvZQJdIiIiouaJQSkns2WVoXYh/rh6U2vyuWHveNr+TKwcH495W04bjaYa0KEVPn28FxZvPwMAkkuA61+/OKQDRq46IL5fMxXQ/Kic4nLLyWblHjIM6hiCR3pEmkw7TIoJxriECIv7O5tU8A1Ao5omx1WpiMhwAYn0q4XofXuw0RS+iJbSIybTrxYiMSbYpA4AasrkakHA+ewiLB4Vh9AAH4S6ePVxJtAlIiIian4YlHIya6sM6VfGa+Fj+qsx7B2XSnYLAJ1aq7B4+xkxX4jUaCsAko0UTWkFFm47Y3ZUziuj4iyeu9xDhoUjO5sk2wVqlhyfu+lUoxnZU3tKnFIhR9rku/He7gzsy2g80+S4KhVR81Z7AYm0/ZlIaqc26qQAIBl8StufibSUBHgAJqNlJydGY+V3F/Dq6C4IDfBx4hUREREREf3J8th+cjhrqwyVVVTh2k0tTl7TIDEm2Oiz+IhAsdFh+G9z21jLJ6JfClxPqZBbHJWjq6pG31i15Od9Y9UI9lOgrKJa8rz0x8gr1lk8J2eQmhKXmhSNd3dfMApIAX8G5DRa15w3V6Uiat7yinX49lwuZqxPR3xkEN4dHw8/H7lRJ0Xa/kw8lhhtUmfcFRmIkAAf3BXVEqtTEvD+xO5YnZKA+MggzFifjm/P5aK4rNJFV0ZERERExJFSTmdplaHEmGD8dPkmrtzU4o5QfzxzTyyevicGBy/WNDoMg0zmAk6G71vLJ+LpIRP/3TdWDfkfr83lhCrVVVpNRnspr8TidzaGkT1SU+L0K1pJceU0Oa5KRdS86UdLGi4gsTolQZzCp/9sxvp0o1VPI1r6QhCAvFvlePvbC2aP3xjKZCIiIiJqvhiUcjL9KkO1R+okxgRjSlI0ZJDho/2XjEYbJceosWlaH1RWWw84Gb5vKZ9Icowa+/8YFZQYE4xp98RAIfeA2r/m/GrnhEqMCcaD3dtYTUbrDiN7pKbEWRtV5qqGG1elImrepMpUuUwGuUxm9F7tVU/fn9gdANAm6M+px1IdDkENWIaYWzSjqWjq10dERETkDAxKuUDrQF/MH94JV29qUV5ZDW9PD6RfLcSp3zT4KfOmSRBpX0YeFm8/i9Q/pmcc+CPZrVTAKf1qoZgQV58MHYBJkOvlEZ1wKa8Eq1MSkH61EKlrj+CutkFYNSEe7+7OkEyO/vKW02JOKHMP3pZG9iTHquEvkSvL2aQaedZGlbkymMZVqYiaL8Mk53raiipYDqMbl2mJMcFIzyoUc1AZBq8M8+Y5MshSO29f7e8y5I7BHXuuj4iIiIjMc32EoJmSy2SYsu6oUc+1n8ITXW4LRHxkENL2ZxrlfDqQkY8pSbfjmQGxkMtkZgNOZ69rMH94ZyzZfhb7MvLEKR1P94+BwtMD/j6e2H4yG6PeO2CSU2rfhTzMGdbRak4oS40FcyN7EmOCkdInCvM2ncKiUXEufWiXCpxZGlXWGKbJcVUqouandpJzffnk7emB41kFSI4JNkpgrpcYE4zfnQVkywAA4U9JREFUi8oAAKeva/BYYjTu71ImuTjG3gt5WLDlNBaM6Iw5m045JMgilbdP/12zvzhptOCFOwZ37Lk+IiIiIrKMQSkX8ffxxIapPRHkp8CS7WdNpsqtHB+PGevTawWOBES1VOLd8fHIvVWO3wpK8eKQDtBVVuNGcTkU8poRVx/8cAEvj+iE3Fvl0JRWwNvTAwcv5eN8dhFmD+toEvAypNHWf7W31oG+eP2hbriYW4zCP74//WqheD3lla59aJcKnKXtz0Ta5LvhIZOZNI44TY6IXEGf5PzgxXyjfFGtWnjjl+tFeCwpGoDMaIGGxJhgPHNPLFRKT9wqq8SSL88BAD5O7YG5m05Lfk/78ADM2XjSJMBV1yCLVN4+w2PqOzfcNbhj6/URERERkXUMSrmAvme4W0Qg0rMKJKfKATUrwhkGq24L9EXYHz3HKqUCft6ekrmGlo7uItnAAICyymqT4xry95FbPHdbp7EVl1ViwkeHJT9rDA/t5qbEreI0OSJqJKSSnAM1uaE2T0vE8p3ncFdUEJ69NxaV1QL8vOXw9ZLj6zM5uK9zGNqHtsC26Um4VVaBimrB7Pc4eqEHqbx9hvSdG+4a3LH1+oiIiIjIOgalnEyj1eHlLafRLSIQ93UONdsQOJCRj9lDOwKoGcUTHxmI41mFCAvwER/SzQVW8op1kgEpoGaK3lP92kl+b2JMMHKLyh0yjc0dHtrNTYlrjI0gImp+zC0codVVITO/BJ1aq9DlNhVyb5XD29MD+zPyxJGwie3UiAlpIZZnF3OLzX6Poxd6sHXBC3eoJ6S4w4IeRERERO6CQSknyy/RYVyPSKw5kIlO4QEWt716U4v0rAKkpSQguIU3dpzKRn6Jcc+xVGDlUl6JxeN6e3mY5FTqG6vGtHtiMP2z41g+tisA41xV9k5j40M7EVH91M5/Z5iD0N/bE90jg3A8q0BySnbtMtbSIhSBvo4try19l2HnhrvWE7ZeHxERERFZx6CUk1VWC2Ky2dTEaIvbent64EBGPjwA3BXVEkcu38Twrq2tfoe1B/1AX4XkCCutrgqdwgPE5Oj682sT5Gs0QssWfGgnIqoflVKBJQ/EYe6mUzhuZvU8qRyESTHB8PHyMDmW1CIUfWPVaBusdGh5bem7DDs33LWesPX6iIiIiMg6mSAI5hNNkE2KioqgUqmg0WgQEGB59NMv2UUY8s4+AMD0ATGSOaWAmoZGfGSQ2PhYnZKAKeuOIjlWjVVWkr9qtDo8sz7d7IO+peSx+qW5HZFT6XphqdmH9vBGuqoSUXNnT3lG9rH33mq0Ojz335/RITwAgzuF4vWdv5hdbU9fXyTGBOOxxGh8/lMW3niom0n5ba6Mb4jy2pb6xJ3rCUfWl0TuhPVEw+G9JaKmwp7yjCOlnKy4vFL8d9r+TKwcHw/AeKqcvlExY326+J4+58c+G5K/SvXiKhVyzB/eCd0jA3EprwQBvjqo/UwfoM3lWaoLczmv+NBORGSdfvW9b8/lIj4i0GyuwAMZ+XhxSAfERwQarXQqVVeYK+Mbory2pT5x53rCkfUlERERUXPFoJSTKRVyo7wgldUCZg/pCLmHDFdulkAh9zBqVOh5e/45FcOW5K+GD/ol5RUI8FVg/ubTmLPxlLhN31g1lo/titYN2BvNh3YioropKqsQ64tWLbzx/sTu8PGSS+aRulZQimmfHjfa395E4a4qr1lPEBERETVfDEo5mb+3J9JS7sa7318wyguSHBOMp++JQeq6oyYJaxNjgpF+tVB8bWvyV/2Dvkarw/T16diXYTydb++FPMz+4qTF6XxEROQaKl8vrJoQj7T9xnmkkmPVWP9EL0xZewR5xToAxh0Xeo01UTgRERERkZ7pU2wj9eqrr6JPnz5QKpUIDAy0aR9BELBw4UK0bt0avr6+6N+/P86cOWO0TXl5OZ555hmo1Wr4+flh5MiRuHbtWgNcQQ1PuQfe+/6C0XQ9pUKObpFBqBaAjx5NQNrkuzF9QAyUCrk4lS9tfyaAmsaIp1wGjbamIaLR6nAxtxjHr9zELzlF+PX3W7h0o1j8HKiZArJPIr8UUBOY0jdqiIio8fDz9sSa/ZnYX2va3r4LeXhj53msmdxDrCcMOy6Axp0onIiIiIhIz22CUjqdDg899BCeeuopm/dZsWIF3nzzTaxatQpHjhxBWFgYBg0ahFu3bonbzJw5E5s2bcKGDRuwf/9+FBcXY/jw4aiqqrJw5Lq7VVZhlBdEqZBj5fh4pGcVYMJHhzHho8NIXXsEP2cVYsvTiegR3VKcypcYE4yUPlEY+s4+PP/fn5GVX4Lp69Mx8M09GPPPQxjy9j4s2nYGl/JK8Px/f8b1wlIANVNArJ0TEVFT0FQ6MACgUKszm0dqX0YeqqoFzL+/IxaN7Cx2XABcBY6IiIiI3IfbTN9btGgRAGDt2rU2bS8IAt5++2289NJLGDNmDABg3bp1CA0NxWeffYYnn3wSGo0Gq1evxn/+8x/ce++9AIBPPvkEERER+Pbbb3Hfffc5/DpulVUavU5NisaaA5kmK/Dty8jD4m1n8PchHdArOhjF5ZVGuabahwdgzqZTJvvpX8dHBolT8wKsTOHgFA8iair0HRi9e/fG6tWrbdpH34Gxdu1a3HHHHViyZAkGDRqE8+fPo0WLFgBqOjC2bduGDRs2IDg4GM899xyGDx+OY8eOQS6XO/w6NFodCrWWOwzKKqsQG9oCldUCNj7VB1pdFVS+7pMonIiIiIjIbUZK2SszMxM5OTkYPHiw+J63tzf69euHgwcPAgCOHTuGiooKo21at26NuLg4cRsp5eXlKCoqMvqxlZ+3cRwwPiLQJLCkty8jHzdulSO/RIcp645i1e4MMd+Upf0OZOQjPiJQnJqn9legb6xacltO8SCipmTRokX429/+hi5duti0fe0OjLi4OKxbtw5arRafffYZAIgdGP/4xz9w7733Ij4+Hp988glOnTqFb7/9tkGuI69YB1+F5WCXUiFH7q1yFJVWokN4ALq3DUK7EH8GpIiILGhKI2qJiJqCJhuUysnJAQCEhoYavR8aGip+lpOTA4VCgaCgILPbSFm2bBlUKpX4ExERYfN5yVCTuFyvvLLa4vblldWSCWxt2Q+omZqnUiqwfGxXk8AUp3gQUXPXWDsw9NOuDesLQ/r3vT09EODjNoOeiYhcrqmkBCEiaipcGpRauHAhZDKZxZ+jR4/W6ztkMpnRa0EQTN6rzdo2c+bMgUajEX+uXr1qxwkBjyVGGzUoLAn09TJJYGvLfvrP9VPzWgf64t3x8fhuVj9sntYH383qh3fHxyM80Nf2cyciamIaawdGgI8Xvj+fi2fuiTEJTCXGBGP6PbH4JbsIuUVlCPJjxwIRka0a04ja+nReEBE1FS4NSk2fPh3nzp2z+BMXF1enY4eFhQGASYMhNzdXbHyEhYVBp9OhoKDA7DZSvL29ERAQYPRjK39vT2w4fAXxkUFYnZKAln4KJMdIT61LiglGZEslzmebVlDpVwuRZKEHPf1qocnUPJVSgXYh/rgzklM8iMh9NMcODLW/AqevaVBeWY3hXVpjdUoC3p/YHatTEnB/l3B4yIC2wX5IilEjNMDH5uMSEZF9GnJEbX06L4iImgqXjvlXq9VQq6UDMvUVHR2NsLAw7Nq1C/Hx8QBqhuvu2bMHr732GgDgrrvugpeXF3bt2oWHH34YAJCdnY3Tp09jxYoVDXJebYKUmD+iM+ZtOo1VuzPE1fcECEbLfifHqrFsdBe0aanEolFxKK88ib0X8sTPz2cXYenoLpi3+bTR+4kxwXgsMRqf/5TFqXlE1CRMnz4d48aNs7hNVFRUnY5t2IERHh4uvm+uA8NwtFRubi769Olj9tje3t7w9vau03mplAosGhWHBVtOo/NtKrQPq0lo7uctR1SwH+QyQOntiRAGpIiIGpSlEbVXrlwRt6nLiNo5c+Zg1qxZ4uuioiIGpoio2XGbRBRZWVm4efMmsrKyUFVVhRMnTgAAYmJi4O/vDwDo0KEDli1bhtGjR0Mmk2HmzJlYunQpYmNjERsbi6VLl0KpVGLChAkAAJVKhSlTpuC5555DcHAwWrZsieeffx5dunQRV+NrCG2D/bBsbBcUl1fiVmkl/H3keHV0F5RWVKGkvBKBvgqj1ZP0U+/yinW4VVaBFj5/rq6kf19TWgGlQg65hwxyDxneeKgbA1JE1CQ0xw4MoKbsf+OhbmLZH+yn4Mp6REQSFi5cKK7Ubc6RI0eQkJBQ5+9oiBG19em8ICJqKtwmKPXyyy9j3bp14mt94+H7779H//79AQDnz5+HRqMRt3nhhRdQWlqKadOmoaCgAD179sQ333wjLvENAG+99RY8PT3x8MMPo7S0FAMHDsTatWsbZIlvQ22ClHZtr1JKN0TMvU9E1Bw1pQ4MgGU8EZEt3HVELRERuVFQau3atVi7dq3FbQRBMHotk8mwcOFCLFy40Ow+Pj4+ePfdd/Huu+864CyJiMiVmloHBhERWddcR9QSETUFMqF2JIfsVlRUBJVKBY1GY1fScyKixoblWcPhvSWipsDdyzL9iNqtW7fi9ddfx759+wCYH1ELAK+99hqWLVuGNWvWiCNqf/jhB5w/f17swHjqqaewfft2rF27VhxRm5+fj2PHjtncgeHu95aISM+e8sxtRkoRERERERHVB0fUEhE1Lhwp5QDs1SCipoLlWcPhvSWipoBlWcPhvSWipsKe8szDSedEREREREREREQkYlCKiIiIiIiIiIicjjmlHEA/A7KoqMjFZ0JEVD/6cowzux2PdQURNQWsJxoO6wkiairsqSsYlHKAW7duAQAiIiJcfCZERI5x69YtqFQqV59Gk8K6goiaEtYTjsd6goiaGlvqCiY6d4Dq6mpcv34dLVq0gEwms3m/oqIiRERE4OrVq0xmaID3RRrvizTeF2l1vS+CIODWrVto3bo1PDw4w9uRWFc4Fu+LKd4Tabwv0lhPND721hP82zaP98Y83hvzeG8ss+f+2FNXcKSUA3h4eKBNmzZ13j8gIIB/9BJ4X6TxvkjjfZFWl/vCnu+GwbqiYfC+mOI9kcb7Io31RONR13qCf9vm8d6Yx3tjHu+NZbbeH1vrCnZvEBERERERERGR0zEoRURERERERERETseglAt5e3tjwYIF8Pb2dvWpNCq8L9J4X6TxvkjjfWk6+LuUxvtiivdEGu+LNN4X98ffoXm8N+bx3pjHe2NZQ90fJjonIiIiIiIiIiKn40gpIiIiIiIiIiJyOgaliIiIiIiIiIjI6RiUIiIiIiIiIiIip2NQioiIiIiIiIiInI5BKSIiIiIiIiIicjoGpZzs1VdfRZ8+faBUKhEYGGjTPoIgYOHChWjdujV8fX3Rv39/nDlzpmFP1IkKCgowadIkqFQqqFQqTJo0CYWFhRb3mTx5MmQymdFPr169nHPCDej9999HdHQ0fHx8cNddd2Hfvn0Wt9+zZw/uuusu+Pj44Pbbb8cHH3zgpDN1Lnvuyw8//GDytyGTyfDLL7848Ywb1t69ezFixAi0bt0aMpkMmzdvtrpPc/lbaQpYT0hjXVGD9YQ01hOmWFc0PawfLGM98SfWFeaxvpDmyjqDQSkn0+l0eOihh/DUU0/ZvM+KFSvw5ptvYtWqVThy5AjCwsIwaNAg3Lp1qwHP1HkmTJiAEydOYOfOndi5cydOnDiBSZMmWd1vyJAhyM7OFn927NjhhLNtOJ9//jlmzpyJl156Cenp6UhOTsbQoUORlZUluX1mZiaGDRuG5ORkpKenY+7cuZgxYwa++OILJ595w7L3vuidP3/e6O8jNjbWSWfc8EpKStCtWzesWrXKpu2by99KU8F6QhrrCtYT5rCekMa6oulh/WAZ64karCvMY31hnkvrDIFcYs2aNYJKpbK6XXV1tRAWFiYsX75cfK+srExQqVTCBx980IBn6Bxnz54VAAg//vij+N6hQ4cEAMIvv/xidr+UlBRh1KhRTjhD5+nRo4fw17/+1ei9Dh06CLNnz5bc/oUXXhA6dOhg9N6TTz4p9OrVq8HO0RXsvS/ff/+9AEAoKChwwtm5HgBh06ZNFrdpLn8rTQ3riT+xrqjBekIa6wnrWFc0LawfTLGe+BPrCvNYX9jG2XUGR0o1cpmZmcjJycHgwYPF97y9vdGvXz8cPHjQhWfmGIcOHYJKpULPnj3F93r16gWVSmX1+n744QeEhITgjjvuwNSpU5Gbm9vQp9tgdDodjh07ZvR7BoDBgwebvQ+HDh0y2f6+++7D0aNHUVFR0WDn6kx1uS968fHxCA8Px8CBA/H999835Gk2es3hb6U5a+r1BMC6AmA9YQ7rCcdpDn8vzU1zqB/0WE/UYF1hHusLx3Lk3w2DUo1cTk4OACA0NNTo/dDQUPEzd5aTk4OQkBCT90NCQixe39ChQ/Hpp59i9+7d+Mc//oEjR45gwIABKC8vb8jTbTB5eXmoqqqy6/eck5MjuX1lZSXy8vIa7FydqS73JTw8HP/617/wxRdfYOPGjWjfvj0GDhyIvXv3OuOUG6Xm8LfSnDX1egJgXQGwnjCH9YTjNIe/l+amOdQPeqwnarCuMI/1hWM58u/G05En1lwtXLgQixYtsrjNkSNHkJCQUOfvkMlkRq8FQTB5rzGx9Z4AptcGWL++Rx55RPx3XFwcEhIS0LZtW3z55ZcYM2ZMHc/a9ez9PUttL/W+u7PnvrRv3x7t27cXX/fu3RtXr17FG2+8gb59+zboeTZmzeVvpbFiPSGNdYX9WE9IYz3hGM3l76UxYf1gGeuJumFdYR7rC8dx1N8Ng1IOMH36dIwbN87iNlFRUXU6dlhYGICaSGR4eLj4fm5urklksjGx9Z6cPHkSv//+u8lnN27csOv6wsPD0bZtW1y4cMHuc20M1Go15HK5SZTe0u85LCxMcntPT08EBwc32Lk6U13ui5RevXrhk08+cfTpuY3m8LfS2LGekMa6wnasJ6SxnnCc5vD30hixfrCM9YR9WFeYx/rCsRz5d8OglAOo1Wqo1eoGOXZ0dDTCwsKwa9cuxMfHA6iZD7tnzx689tprDfKdjmDrPenduzc0Gg1++ukn9OjRAwBw+PBhaDQa9OnTx+bvy8/Px9WrV40qXHeiUChw1113YdeuXRg9erT4/q5duzBq1CjJfXr37o1t27YZvffNN98gISEBXl5eDXq+zlKX+yIlPT3dbf82HKE5/K00dqwnpLGusB3rCWmsJxynOfy9NEasHyxjPWEf1hXmsb5wLIf+3didGp3q5cqVK0J6erqwaNEiwd/fX0hPTxfS09OFW7duidu0b99e2Lhxo/h6+fLlgkqlEjZu3CicOnVKGD9+vBAeHi4UFRW54hIcbsiQIULXrl2FQ4cOCYcOHRK6dOkiDB8+3Ggbw3ty69Yt4bnnnhMOHjwoZGZmCt9//73Qu3dv4bbbbnPre7JhwwbBy8tLWL16tXD27Flh5syZgp+fn3D58mVBEARh9uzZwqRJk8TtL126JCiVSuFvf/ubcPbsWWH16tWCl5eX8L///c9Vl9Ag7L0vb731lrBp0ybh119/FU6fPi3Mnj1bACB88cUXrroEh7t165ZYdgAQ3nzzTSE9PV24cuWKIAjN92+lqWA9IY11BesJc1hPSGNd0fSwfrCM9UQN1hXmsb4wz5V1BoNSTpaSkiIAMPn5/vvvxW0ACGvWrBFfV1dXCwsWLBDCwsIEb29voW/fvsKpU6ecf/INJD8/X5g4caLQokULoUWLFsLEiRNNlt00vCdarVYYPHiw0KpVK8HLy0uIjIwUUlJShKysLOefvIO99957Qtu2bQWFQiF0795d2LNnj/hZSkqK0K9fP6Ptf/jhByE+Pl5QKBRCVFSU8M9//tPJZ+wc9tyX1157TWjXrp3g4+MjBAUFCUlJScKXX37pgrNuOPrlaWv/pKSkCILQvP9WmgLWE9JYV9RgPSGN9YQp1hVND+sHy1hP/Il1hXmsL6S5ss6QCcIf2aiIiIiIiIiIiIicxMPVJ0BERERERERERM0Pg1JEREREREREROR0DEoREREREREREZHTMShFREREREREREROx6AUERERERERERE5HYNSRERERERERETkdAxKERERERERERGR0zEoRVQPMpkMmzdvtmnbhQsX4s4777S4Tf/+/TFz5sx6n1dDWbt2LQIDA119GkRE9Adb6hYiIiKixopBKXIbe/fuxYgRI9C6dWubgkEbN27EoEGD0KpVKwQEBKB37974+uuvrX7P5MmTIZPJIJPJ4OXlhdDQUAwaNAhpaWmorq422jY7OxtDhw6tz2U1WlFRUXj77bddfRpERM3GwoULxfpH/xMWFubq0yIiokZi2bJluPvuu9GiRQuEhITggQcewPnz5422MWzL6H969epl8bhVVVWYNm0awsPDMXToUOTk5Bh9XlRUhJdeegkdOnSAj48PwsLCcO+992Ljxo0QBMHh10nNC4NS5DZKSkrQrVs3rFq1yqbt9+7di0GDBmHHjh04duwY7rnnHowYMQLp6elW9x0yZAiys7Nx+fJlfPXVV7jnnnvw7LPPYvjw4aisrBS3CwsLg7e3d52vydGqqqpMAmdEROQ+OnfujOzsbPHn1KlTLjmPiooKl3wvERGZt2fPHjz99NP48ccfsWvXLlRWVmLw4MEoKSkx2k7fltH/7Nixw+Jx169fj6ysLHz99de46667MH/+fPGzwsJC9OnTBx9//DHmzJmD48ePY+/evXjkkUfwwgsvQKPRNMi1UvPBoBS5jaFDh2LJkiUYM2aMTdu//fbbeOGFF3D33XcjNjYWS5cuRWxsLLZt22Z1X29vb4SFheG2225D9+7dMXfuXGzZsgVfffUV1q5dK25Xe8TWtWvXMG7cOLRs2RJ+fn5ISEjA4cOHjY79n//8B1FRUVCpVBg3bhxu3bpl9jwKCgrw6KOPIigoCEqlEkOHDsWFCxfEz/XT6bZv345OnTrB29sbV65csbofABw8eBB9+/aFr68vIiIiMGPGDLFC69+/P65cuYK//e1vYg+Loa+//hodO3aEv7+/WOnpHTlyBIMGDYJarYZKpUK/fv1w/Phxo/1lMhk++ugjjB49GkqlErGxsdi6davRNmfPnsWwYcPg7++P0NBQTJo0CXl5eWbvFRFRU+Dp6YmwsDDxp1WrVjbt9+GHHyIiIgJKpRIPPfQQCgsLxc9sLZc/+OADjBo1Cn5+fliyZIkjL4uIiBxg586dmDx5Mjp37oxu3bphzZo1yMrKwrFjx4y207dl9D8tW7a0eNzCwkK0bdsWcXFx6NKli1Ggae7cubh8+TIOHz6MlJQUdOrUCXfccQemTp2KEydOwN/fv0GulZoPBqWo2aiursatW7esFsrmDBgwAN26dcPGjRslPy8uLka/fv1w/fp1bN26FT///DNeeOEFo5FLFy9exObNm7F9+3Zs374de/bswfLly81+5+TJk3H06FFs3boVhw4dgiAIGDZsmFEPtlarxbJly/DRRx/hzJkzCAkJsbrfqVOncN9992HMmDE4efIkPv/8c+zfvx/Tp08HUDP1sU2bNli8eLHYw2L4fW+88Qb+85//YO/evcjKysLzzz8vfn7r1i2kpKRg3759+PHHHxEbG4thw4aZBN8WLVqEhx9+GCdPnsSwYcMwceJE3Lx5E0DNtMh+/frhzjvvxNGjR7Fz5078/vvvePjhh239dRERuaULFy6gdevWiI6Oxrhx43Dp0iWr+2RkZOD//u//sG3bNuzcuRMnTpzA008/LX5ua7m8YMECjBo1CqdOnUJqaqrDr42IiBxLHzyq3b754YcfEBISIgaPcnNzLR5n0qRJ+PHHH+Ht7Y3nnntOHClVXV2NDRs2YOLEiWjdurXJfv7+/vD09HTQ1VCzJRC5IQDCpk2b7NpnxYoVQsuWLYXff//d4nYpKSnCqFGjJD975JFHhI4dO0qex4cffii0aNFCyM/Pl9x3wYIFglKpFIqKisT3/v73vws9e/YUX/fr10949tlnBUEQhF9//VUAIBw4cED8PC8vT/D19RX+7//+TxAEQVizZo0AQDhx4oS4jS37TZo0SXjiiSeMzm/fvn2Ch4eHUFpaKgiCILRt21Z46623jLbRf19GRob43nvvvSeEhoZKXrMgCEJlZaXQokULYdu2beJ7AIR58+aJr4uLiwWZTCZ89dVXgiAIwvz584XBgwcbHefq1asCAOH8+fNmv4uIyJ3t2LFD+N///iecPHlS2LVrl9CvXz8hNDRUyMvLM7vPggULBLlcLly9elV876uvvhI8PDyE7OxsyX3MlcszZ8503MUQEVGDqq6uFkaMGCEkJSUZvb9hwwZh+/btwqlTp4StW7cK3bp1Ezp37iyUlZVZPWZ2drZQWVkpvv79998FAMKbb77p8PMn0uNIKWoW1q9fj4ULF+Lzzz9HSEgIAGDfvn3w9/cXfz799FOrxxEEwWQqm96JEycQHx9vcSRWVFQUWrRoIb4ODw8323Nx7tw5eHp6omfPnuJ7wcHBaN++Pc6dOye+p1Ao0LVrV7v2O3bsGNauXWt0/ffddx+qq6uRmZlp8R4olUq0a9fO7DXk5ubir3/9K+644w6oVCqoVCoUFxcjKyvL6DiG5+zn54cWLVqIxzl27Bi+//57o/Pr0KEDgJrRZkRETdHQoUMxduxYdOnSBffeey++/PJLAMC6dess7hcZGYk2bdqIr3v37o3q6mox+a2t5XJCQoKDr4iIiBrK9OnTcfLkSaxfv97o/UceeQT3338/4uLiMGLECHz11Vf49ddfxTrFkrCwMMjlcvG18EcSc3PtHyJH4Fg7avI+//xzTJkyBf/9739x7733iu8nJCTgxIkT4uvQ0FCrxzp37hyio6MlP/P19bW6v5eXl9FrmUxmNjG5YGYli9qBMV9fX6PXtuxXXV2NJ598EjNmzDDZLjIy0u5rMPzOyZMn48aNG3j77bfRtm1beHt7o3fv3tDpdFaPo78X1dXVGDFiBF577TWT7w8PD7d4fkRETYWfnx+6dOlikhPQGn1Zr/+vreWyn5+fY06ciIga1DPPPIOtW7di7969Rp0SUsLDw9G2bVu76xIAaNWqFYKCgow6xIkcjSOlqElbv349Jk+ejM8++wz333+/0We+vr6IiYkRfwxHMEnZvXs3Tp06hbFjx0p+3rVrV5w4cULMi1RfnTp1QmVlpVGi9Pz8fPz666/o2LFjvfbr3r07zpw5Y3T9+h+FQgGgZgRWVVWV3ee9b98+zJgxA8OGDUPnzp3h7e1td4Jy/flFRUWZnB8bTUTUXJSXl+PcuXNWg/FZWVm4fv26+PrQoUPw8PDAHXfcAcAx5TIREbmeIAiYPn06Nm7ciN27d5vtLDeUn5+Pq1ev1qlj18PDA4888gg+/fRTo3pGr6SkxGhlcqK6YFCK3EZxcTFOnDghjm7KzMzEiRMnTKYf6K1fvx6PPvoo/vGPf6BXr17IyclBTk6OTcuWlpeXIycnB7/99huOHz+OpUuXYtSoURg+fDgeffRRyX3Gjx+PsLAwPPDAAzhw4AAuXbqEL774AocOHarT9cbGxmLUqFGYOnUq9u/fj59//hl/+ctfcNttt2HUqFH12u/FF1/EoUOH8PTTT+PEiRO4cOECtm7dimeeeUY8TlRUFPbu3YvffvvNrsZLTEwM/vOf/+DcuXM4fPgwJk6caNMoMkNPP/00bt68ifHjx+Onn37CpUuX8M033yA1NbVOgTIiInfw/PPPY8+ePcjMzMThw4fx4IMPoqioCCkpKRb38/HxQUpKCn7++WcxAPXwww8jLCwMgGPKZSIicr2nn34an3zyCT777DO0aNFCbN+UlpYCqGkvPf/88zh06BAuX76MH374ASNGjIBarcbo0aPr9J1Lly5FREQEevbsiY8//hhnz57FhQsXkJaWhjvvvBPFxcWOvERqhhiUIrdx9OhRxMfHIz4+HgAwa9YsxMfH4+WXXwYALFy4EFFRUeL2H374ISorK/H0008jPDxc/Hn22WetftfOnTsRHh6OqKgoDBkyBN9//z1WrlyJLVu2GM2zNqRQKPDNN98gJCQEw4YNQ5cuXbB8+XKz29tizZo1uOuuuzB8+HD07t0bgiBgx44dJlPf7N2va9eu2LNnDy5cuIDk5GTEx8dj/vz5Rj0oixcvxuXLl9GuXTublyQHgLS0NBQUFCA+Ph6TJk3CjBkzxDxetmrdujUOHDiAqqoq3HfffYiLi8Ozzz4LlUoFDw8WW0TUNF27dg3jx49H+/btMWbMGCgUCvz4449o27atxf1iYmIwZswYDBs2DIMHD0ZcXBzef/998XNHlMtEROR6//znP6HRaNC/f3+j9s3nn38OAJDL5Th16hRGjRqFO+64AykpKbjjjjtw6NAhq7NCzAkKCsKPP/6Iv/zlL1iyZAni4+ORnJyM9evX4/XXX4dKpXLkJVIzJBPMJaAhcjOTJ08GAKxdu9al50FERERERERE1jHROTUZe/bswd69e119GkRERERERERkA46UIiIiIiIiIiIip2NyFiIiIiIiIiIicjoGpYiIiIiIiIiIyOkYlCIiIiIiIiIiIqdjUIqIiIiIiIiIiJyOQSkiIiIiIiIiInI6BqWIiIiIiIiIiMjpGJQiIiIiIiIiIiKnY1CKiIiIiIiIiIicjkEpIiIiIiIiIiJyOgaliIiIiIiIiIjI6RiUIiIiIiIiIiIip2NQioiIiIiIiIiInI5BKSIiIiIiIiIicjoGpYiIiIiIiIiIyOkYlCIiIiIiIiIiIqdjUIqIiIiIiIiIiJyOQSlyeydPnsRjjz2G6Oho+Pj4wN/fH927d8eKFStw8+ZNV5+e06xduxYymQyXL192+nfLZDLx54033rC6fWFhod37EBHVB+uKGqwriIjMY11Rg3UFOZOnq0+AqD7+/e9/Y9q0aWjfvj3+/ve/o1OnTqioqMDRo0fxwQcf4NChQ9i0aZOrT9Mp7r//fhw6dAjh4eEu+f4pU6bg8ccfR9u2ba1u26JFCxw6dAjZ2dkYM2aME86OiJoz1hV/Yl1BRCSNdcWfWFeQMzEoRW7r0KFDeOqppzBo0CBs3rwZ3t7e4meDBg3Cc889h507d7rwDOuvqqoKlZWVRtdmTqtWrdCqVSsnnJW0Nm3aoFevXjZtK5fL0atXL5f0vhBR88K6whjrCiIiU6wrjLGuIGfi9D1yW0uXLoVMJsO//vUvycJVoVBg5MiR4uvq6mqsWLECHTp0gLe3N0JCQvDoo4/i2rVrRvv1798fcXFxOHLkCJKTk6FUKnH77bdj+fLlqK6uBgDcuHEDCoUC8+fPN/neX375BTKZDCtXrhTfy8nJwZNPPok2bdpAoVAgOjoaixYtQmVlpbjN5cuXIZPJsGLFCixZsgTR0dHw9vbG999/j+rqaixZsgTt27eHr68vAgMD0bVrV7zzzjvi/uaG2aalpaFbt27w8fFBy5YtMXr0aJw7d85om8mTJ8Pf3x8ZGRkYNmwY/P39ERERgeeeew7l5eU2/DaIiBon1hWsK4iIrGFdwbqCXIdBKXJLVVVV2L17N+666y5ERETYtM9TTz2FF198EYMGDcLWrVvxyiuvYOfOnejTpw/y8vKMts3JycHEiRPxl7/8BVu3bsXQoUMxZ84cfPLJJwBqeg+GDx+OdevWiRWK3po1a6BQKDBx4kTxWD169MDXX3+Nl19+GV999RWmTJmCZcuWYerUqSbnuXLlSuzevRtvvPEGvvrqK3To0AErVqzAwoULMX78eHz55Zf4/PPPMWXKFBQWFlq85mXLlmHKlCno3LkzNm7ciHfeeQcnT55E7969ceHCBaNtKyoqMHLkSAwcOBBbtmxBamoq3nrrLbz22ms23V8iosaGdQXrCiIia1hXsK4gFxOI3FBOTo4AQBg3bpxN2587d04AIEybNs3o/cOHDwsAhLlz54rv9evXTwAgHD582GjbTp06Cffdd5/4euvWrQIA4ZtvvhHfq6ysFFq3bi2MHTtWfO/JJ58U/P39hStXrhgd74033hAACGfOnBEEQRAyMzMFAEK7du0EnU5ntO3w4cOFO++80+I1rlmzRgAgZGZmCoIgCAUFBYKvr68wbNgwo+2ysrIEb29vYcKECeJ7KSkpAgDh//7v/4y2HTZsmNC+fXuL3ysIggBAWLBggdXtatNf8+uvv273vkRE1rCuMMW6gojIGOsKU6wryJk4Uoqahe+//x5AzXBSQz169EDHjh3x3XffGb0fFhaGHj16GL3XtWtXXLlyRXw9dOhQhIWFYc2aNeJ7X3/9Na5fv47U1FTxve3bt+Oee+5B69atUVlZKf4MHToUALBnzx6j7xk5ciS8vLxMzvPnn3/GtGnT8PXXX6OoqMjqNR86dAilpaUm1xwREYEBAwaYXLNMJsOIESMsXrO9DK+3srISgiDU+VhERA2NdcWfWFcQEUljXfEn1hXkCAxKkVtSq9VQKpXIzMy0afv8/HwAkFxBonXr1uLnesHBwSbbeXt7o7S0VHzt6emJSZMmYdOmTeJw17Vr1yI8PBz33XefuN3vv/+Obdu2wcvLy+inc+fOAGAyxFfqHOfMmYM33ngDP/74I4YOHYrg4GAMHDgQR48eddg1K5VK+Pj4mFxzWVmZ2e+wpvY1r1u3rs7HIiKyF+sK1hVERNawrmBdQa7F1ffILcnlcgwcOBBfffUVrl27hjZt2ljcXl8ZZGdnm2x7/fp1qNXqOp3HY489htdffx0bNmzAI488gq1bt2LmzJmQy+XiNmq1Gl27dsWrr74qeYzWrVsbvZbJZCbbeHp6YtasWZg1axYKCwvx7bffYu7cubjvvvtw9epVKJVKk30Mr7m2+lyzPY4cOWL0Ojo6usG/k4hIj3UF6woiImtYV7CuINdiUIrc1pw5c7Bjxw5MnToVW7ZsgUKhMPq8oqICO3fuxIgRIzBgwAAAwCeffIK7775b3ObIkSM4d+4cXnrppTqdQ8eOHdGzZ0+sWbMGVVVVKC8vx2OPPWa0zfDhw7Fjxw60a9cOQUFBdfoeQ4GBgXjwwQfx22+/YebMmbh8+TI6depksl3v3r3h6+uLTz75BA899JD4/rVr17B79248+OCD9T4XaxISEhr8O4iILGFdwbqCiMga1hWsK8h1GJQit9W7d2/885//xLRp03DXXXfhqaeeQufOnVFRUYH09HT861//QlxcHEaMGIH27dvjiSeewLvvvgsPDw8MHToUly9fxvz58xEREYG//e1vdT6P1NRUPPnkk7h+/Tr69OmD9u3bG32+ePFi7Nq1C3369MGMGTPQvn17lJWV4fLly9ixYwc++OADqz0yI0aMQFxcHBISEtCqVStcuXIFb7/9Ntq2bYvY2FjJfQIDAzF//nzMnTsXjz76KMaPH4/8/HwsWrQIPj4+WLBgQZ2vmYjIXbCuYF1BRGQN6wrWFeQ6DEqRW5s6dSp69OghLjGak5MDLy8v3HHHHZgwYQKmT58ubvvPf/4T7dq1w+rVq/Hee+9BpVJhyJAhWLZsmeRcb1uNGzcOM2fOxLVr1yQL5PDwcBw9ehSvvPIKXn/9dVy7dg0tWrRAdHQ0hgwZYlMvxz333IMvvvgCH330EYqKihAWFoZBgwZh/vz5JskLDc2ZMwchISFYuXIlPv/8c/j6+qJ///5YunSp2UqHiKipYV3BuoKIyBrWFawryDVkAtPWE1E9yWQyzJ8/Hy+//DLkcrnk/PXaKisrceXKFcTExOD111/H888/74QzJSIiV2FdQURE1rCuaH64+h4ROcQrr7wCLy8v/OMf/7C6bWFhIby8vBATE+OEMyMiosaCdQUREVnDuqJ54fQ9Iqo3w9UwIiIirG7fokULu/chIiL3xrqCiIisYV3R/HD6HhEREREREREROR2n7xERERERERERkdMxKEVNyuHDhzF69GhERkbC29sboaGh6N27N5577rk6HW/y5MmIiopy7EnW0dmzZ7Fw4UJcvnzZ4cdOT09Hv379oFKpIJPJ8PbbbwMAvvvuOyQkJMDPzw8ymQybN2926PdqtVosXLgQP/zwg0OPS0QEAGvXroVMJhN/PD090aZNGzz22GP47bffXH16bu/dd99FTEwMFAoFZDIZCgsLAQDz5s1DZGQkPD09ERgY6PDvPXjwIBYuXCh+HxE1T4blu6Wf5vycuWPHDixcuNDVp1FvbKs0bcwpRU3Gl19+iZEjR6J///5YsWIFwsPDkZ2djaNHj2LDhg02JcprzM6ePYtFixahf//+Dg+UpaamoqSkBBs2bEBQUBCioqIgCAIefvhh3HHHHdi6dSv8/PzQvn17h36vVqvFokWLAAD9+/d36LGJiPTWrFmDDh06oLS0FHv37sWyZcuwZ88enDp1Cn5+fq4+Pbd04sQJzJgxA48//jhSUlLg6emJFi1aYMuWLXj11Vfx0ksvYejQofD29nb4dx88eBCLFi3C5MmTGyToRUTu4dChQ0avX3nlFXz//ffYvXu30fudOnVy5mk1Kjt27MB7773n9oEptlWaNgalqMlYsWIFoqOj8fXXX8PT888/7XHjxmHFihUuPLPG7/Tp05g6dSqGDh0qvvfbb7/h5s2bGD16NAYOHOjCsyMiqp+4uDgkJCQAAO655x5UVVXhlVdewebNmzFx4kTJfbRaLZRKpTNPs95KS0vh6+vrlO86c+YMAGDq1Kno0aOH+P7p06cBADNmzEBISIhTzoWImqdevXoZvW7VqhU8PDxM3m9KGkvd5OzzYFulaeP0PWoy8vPzoVarjQJSeh4exn/q1dXVWLFiBTp06ABvb2+EhITg0UcfxbVr1yx+R3x8PJKTk03er6qqwm233YYxY8aI7+l0OixZskT8jlatWuGxxx7DjRs3jPaNiorC8OHDsXPnTnTv3h2+vr7o0KED0tLSxG3Wrl2Lhx56CEBNg0o/HHnt2rUWz/fChQuYMGECQkJC4O3tjY4dO+K9994zOq5MJkNlZSX++c9/isdduHAh2rRpAwB48cUXIZPJjEZnWTuuXmFhIZ577jncfvvt4n0eNmwYfvnlF1y+fBmtWrUCACxatEj87smTJ1u8JiKi+tI3WK5cuQKgZqq2v78/Tp06hcGDB6NFixbiA66tZfnu3bvRv39/BAcHw9fXF5GRkRg7diy0Wq24zT//+U9069YN/v7+aNGiBTp06IC5c+eKny9cuBAymczkfPVlteH0bX3dsXHjRsTHx8PHx0fszc3JycGTTz6JNm3aQKFQIDo6GosWLUJlZaVN9+fzzz9H79694efnB39/f9x3331IT08XP+/fvz/+8pe/AAB69uwplt1RUVGYN28eACA0NFSsT2w9rt7hw4cxYsQIBAcHw8fHB+3atcPMmTPFe/T3v/8dABAdHc3pOURkkb3P49u3b0d8fDx8fX3RsWNHbN++HUBNOdyxY0f4+fmhR48eOHr0qNH++nrkzJkzGDhwIPz8/NCqVStMnz7dqB4AAEEQ8P777+POO++Er68vgoKC8OCDD+LSpUtG2/Xv3x9xcXHYu3cv+vTpA6VSidTUVAA15engwYMRHh4unuvs2bNRUlJidE7653PD6YyXL1/G5cuXzbYlapfd+rrp+PHjePDBBxEUFIR27drZdS3msK1CAACBqIl4/PHHBQDCM888I/z444+CTqczu+0TTzwh4P/Zu/Pwpqr8f+DvNGvTnZYWKm0ppAqyVlFG2sKgow4KAsOMio4CVUdURGVmBEYRxQWX0VFhcBkF9fvFjr8RwWUYFcUvUsQFqQMCKoVqUZbS2iZt0yZNcn9/1MSm2dMk997k/Xoenofe3Nycm+Wcez73c84BhAULFghvv/228PTTTwv9+/cXCgoKhJMnT7r2mzNnjlBUVOT6+4knnhAACN98843b8TZv3iwAEN544w1BEATBbrcLv/71r4WUlBThnnvuEbZs2SI899xzwimnnCKcfvrpgtlsdj23qKhIGDRokHD66acLL730kvDOO+8Iv/vd7wQAwrZt2wRBEISGhgbhgQceEAAIf//734WdO3cKO3fuFBoaGnye4759+4SMjAxh1KhRwksvvSS8++67wh//+EchKSlJuPvuu13H3blzpwBA+O1vf+s67pEjR4TXXnvN9X7u3LlT2L17d9DHFQRBMJlMwogRI4SUlBRhxYoVwjvvvCNs2LBBuOWWW4StW7cKnZ2dwttvvy0AEK655hrXa9fW1gb6qImIgrJu3ToBgPDZZ5+5bXfW5c8++6wgCN11vVqtFgYPHiysXLlSeP/994V33nkn6Lq8rq5O0Ol0wvnnny9s2rRJ+L//+z9h/fr1wlVXXSU0NzcLgiAIVVVVrjr13XffFd577z3h6aefFhYuXOgq1/LlywVvl2bO86irq3NtKyoqEgYOHCgMGTJEWLt2rfDBBx8In376qXDs2DGhoKBAKCoqEp555hnhvffeE+69915Bq9UKc+fODfie3X///YJCoRAqKyuFt956S3jttdeEc845R0hJSRH27dsnCEJ3O3DnnXcKAIR169a56u7du3cL11xzjQBAePvtt13tSbDHFQRBePvttwW1Wi2MHj1aeOGFF4StW7cKa9euFS6//HJBEAThyJEjws033ywAEF577TVX22E0GgOeGxHFtzlz5ggpKSmuv8O5Hh85cqRQVVUlbN68WRg/frygVquFu+66SygrKxNee+01YePGjcKpp54q5OXluT1/zpw5gkajEQoLC4X7779fePfdd4W7775bUKlUwtSpU93Ked111wlqtVr44x//KLz99tvCyy+/LAwbNkzIy8sTjh8/7tpv0qRJQr9+/YSCggJh1apVwgcffODqG9x7773C3/72N+Hf//638H//93/C008/LRQXFwuTJ092Pb+2tlb47W9/KwBw1ZU7d+4UOjs7hbq6Olcd3hsAYfny5a6/nW1TUVGRsHjxYmHLli3Cpk2bQjoXb9hXIScGpShuNDY2CuXl5QIAAYCgVquFCRMmCCtXrhRaW1td+x04cEAAINx4441uz//kk08EAMJf/vIX17beQanGxkZBo9G47SMIgnDppZcKeXl5QldXlyAIP3c+NmzY4LbfZ599JgAQ1qxZ49pWVFQk6HQ64bvvvnNt6+joEPr16ydcf/31rm3/+te/BADCBx98ENT7ceGFFwqDBg3yuFBfsGCBoNPphB9//NG1DYBw0003ue3nbKweeeSRsI67YsUKAYCwZcsWn2U8efKkR8NHRBQpzmDOxx9/LHR1dQmtra3CW2+9JfTv319IS0tzXTDPmTNHACCsXbvW7fnB1uWvvvqqAED44osvfJZlwYIFQmZmpt/yhhqUUiqVwtdff+227/XXXy+kpqa6tSmCIAh//etfBQBuAaDe6uvrBZVKJdx8881u21tbW4UBAwYIl156qUeZegf8nOfQ8wZPKMcdOnSoMHToUKGjo8NnOR955BGP94OIqHdQKtTr8eTkZOH77793bfviiy8EAMLAgQOF9vZ21/ZNmza53Yx2vjYA4YknnnB7rfvvv18AIFRXVwuCILgCLI8++qjbfkeOHBGSk5OF22+/3bVt0qRJAgDh/fff93veDodD6OrqErZt2yYAEP773/+6Hrvpppu8tivhBKXuuusut/1CORdv2FchJw7fo7iRnZ2N7du347PPPsODDz6I6dOn45tvvsHSpUsxatQoNDY2AgA++OADAPBIvTz77LMxfPhwvP/++35fY9q0aXjxxRfhcDgAAM3NzXj99ddx9dVXu4YOvvXWW8jMzMS0adNgs9lc/8aOHYsBAwZ4DDMYO3YsCgsLXX/rdDqceuqprqEloers7MT777+PmTNnQq/Xu5XhoosuQmdnJz7++OOoHvc///kPTj31VPzqV78K6xyIiCLlF7/4BdRqNdLS0jB16lQMGDAA//nPf5CXl+e236xZs9z+DrYuHzt2LDQaDf7whz/gxRdf9Dps4eyzz0ZLSwtmz56N119/3dUm9cXo0aNx6qmnepR58uTJyM/Pdyuzcx6Obdu2+TzeO++8A5vNhquvvtrtuTqdDpMmTQp7iFywx/3mm29w6NAhXHPNNdDpdGG9FhGRUzjX46eccorr7+HDhwPoHkbXc/4k53Zv1+m95ym84oorAPzc/3jrrbegUCjw+9//3q1MAwYMwJgxYzzKlJWVhXPPPdfjdQ4fPowrrrgCAwYMgFKphFqtxqRJkwAABw4cCObtCZm3NjKUc+mJfRXqiROdU9wZN26ca0Lbrq4uLF68GH/729/w8MMP4+GHH0ZTUxMAYODAgR7Pzc/PDxgIqqysxIYNG7BlyxZceOGFqKqqgsVicQtynThxAi0tLdBoNF6P0bszkp2d7bGPVqtFR0eH37L40tTUBJvNhlWrVmHVqlVBlSHSxz158qRboI2ISCwvvfQShg8fDpVKhby8PK/1v16vR3p6utu2YOvyoUOH4r333sPDDz+Mm266Ce3t7RgyZAgWLlyIW265BQBw1VVXwWaz4R//+AdmzZoFh8OBs846C/fddx/OP//8sM7L23mcOHECb775JtRqtd8ye3PixAkAwFlnneX18d7zMwYr2OM653hxzhNCRNQXoV6P9+vXz+1v5/N8be/s7HTbrlKpPK7pBwwYAACu/seJEycgCILHTRGnIUOGuP3trZ5va2tDRUUFdDod7rvvPpx66qnQ6/U4cuQIfvOb34Tdfwikd1lCPZee2FehnhiUorimVquxfPly/O1vf3OtCORsLI4dO+Zx4Xv06FHk5OT4PeaFF16I/Px8rFu3DhdeeCHWrVuH8ePHuy03m5OTg+zsbLz99ttej5GWltaX0wooKysLSqUSV111FW666Sav+xQXF0f1uP379w84cTwRUSwMHz7cdbPCF28TjIdSl1dUVKCiogJ2ux27du3CqlWrcOuttyIvLw+XX345AGDevHmYN28e2tvb8eGHH2L58uWYOnUqvvnmGxQVFbmygywWC7RarevYvi7MfZV59OjRuP/++70+Jz8/38c7AFf79+qrr6KoqMjnfqEK9rjOCWXZdhBRJMT6etxms6GpqcktMHX8+HEAP/c/cnJyoFAosH37drd63qn3Nm/1/NatW3H06FH83//9nys7CuietDtYPdubnpzBM296lyXUc+mJfRXqiUEpihvHjh3zejfBmcLqvBB3psD+7//+r9td288++wwHDhzAHXfc4fd1nBXd448/ju3bt2PXrl145pln3PaZOnUq/vnPf8Jut2P8+PF9Oi8nZ8UezN0PvV6PyZMno6amBqNHj/Z5hyhUoRx3ypQpuOuuu7B161avacdAaOdERBRr4dTlSqUS48ePx7Bhw7B+/Xrs3r3bFZRySklJwZQpU2C1WjFjxgzs27cPRUVFrpWD9uzZ49Y+vfnmmyGVefPmzRg6dCiysrKCfh7QfdNFpVLh0KFDHsM0+iLY45566qkYOnQo1q5di0WLFvns0LDtIKJgRON6PJD169dj4cKFrr9ffvllAN1DAJ1levDBB/HDDz/g0ksvDes1nMGh3nVk7/5Iz306OjqQnJzs2p6XlwedToc9e/a47f/6668HXY6+nAv7KtQTg1IUNy688EIMGjQI06ZNw7Bhw+BwOPDFF1/g0UcfRWpqqmsIxWmnnYY//OEPWLVqFZKSkjBlyhR8++23WLZsGQoKCnDbbbcFfK3Kyko89NBDuOKKK5CcnIzLLrvM7fHLL78c69evx0UXXYRbbrkFZ599NtRqNb7//nt88MEHmD59OmbOnBnS+Y0cORIA8OyzzyItLQ06nQ7FxcVeh/4BwBNPPIHy8nJUVFTghhtuwODBg9Ha2ora2lq8+eab2Lp1a0ivH+pxb731VrzyyiuYPn06lixZgrPPPhsdHR3Ytm0bpk6dismTJyMtLQ1FRUV4/fXXcd5556Ffv37IyclxW9KViEgswdblTz/9NLZu3YqLL74YhYWF6OzsxNq1awHANVfFddddh+TkZJSVlWHgwIE4fvw4Vq5ciYyMDFcA6qKLLkK/fv1wzTXXYMWKFVCpVHjhhRdw5MiRoMu8YsUKbNmyBRMmTMDChQtx2mmnobOzE99++y02b96Mp59+2ufwuMGDB2PFihW44447cPjwYfz6179GVlYWTpw4gU8//RQpKSm45557Qn4fQznu3//+d0ybNg2/+MUvcNttt6GwsBD19fV45513sH79egDAqFGjAHS3R3PmzIFarcZpp50W9SxkIpKXaFyP+6PRaPDoo4+ira0NZ511Fj766CPcd999mDJlCsrLywEAZWVl+MMf/oB58+Zh165dmDhxIlJSUnDs2DFUV1dj1KhRuOGGG/y+zoQJE5CVlYX58+dj+fLlUKvVWL9+Pf773/967OusLx966CFMmTIFSqXSFaz5/e9/j7Vr12Lo0KEYM2YMPv30U1cQLRh9PRf2VchF7JnWiSLllVdeEa644gqhpKRESE1NFdRqtVBYWChcddVVwv79+932tdvtwkMPPSSceuqpglqtFnJycoTf//73rqWrnXqvvtfThAkTBADClVde6fXxrq4u4a9//aswZswYQafTCampqcKwYcOE66+/Xjh48KBrv6KiIuHiiy/2eP6kSZOESZMmuW17/PHHheLiYkGpVPpcMaOnuro6obKyUjjllFMEtVot9O/fX5gwYYJw3333ue2HEFa0COW4zc3Nwi233CIUFhYKarVayM3NFS6++GLhq6++cu3z3nvvCaWlpYJWqxUACHPmzPF7TkREwfK1QlxvvVds6imYunznzp3CzJkzhaKiIkGr1QrZ2dnCpEmT3FZmevHFF4XJkycLeXl5gkajEfLz84VLL71U2LNnj9vrffrpp8KECROElJQU4ZRTThGWL18uPPfcc15X3/PWdghC92pBCxcuFIqLiwW1Wi3069dPOPPMM4U77rhDaGtrC/i+bdq0SZg8ebKQnp4uaLVaoaioSPjtb38rvPfee659Qll9L5TjOt/PKVOmCBkZGYJWqxWGDh0q3HbbbW77LF26VMjPzxeSkpJCWpmWiOKXt7q8r9fjwV4jO197z549wi9/+UshOTlZ6Nevn3DDDTd4rXfXrl0rjB8/XkhJSRGSk5OFoUOHCldffbWwa9cu1z6TJk0SRowY4fVcP/roI+Gcc84R9Hq90L9/f+Haa68Vdu/e7dE/sFgswrXXXiv0799fUCgUbm2J0WgUrr32WiEvL09ISUkRpk2bJnz77bc+V9/zVq8Hey6+sK9CgiAICkEQhBjHwYiIiIiIiIjiwty5c/Hqq6+ira1N7KIQyU54y6gQERERERERERH1AYNSREREREREREQUcxy+R0REREREREREMcdMKSIiIiIiIiIiijkGpYiIiIiIiIiIKOZUYhcgHjgcDhw9ehRpaWlQKBRiF4eIKGyCIKC1tRX5+flISuJ9i0hiW0FE8YDtRPSwnSCieBFKW8GgVAQcPXoUBQUFYheDiChijhw5gkGDBoldjLjCtoKI4gnbichjO0FE8SaYtoJBqQhIS0sD0P2Gp6eni1waIqLwmUwmFBQUuOo1ihy2FUQUD9hORA/bCSKKF6G0FQxKRYAzvTY9PZ0NCBHFBQ4biDy2FUQUT9hORB7bCSKKN8G0FRwITkREREREREREMcegFBERERERERERxRyDUkREREREREREFHMMShERERERERERUcwxKEVERERERERERDHHoBQREREREREREcUcg1JERERERERERBRzKrELEGkffvghHnnkEXz++ec4duwYNm7ciBkzZvh9zrZt27Bo0SLs27cP+fn5uP322zF//vyolvOEqRPN7VaYOm1IT1YhS69BXrouaq9nNFvR2GaFqbML6clqpGpVMFts6HIIcAgCzBYbMvQa5KRokKHX+HxuqlYFjTIJLR1WpOrUXvePRPkiddxoMJqtaGi1oKWjCykaJVK0KmQmqwOWN9znxUqon0E4n1msPufer5OsVqK1swvGji6k69TQqpOgEAC9VoUOqx3tVhvarXZkJquRm6b1WibnMdssXcjUa2C1OdBmsYX0m+hZroxkNVK0KrR12jzej5/rhy6k6dRI1SihUyvRbrFBANBpc6Ct04a0ZBW0yiRYHQ4IAiAIgNliQ6pOBbUyCU1tlu7n61QYlKWP+PssV3JpJ8Tg/I4aO6xI0aqgUSXBanegvdN3GxHoWLGs14N9TTm1Od5EsvzOY5mtXchM1qDdag/p2qRnfeWsXyEA/aLQhgRzHsEcL1r7+uP2PiWrkaJWotPmgNlqc2tTnNdo7RYbjB3dbUVqCG2Vs8zO6400nRIpatVPn2v3Z5StUcICoNVqh8n5GmwnPLCtCI63Pka7xYbWzu7rpS67Aw4Bbv2Nn6/LuuuadJ0ali47WjqkUScH87uPZjvi7dgAvF6HZiSroVMrYersQmuHDak6JVI0KnR2OWDsDL3PEe32MVLH9/W9M0roOxSpfp+v98xotqLF3OWzbQi23+HR1//p2k+jEJCUpERbDNqKuAtKtbe3Y8yYMZg3bx5mzZoVcP+6ujpcdNFFuO666/C///u/2LFjB2688Ub0798/qOeHo76pHUs37sWO2ibXtnJDNh6YOQqF2SkRf72jLR1YvGEPth9sdG07b1h/3P7r4Vjx1j63ckwsycGDs0YjPzPZ53PLDNmYV1aM2f/4BGcWZWHlzFEY1C/8L6e31+hdDqk42tKBxa/uwfZa9/fj5nNLUNRPj4E+yhvu82Il1M8gnM8sVp+zt9cpN2RjblkxFlbVwGy1o9yQjXtnjMR3TW14/P1at99ARUkOHupVJucxP/+uGU/OLsXD73zt9pyev4lxRVlez6lnufQaJZ6cXYp1O+o8fn/3zhiJe97ch61fnXQr/92XjIQqCVi26UtU93iO87d8b6/fcoUhB3dOHY7jRgtq6ptRZsiJSv0iR3JoJ8QQzG8n2N+sGPV6sK8ppzbHm0iW33msA8dMWH/tL7AkxGsTX9czy6aOwB0b9+IvF58esTYkmPMI5njR2tefnu9Tz/q/pr7Fa5vi/N0t2bAHj/x2DHTqJKz+IHBb5SrzT9cbOakaj891xx/PRrugxx2bPD+3+2eOQhHbCRe2FYH5ajeuKR8CAQKeeP8grhhf5HG94+26bNnUEbjupV1obLOKWicH87uPZjvi7dgVJTm4abIBC17ejQdnjXbVGXqNEquvKMW66jps71W/9L5ODabPEe32MVLHj+T1SjREst/n7VzPH56Lu6aejh+MnVi19aDXtkEB4PYA/Y7zh+di2dTTccemL92/b4Yc3P7rEmh0Wq/XBdFoKxSCIAgRPaKEKBSKgHc1Fi9ejDfeeAMHDhxwbZs/fz7++9//YufOnUG9jslkQkZGBoxGI9LT0/3ue8LUiUX/7wu3D9ep3JCNRy8dG9GMKaPZigVVNW5fNABYcK4BNfXNXssxsSQHq2aXdu/n5blA9w+rtDALq7fWotyQjYdmjcYpYURNfZWvZzmkcvfaaLZiwcs1bhWMU5khG1NH5+OikQO83kkJ53mxEupnEM5nFqvP2d/r9PzOAt2/twXnGnD5s5/4LVPPY/r73fQ8fu9zOmHqxJ/+3xfY/tPz/B2n3JCNsT3K6VRhyMZFowZi6cYv3bYHU6aa+mYsmGxAYT99wN9pKPVZPIhVOwFI+70N5bcT6DcrRr0e7Gv2tWxiZ1hF8r3teazn54zD2l4Xq06+rk0CXc/MKyvGix99G5E2JNjzCHS8aO3rT+/3qWedHaj+XvzrYdj3gxFv7T3m93rNrcw9rje8fa7b//xLj06GU7khGw/OGh3wLriU67JokWKfQmz+fiMPzByJzXuPYexP1yCBrpuAn+uNa17cBUCcfkAwv3vAd/+or2UO1BZXlhW7/aYXnGvAF/XNrpuVgeoUf32OaLfdkTp+JK9XoiGS/T5//fj8DB3+7aNtqCjJ6e4zvLbXtb+374W/78t/bqnAff/eH7O2IuHnlNq5cycuuOACt20XXnghdu3aha6uLq/PsVgsMJlMbv+C1dxu9frhAkB1bROa263BF74Xo9mKQw1tqKlvxqGTba6LZ28/2tKCTJ/l+PBgIxrbfD8XAHbUNqG0INNV7u+azDCaPcvurUw9+XuNDw824rip098px1Rjm9VrBQN0vx+5aVo0tnm+B+E+L5BA722wAn0GvcsW6v7hPiccwX5nge7vbYrWe7JozzL1PKa/303P4/d8/tGWDhxqaHMFpAIdp7pXOZ221zYh10vAOpgy7ahtwuoPamGxObzuR/6F004AfWsrYi2U306g32ysfu/hvGZfyna0pQMLqmpw3mPbMHPNRzjv0W24uaoGR1s6+n4CQYrke9vzWLnp2pCvTQJdz+SmayPWhvgTyvEiuW+w1ye936eedXag+lupUCA3XRfwes2tzD2uN7x9rm1Wu9/PrbXTFtR5kadY9ynE5u83kpeuc13PBHPdBPxcbzhFq73wJ5g6IpptXKC2uPdvurQg0y17PtD77a/PEe22O1LHj+T1SjREst/nrx+f56dt2H6wEblpWrf9ve3r7/si/FReb6LRVsTd8L1QHT9+HHl5eW7b8vLyYLPZ0NjYiIEDB3o8Z+XKlbjnnnvCej1TgA8w0OO++EqHXHheidf9A3VOWzu7ECiFrucxWjq60NhmdYv6BpOiaer03aEDgO+bOzAgXSeJbKlAZbXYHGj1sk8ozwv2Lnwk02sDla/3OYW6f7jPCUcw73VPbZ32gGVqs3RhwbkGlBZkQq9RYe3cs7C7vhlrq+tgtro/v+fxWzu7YDRbsXjDHsw+u9BvOQKV09/2YI+1o7YJHV2+z5d8C6edAPrWVsRaqL8df7/ZWP3ew3nNcMvm/C33vjj88GAjlmzYE7M7sZF8b3sey19d2L2v57VJoOsV5zEj0Yb4L1vwx4vkvsFen/R+n3r+lgLV36ZOW1DXaz/v715mb5+rqSP2v89EEes+hdj8/Uac39tQr3d6f2dj/X0Mpo4I1D/qS5kDvX7v96f3+xfM++2rfNFuuyN1/Eher0RDuP3FUI4VzE3mYNoaf8dpjXFbkfCZUkB3Sm5PzhGNvbc7LV26FEaj0fXvyJEjQb9Wus5/HDDQ4974u1i2+viyaVX+P/o0nRrpOrXffXoeQ6tKcvtyBrqAd2b1BHoNADGPcPvKQArm/Ujzsk+wzwv2Lnyw722wApWv9zmFun+4zwnEaLbi4IlWfPbtj9h/1IjvmtqR6iPzyan39z5VpwxYpoxkDb6ob8Y1L+7C7H98jMoXPkNNfffcUnqN+/N7Hj9Np3bd4ej9uoF+f74e97Y9lGOZLQxKhSvUdgLoW1sRa6HU94D/32w0fu+BBPua4ZZNjOwvb/r63vZs35I1Siw41wC9Rum3Lux+Xc+6NdD1ivOYkWhD/Jct+ONFcl8guOuT3u9T72snf1J1yqCu135+Lfcye/tc05Nj//tMJLHsU4jN32/E+b0N9Xqn93c21t/HYOqIaLZxgY7d+/0J5/rSV/mi3XZH6viRvF6JhnD7i6EcS6tKCum3FUq/wiktxm1FwgelBgwYgOPHj7tta2hogEqlQnZ2ttfnaLVapKenu/0LVlaKBucN648F5xrw/JxxWHPlGVg79ywsONeA84b1R1ZK6Hda/V0sf3S4CRUlOR7ba460oNzg/fwmluQgJ1WDnFQNJnp5LtA9JrbmSIvb/3t+OYO9gM9J1XgtX8/jxjLC7S8wFOj9aGi1ICfV8/ML5nmpOlXQgaZId478lc/5XejL/uE+x5+jLR1Y8HINzv/bh/jd0ztx0ZPV+MvGvbA5hIDfJ6dyQzbaLd7v9DvLZDRbPSYWB7qzjtbtqENlebHX4zuf77zDUXOkBWU9fm+9/+6pvFc5nSoM2TjhZbiIv99y73NOT0745NiwhNNOAH1rK2It2PoeCPybjfTvPRjBvma4ZRMj+8ubvry3vdu3Xz++HV/8FGA/2WrxWY+UG7K9XptkpWj8PqfBZIlYG+JPKMcLdd9IXJ/0fp961v/+2oKyn97DE6ZOn/sEOr8Gk+fnmqpR+v3cUjX+A5TkW6z7FGLz93s6YepExU+/E3/f8d7XZQ0mi+vvaLUX/gRTR0SzjQvYZzBZPK4nK4K8vvTXVwn02pH4LCJ1/Eher0RDuP3FUI5Vc6QFDX7ahoqSHDS0Wtz297avvz6EAvDbVqSFkUjjT8IHpc455xxs2bLFbdu7776LcePGQa2OfGQ1L12Hu6aNQM1PmRc3rt+Nyhc+wxf1zbhr2oiwJjn3d7G8troOd18ywuMLfeCoEcumjvD4gk78acb+DH33sLEHZ432eK5zpbG11XWu/399zOT2Awv2Aj5Dr8G900d6lKPna8Qqwh0oAwkAHpw12uMi1bmawuRT+3tN43e+j/6e126xBR1oinTnyNfn3PO70Jf9w32OL0az1WNFC6A7UPTIO19h6ZRhHq9T3uP75Pz73hmjoFTA47tX0aNMDa0Wv+PCnePWe35fe56T8w7H2uo6zCsrdr2W8+/elf3EkhzcP3MUDhw1um0vM2RjXnkxBmYke5TX12+5rNc5V5TkIF3NzkY4Yt1OiMHXb7T3byeY32wkf+99LX/v1wy3bGJkf3kTbvl9tW/VtU14YUcdvjpuwrKpIzzqJOfqe96uTfLSdXhg5iivz7lr2ghs3P19xNoQf0I5Xqj7RuL6pPf71LP+7902OFUYcjCvrBiLN+zBwIxkLJhs8NtW9T4/5/XG4g17PD7XJIcZ983w/rndP3MUIrfUTuJJhLaiJ3/txsCMZMwrL8b+o0av33Fv12V3TRuBxT9db0ezvfAnmDoimm2cr2NXlOTg5nNLsHjDHs/ryfJiVBhyfv7by/VloL5KsOfeF5E6fiSvV6IhmH5fX8/162MmlBu6vxPe2oaHZ43GL0/t73qer+/F18dMeGDmKM/vmyEHdrsN9/tpKwJNch6quFt9r62tDbW13TPul5aW4rHHHsPkyZPRr18/FBYWYunSpfjhhx/w0ksvAehevnXkyJG4/vrrcd1112Hnzp2YP38+qqqqgl6+NZSZ5aOxssGhhjac99g2n49v/eMkZKdo0NhmRWtnF9J0aqTqVDBbbLA5BNgdAsxWOzKS1chJ9ZzDyDnPUWtnF5I1StgdAo40d0CVpEDNkRZ8fcyEFdNHui1vGahM7y+ahKG5qa7jb/7yOHLTtLDYHNCqklBzpAVrq+swrigrZnN1BFtmo9mKhlYLjB1d0GuUSNGokKlXByyjv+fV1Ddj5pqPfD53040TMLYwK6Ryhqrn55ym8/5d6Mv+4T6nt0Dn/8Lcs1CckwKbQ3C9TrJGidbOLjSbu5CiVaLBZMHdb+zDb8cNwuTTcqFQAJ1dDmQmq5GbpnWV6bNvf8Tvnva9Ys7/u/4XyNJroFEmwdhhRYrW/Zx6fretdgdy03RQKxU4ZuxEhk6FwuwUdFjtHu/HCVMnfmy3oq6xHQX9kvHOvhOuRrayvBhnFGZBpVSgn16DFI0SVocDEABBANosNlhtDnx0uMk171VFSQ4emH46OhwCTs31X0fJaeWfcInRTgDyeG+dv1FjRxf0WiV0qiRYbA60W3y3EYGO1Zffe7jlD/Sa4dR3N1fV4EOJrBQbavkD1Ztv31IBm92OjGQN2q12mDptSNepkJWiCXiz7ISpE83tVpg6bUjTqZCsToIgAP0CrEwY6e9HKMcL5XsSiesTo9kKU0cX2n6q79OT1UhRK9Fpc6DDakNGsgZWuwPtFpurzbrr9S/x3oEG6DVKXD9pCCaflgsA6LDakaXXIC9d6/f8nNcbqTolUtQqtFp+fu0cjRIWAK1WO1o7upCWrEaqRgmd4MCPdgGn5bGdAKTfp5CK3r+nVJ0K7RYb2jq7kJGsQZfDAUGAW3/DeV1m7Oiua9KT1bB02WHsCP2aMhqroQZTR0SzjfN2bKB7tES7pcutzkhPVkOnVsLU2YXWDlv3b16jQmeXA6bO0Poq0T6vSB7f1/fOFMJ3KJrC7S/6Opa398xotqLF3IV2q8312+rZj+n5vPRkNVK0KrR12rwex7lfilYFjSoJXXYH1AoBSUlKV9uVplMjTacKOiAVSn0Wd2M5du3ahcmTJ7v+XrRoEQBgzpw5eOGFF3Ds2DHU19e7Hi8uLsbmzZtx22234e9//zvy8/Px5JNPhtTRCEUwQ69C/bI6U/t8XSxn/1RJh/vD7P1co9kKraq7MZk59hTklBd7HDtQmXpmVWXoNZh0an8s2bDHbf9YR7hDye4Kp0z+nhfKXfhQ3ttIlS8S+4f7nN4CfU7mLjuazVZXEO9nyTja0uH2PfvbloP4/NtmPDRrtFtQ1SklwDCGVK0KJXlpzr09Hm+32rF5zzG3bCvnnZLB/fQY4GNS+rx0HY62dODG9bux4FwD/lvf7JpU3bnMrfNYF48aiLOL++GSv+/AazdMwPPVh/HbMwtw4Yg8lA3NQapOhQZTJx54+2vc8qtT/Z5PopB6OyGmSPxGo3GsSL9mOPXdg7NGi95O9SxPKK8ZqN7s7LJ7qTODk5euCyvLO9Lfj1COF8r3pK/XJ/4WJinJ9mw3nFZMHwmrrft1/7blIP625aDrdb21V4HOr7vTkYSmdguuev4TPDRrNHLTtbALgM0h4JuGNizesAdrrjwz4DklCrYVwQn/txzawjw9RXLBH2+COadotnG+ju3v9fL78H4G89qREqnji3GNEYpYXE8Feg1vj3u75yCF9zLuMqXEEEoUMJSMmFD07mwDCPriJVpCLZMYd9V7ilYGUjBCvQsvxc87VgJ9Ts/PGYfB2Sk+P6tQvmffNbbjL5v2el0StcyQjQdmjEJRjvdORV+zIp3nqdcosfqKUqyr/tYjuLVgcgk6u+zocjjw4kffYtnU0/F9cwfW7ahzK7NzuMmgrGQMG8A74GLheyt/YrdT4RKzfYsH4X7ufW0HovF9+/q4CUf8tBMFWck4je2EaPjeBhaNUSdEFHkJnSklddGalyI/MxmrZpdK6mI51DKJHaWNVgZSMEK9Cy/FzztW/H1OzgkExxX5DuyG8j3L1Ktx87klAOBx8X7zuSXI1Pv+vfY1K7LneS54uQZ/mDgEt/yqBDaHgBStEhplEt7edxzPbDuM564eh+XTRsAhCB4djZ5lv2vq6UGdNxF5J3Y7FS5/9WZFSQ7sgoDDJ9tcqf3RGA4jZ+F+7n1tB6LxfUvTqfHyJ1+htDALlWXFsNgc0KmV2F3fjKpPvsO9M0ZF9PWIIi0ao06ISFwMSsVYNAMfUrxYlmKZfBF7eIbcgnhicX5OvdO2ew6Li2S6bFE/PaaOznddvGtVSWhotQR8nb5OSJ+h1+CBmaOw5LU9qK5twuPvHcTj7x103c1eWFXjmi+qf7oWh0+2o7Cf3mtWF9AdmHIwL5YoIflq38oN2ZgzYTCu+MfHeHDWaI+gdiSHwyQiqaza2FNnlx1XjC/Cuh11HsPB55UVo7PLHvMyEYVCir8rIuobBqViTOzAB/kndgZSogaaQpWfmYzVs0sjNoGgPwMzk3HRyAFu34lxRVkBXycSWZFWuwNjC7NQWT4E+p8WGdh5uOnngJQhB3MmDMb01Ttgttrx6vxz/B6v3WIL+JpEFJ96tm/Gji50dtnx0U/1SWV5sdcsS+fqsxwOEx6prNrYk83hP6P27mkjYl4molBI8XdFRH3DoJQIxA58kH8MDMlDLD+ncF4rElmRxo4u151svUaJyvJilBZk4q+/GwOtKgn9UjS48rlPXJOgJweYmD3Q40QU35x12aGGNvzmqZ/ntywtyHTLmumJw2HCJ+a0AL44HILfjFo7U2pJ4qT4uyKivkkSuwCJKkOvwdDcVIwtzMLQ3FRe7BHFGWdW5MSSHLftoWRF9rwbaLbasXprLa55cRduXL8b17y4Cx1WuysgBQDJaiXKDNlej1VmyEaymkEpIvIc/mKxOfzuz+Ew4YlEOxBpZqv/jNmebQqRFEnxd0VEfcNMKSKiKOlrVmSgu4FDc1Px/qJJrmMrAdxzyQjc/cY+VPe4E15uyMbdl4wAQ1JEBHgOf9Gq/N+j5HCY8EktOz4jOcAy98n8rEn6pPa7IqK+YVCKiCiK+jLMMNAcdHnpOuT1WGH126Y2PPjmAYwtzMK8HhOz1xxpwYP/+Qp3Th3e19MhiktGsxWNbdaEWXWud8C75kgLygzZXod1cThM30lpWgAOfaJ4IaXfFRH1DYNSREQSFsrdQEuXAx8d/hHD8jNc2xQKBQDgo0NNsHT5H6JDlIiOtnR4rOYZ76vO9Q54r62uw5OzS6EA3LIsORwm/nDBHSIikhqFIAic0bCPTCYTMjIyYDQakZ6eHvgJRERRsPu7H/GjuctjZSXnUt/99GqcUdTP7zFYn0UP31vpMZqtWFBV4xaQcppYkhP3q845M8Raf8oQS9Gq0NZp43CYBNDzsw/1s2ZdFj18b4koXoRSnzFTiogoTmTqNXh0yzc+l/q+d/pIMYpFJFmNbVavASkgMVad8zb8JY/94ITAoU9ERCQVDEoREcUJi83hd6nvQCtsESWa3qvQ9cZV5yhciTZPGRERUbgYlCIiihNtFv9LfQd6nCjR9F6FrjeuOkfhSMR5ykjeGEQlIjExKEVEFCcyAyzlHehxokTDlcgo0oxmq0dACugeDrpkwx7R5ylj8IF6YxCViMTGoBQRUZzITdPiV8NzMWxgOkoLMmGxOaBTK7G7vhlfHTMhN00rdhGJJIUrkVGkSXmeMgYfqDepB1GJKDEwKEVEFEeWTBmO5W98idVba13byg3ZuPsSTnJO5E1+ZjJWzS4NeyUyop6kOk8Zgw/kjZSDqBQeZkOSHDEoRUQUJ1rMXVj+xpcek51X1zZh+Rtf4oEZo3hhQuQFVyKjSJHqPGUMPpA3Ug2iUniYDUlylSR2AYiIKDLarTa/q++1WznRORFRNDnnKfNGzHnKGHwgbyIdRDWarTjU0Iaa+mYcOtkGo9nal+JRCAJlQ/KzICljphQRUZxot9r9Pm4O8DgREfWNVOcpk2oGF4krkos9hJKlYzRb0dRuhc0hwCEIMFtsyNBrONSsD5gNSXLGoBQRUZwItLpeBlffIyKKOinOU8aVJsmbSAVRQ5mz7GhLB+56/UtcfnYh1u2oc8vw5lCz8DEbkuSMQSkiIhFFckLK9GQ1Kgw52F7r2emoMOQgnUEpIqKYkOI8ZSumj8Sy17/0yGThSpOJLRJB1GCzdJzBqzEFmR4BKee+nHg/PMyGJDljUIqISCSRnpCy3WLDNRXFAOAWmKow5OCaimK0WzinFBFRonG2NZ9/14zK8mLMnTAYADAoKxkD0nXs/FOfg6jBZuk4g1dzJwx2WyW4Jw41Cw+zIUnOGJQiIhJBNJbnbu3sgiAAU0YNwNyywbDYHNCqknDC1AlBANqYuk1ElFB6tzWrt9ZCr1GisrwYyWol2jmXD0VAsFk6zuCVxebwu39rZ1dEM8kTgVTnsyMKBoNSREQiiMaElJnJGjz8ztdeV+ArM2TjgRmjwiorERHJU++2Rq9R4snZpVi3o84tU4Vz+VBfBJul4wxeaVX+F4BP1iixoKomYpnkiUKK89kRBcN/jUBERFERjQkprXaH14AUAOyobYLV7v/OJBERxZfebU1lebHfuXy4bDyFw5mlM7Ekx2177ywdZ/Cq5kgLygzZXo81sSQHu+tbfGaS8zvqX4Zeg6G5qRhbmIWhuakMSJEsMFOKiEgEoU5I6S2NHYDbtkCBLM4pRYmCwz6IuvVua0oLMjmXD0VFMFk6zuDV8te/xLyy7jkwe6++t2L6SFz05Havr8HvKFF8YlCKiEgEoUxI6W1C9IqSHNw02YDKFz6D2WoHALx87XjXXCGlBZmw2BzQqZXYXd+MtdV1XHmF/IqXQE6kFxAgkrPebU0wc/kQhSuYCdPzM5Px19+NQVO7FXdPGwG7Q4DZakdGcncQ69umdtd1jTf8jhLFHwaliIhEEOyElL4mRN9+sBEOQUBlebHrrvdn3/2I5+eMw+oPat3uhJcZsrF27llceYV8ipdATjQWECCSs95tTaC5fHjzgmLBX/Aqtc3/8Dx+R4niD4NSREQiCSbV3d+E6Dtqm1D5U/o7AAgCsOaDWo+5QnbUNiFJocDq2aXRORGStXgK5ERjAQEiuevZ1jgEARUlOV5/J1w2nqQglExyIooPnOicZM1otuJQQxtq6ptx6GQbJz8k2Qk0IWWgCdF7DsUYPSgT231MdL79pw45UW/BBHLkIhoLCBDFA2dbU5KXhoeCmJCaSCzBTppORPGDmVIkW/Ey3CQS4mUuGPIUaEL0nkMxVEkKv/saO9ghJ0/xFMgJdQEBokTEZeNJ6vgdJUosDEqRLMXTcJO+YnAuvvlLYy8zZKPmSIvr76wU/995vUYZ6eJRHIinQA6HfVC8i9RNqGAmpCYSE7+jRImDw/dIluJpuElfBArOcTij/PlKY68oycHN55ZgbXWda5tS0R2o8qbMkI0khf9MKkpMzkCON3IL5HDYB8Wzoy0dWFBVg/Me24aZaz7CeY9uw81VNTja0iF20YiIiMLGTCmSpXgabtIXnNQ3MfhKYweANxeUu7bZBAfm/TTxec/JzssM2ZhXVgxBIYhSfpK2YFeClAsO+6B4xAxxIiKKVwxKkSzF03CTvoiH4BznwwqOrzT2ntvqm9pR9cl3KC3MQmVZMSw2B7SqJNQcaUHVJ99h+bQRsSwyyUi8BXI47IPiDW9CERFRvGJQimSJ84Z0i2VwLhrBI86HFVnmLjtmjy/Cuh11WL211rXdmSll7rKLWDqSOgZyiKQrHm5CERERecOgFMlSvA03CVesgnPRCB5xKELkmTq6sLCqBpXlxR6ZUguravDCvLPELiIREYWBGeIkB8x+J6JwMChFshVvw03CEYvgXLSCRxyKEHlpOjXMVrtbllTvx4mISH6YIU5Sx+x3IgoXg1IkaxxuEv3gXLSCRxyKEHkpGiXKDdmo7jHJuVO5IRspGqUIpSIior5ihjhJGbPfiagvGJQiigPRDM5FK3jEoQiRZ3U4cPclI3D3G/vcAlPlhmzcfclIdDkcIpaOiIj6ghniJFXMfieivmBQioj8ilbwiEMRIi8JChxt6cAdFw+HAAVaO7rndAAEHG/pQH4W0+eJiOSMGeIkRcx+J6K+YFCKiPyKVvCIQxEiLztFg5OtFtz/7wNumVIVhmwsOLcE2Sl8T4mIiMi7cCcqZ/Y7EfUFg1JE5Fc0g0ccihB5q7fWeswptb22CVAosHp2qUilIiIiIinry0TlzH4nor5gUIooAuJ9CdxoBo84FCFyGtus2F7rfU6H7ZzTgYiIiLzo60TlzH4nor5IErsA0bBmzRoUFxdDp9PhzDPPxPbt2/3uv379eowZMwZ6vR4DBw7EvHnz0NTkuXoVkTdHWzqwoKoG5z22DTPXfITzHt2Gm6tqcLSlQ+yiRVSGXoOhuakYW5iFobmpvMCQIM7pEBq2FURE5E+itBPBTFQeiPMG5vuLJmHTjRPw/qJJWDW7FAMDZFkREcVdUOqVV17BrbfeijvuuAM1NTWoqKjAlClTUF9f73X/6upqXH311bjmmmuwb98+/Otf/8Jnn32Ga6+9NsYlF5fRbMWhhjbU1Dfj0Mk2GM2BGx8KfGeJ7yPFUqrWf/JrSoDHEwnbCiIi8ieR2olI3dTiDUwiCkfcBaUee+wxXHPNNbj22msxfPhwPP744ygoKMBTTz3ldf+PP/4YgwcPxsKFC1FcXIzy8nJcf/312LVrV4xLLp5EyfTxpS8BuUjcWSKKFI0yCWWGbK+PlRmyoVHGXZUfNrYVRETkTyK1E5yonIjEFFc9FKvVis8//xwXXHCB2/YLLrgAH330kdfnTJgwAd9//z02b94MQRBw4sQJvPrqq7j44ot9vo7FYoHJZHL7J1eJnunT14Ach0uRlDSbLZhXVuwRmCozZGNeWTGa4/z3HCy2FURE5E+itRPOicq94UTlRBRtcRWUamxshN1uR15entv2vLw8HD9+3OtzJkyYgPXr1+Oyyy6DRqPBgAEDkJmZiVWrVvl8nZUrVyIjI8P1r6CgIKLnEUuJnOkTiYAc7yyRlOjUKiysqkFpYRaenzMOa648A8/PGYfSwiwsrKqBTq0Uu4iSwLaCiIj8SbR2wjlRee/AFCcqJ6JYiKuglJNCoXD7WxAEj21O+/fvx8KFC3HXXXfh888/x9tvv426ujrMnz/f5/GXLl0Ko9Ho+nfkyJGIlj+WEjnTJxIBOd5ZIilJSlKgtDATq7fW4poXd+HG9btxzYu7sHprLUoLM6FM8l4PJiq2FURE5E8itROcqJyIxBJXs97m5ORAqVR63MFoaGjwuNPhtHLlSpSVleHPf/4zAGD06NFISUlBRUUF7rvvPgwcONDjOVqtFlqtNvInIIJEzvSJRECOS+CSlKiSFJhXVgwA2FH782o/zuF7DEp1Y1tBRET+JGo7kaHX8NqViGIuroJSGo0GZ555JrZs2YKZM2e6tm/ZsgXTp0/3+hyz2QyVyv1tUCq7h7gIghC9wkqEM9PnQy8ZQ/Ge6ROpgJzzzlJjmxWtnV1I06mRkyrPRt1otqKxzQpTZxfSk9XISZHneSSqFK0Kr31+BJVlxVgyZRjaOu1I1anQYOrEhs+PYPklI8UuoiSwrSAiIn/YThARxU5cBaUAYNGiRbjqqqswbtw4nHPOOXj22WdRX1/vSp1dunQpfvjhB7z00ksAgGnTpuG6667DU089hQsvvBDHjh3DrbfeirPPPhv5+flinkpMJHKmTyQDcvFwZ+loS4fHHFsTS3Lw4KzRyGfqtiyYLTbc8qvTsOKtfW6ZUuWGbCybOgJmi03E0kkL2woiIvKH7UR08UYoETnFXVDqsssuQ1NTE1asWIFjx45h5MiR2Lx5M4qKigAAx44dQ319vWv/uXPnorW1FatXr8Yf//hHZGZm4txzz8VDDz0k1inEXDxl+oQikQNyvQWa9H3V7NKEej/kqssh4KG3D6C0MAuVZcWw2BzQqZXYXd+Mh94+gKVThotdRMlgW0FERP6wnYge3gglop4UAvNJ+8xkMiEjIwNGoxHp6eliF4dC5LxTk0gBud4ONbThvMe2+Xz8/UWTMDQ3NYYlonB8fdyEoy2dOGbsQF66zhWUOm7swMCMZORn6nDaAP91FOuz6OF7S0TxgHVZ9CTCe2s0W7GgqsbrYkMTS3J4I5QoToRSn8VdphRRqOJh6F1fJfIqjPEkSQHo1En4995jHhOdL5hsQJKPFYOIiIiIYiGY1a8T/bqcKNEkiV0AIhJfIq/CGE9USUlY/UGtW0AK6F6Jb/UHtVBx9T0iIiISEW+EElFvzJQiItmtwsjJMb2/Bx1ddo+AlNOO2iZ0dNljXEoiIiKin/FGKBH1xqAUEclq0ndOjun7Pbj53BK/zzNbGZQiIiIi8cjtRigRRR+DUkQEQB6rMHKVQP/vwaILTvP73Ixk3n0kIiIi8cjpRigRxQaDUkTkIvVJ3zk5pv/34P++bkBFSY7XxysMOUhnUIrIDYcCExGFL9w6VA43QokodhiUIiLZ4OSY/t+DZz88jI03luG+t/Zhe4+5pSoM2ZhXPhjtFlssikgkCxwKTEQUvr7WoVK/EUpEscPV94hINjg5pv/3wGy141hLB8YUZuH5OeOw5soz8PyccRhTmIUFL9fA1BH/QTuiYAQaCmw0W0UqGRGR9LEOJaJIYlCKiGTDOTmmN4kyOaa/96CiJAf//aHFbZtCoXD9PxGCdkTBCGYoMBERecc6lIgiiUEpIpIN5+SYvYMyiTQ5pr/34MGZozBhSDbyM3Ruj+Vn6PDCvLMSImhHFAwOBSYiCh/rUCKKJM4pRUSywskxfb8HAOBoATbvPYbqXnNKLTi3RKTSEkkPhwITEYWPdSgRRRKDUkQkO5wc0/t78F1TO1ZvPegWkALw06TnCtw3c2TCv29EwM/DYD/0MvwkUYYCExGFi3UoEUUSh+8REcmQ0WzFoYY21NQ349DJNhjNVnRY7W6r7vW0vbYRHVZ7jEtJJE0cCkxEFD7WoUQUScyUIiKSGV/LMN8cYIhea6ct2kUjkg0OBSYiCo7RbEVjmxWmzi6kJ6uRk6JhHUpEEcOgFBHJgrcLokS88PG3DPPiKcP8PlevVUazaESyw6HARET++boR9uCs0cjPTGYdSkR9xqAUEUleoAuiROJvGeZktRJlhmzs8DKEr8yQjWQ1g1JETgx0ExH55+9G2JINe7BqdinrTSLqMwaliEjSeEHkzt8yzF12BxZMNgCAW2CqzJCNBZNL0OVwRL18RHLAQDcRUWD+boR9eLARjW3WhLoGI6LoYFCKiCSNF0Tu/C3D7HAI6Oxy4OJRA1FZVgyLzQGtKgknTJ3o7LLD4WCVT8RANxFRcPzdCAOA1gCPExEFg6vvEZGk8YLInXMZZm/UqiT8z8ff4qix0237UWMn/ufjb6FVcvgeUTCBbiIi8n8jDADSAjxORBQM3jYnIknjBZE75zLMSzbswYe9hh6pFApcVzEEqz+oxeqtta7HnMP3VEkKMYpMJCkMdBMRBcd5I+xDL4H8iSU5yEllVikR9R2DUkQkabwg8uRrGWYAaGizeB2+p0wCMvSJFcAj8oaBbiKi4Pi7EfbQrNEc6kxEEcGgFBFJGi+IvPO1lH1hlh4OAUjRKtHWaUeqToUUrQpFWfqEfa+IemKgm4goeL5uhPGagogihUEpIpI8XhAFTwBQd7IduelaWGwOdHTZccLUiaJ+erGLRiQJDHQTEYXG140wIqJIYFCKiCLOaLaisc0KU2cX0pPVyEnp+8UML4gCM5qt+O5HM97aexQ7aptc28sM2SjOSYFeo+R7SAQGuomIiIikgkEpIoqooy0dHsutTyzJwYOzRiM/M1nEksW/FnMXVm096BaQAuD6+4EZo9jpJvoJA91ERERE4ksSuwBEFD+MZqtHQAroXmZ9yYY9MJq51Ho0tVttHgEppx21TWi32mJcIoolo9mKQw1tqKlvxqGTbfy9EREREZHkMVOKiCKmsc3qEZBy+vBgIxrbrMxMiKJ2q93v4+YAj5N8MUORiIiIiOSImVJEFDGmzi6/j7cGeJz6JjPZ/1L2GQEeJ3lihiIRERERyRUzpYgoYtJ1/oMeaQEep77JTdPiV8NzMWxgOkoLMmGxOaBTK7G7vhlfHTMhN00rdhEpCpihSERERERyxaAUEUVMTqoGE0ty3JZZd5pYkoOcVHaMoylDr8GyqafjLxv3YvXWWtf2ckM27p/JSc7jFTMUiYiIiEiuOHyPiCImQ6/Bg7NGY2JJjtv2iSU5eGjWaAZFQhDOpNUnTJ24Y+Nej8nOq2ubcMfGvThh6oxWcUlEzFAkIqK+4EIZRCQmZkoRUUTlZyZj1exSNLZZ0drZhTSdGjmpXHo9FOFOWt3cbkW1j9X3qmub0NxuRV66LuLlJXExQ5GIiMLFhTKISGzMlCKiiMvQazA0NxVjC7MwNDeVAakQ9GXSalOnze+xAz1O8sQMRSIiCgcXyiAiKWCmFFGEGM1WNLZZYersQnqyGjkpzA6i0PVl0up0nf8qPdDjJF/MUJQGtgNEJCdcKIOIpIA9FKIIYOozRUpfJq1O0ShRbsj2OoSv3JCNFI2yz+Uj6crQMwAiJrYDRCQ3XCiDiKSAw/eI+oipzxRJfZm0uqXDimVTR6DckO22vdyQjbumjYCxg99FomhgO0BEcsSFMohICpgpRdRHTH2mSOrLpNV6jRqXPbsTD80ajcVThqGt045UnRINJguu+MfHeOUP50Sz6EQJi+0AEckRF8ogIilgUIqoj5j6TJHknLR6yYY9bheJwUxanZOqwekD03HNi7s8HuPFJcmJ3OZmYjtARHLUl2sOIqJIYVCKqI+Y+kyRFu6k1by4pHggx7mZ2A4QkVxxoQwiEhuDUkR9xNRnioZwJq02mq3o7LLjzqmnwyEIMFvsyEjmxSXJR6C5mVbNLpXkd5ntABHJGRfKICIxcaJzoj5yZqdMLMlx287sFIqloy0dWFBVg3Mf3YYL/vYhfv34djz+3jdI1ij5HSTZCGZuJiliO0BEREQUHmZKUVyL1bwkTH0mMck1u4SoNznPzcR2gIiIiCh0DEpR3Ir1vCRMfSaxcOUvihdyn5uJ7QARERFRaOJy+N6aNWtQXFwMnU6HM888E9u3b/e7v8ViwR133IGioiJotVoMHToUa9eujVFpKRoCZY4YzdIcAkIUjp7ZJXqNEgvONeD5OeOw5sozsHbuWXAIgoilky62FdLjnJvJG87NRESxxnaCiCj64i5T6pVXXsGtt96KNWvWoKysDM888wymTJmC/fv3o7Cw0OtzLr30Upw4cQLPP/88DAYDGhoaYLPZYlxyiiRmjlAicWaX6DVKPDm7FOt21GH11lrX4xU/zWsj1ZXLxMC2Qny+hldzBUkikgK2E0REsaEQhPi6hT5+/HicccYZeOqpp1zbhg8fjhkzZmDlypUe+7/99tu4/PLLcfjwYfTr1y+s1zSZTMjIyIDRaER6enrYZafIqalvxsw1H/l8fNONEzC2MCuGJSKKHqPZipurajC6IBM19c3YUdvksc/Ekpyg5pZKlPqMbUX4IjFXX6Dh1c7X4NxMRNITL3VZIGwniIjCF0p9Jmqm1J49e4Led/To0QH3sVqt+Pzzz7FkyRK37RdccAE++sh7gOKNN97AuHHj8PDDD+N//ud/kJKSgksuuQT33nsvkpO9ZxVYLBZYLBbX3yaTKejzoNiQ+7wkRKHI0Gvw0KzRONFqccuQ6okZgj9jWxG+SMzVF+zE/PyuEpFY2E4QEcWOqEGpsWPHQqFQwFeylvMxhUIBu90e8HiNjY2w2+3Iy8tz256Xl4fjx497fc7hw4dRXV0NnU6HjRs3orGxETfeeCN+/PFHn2PAV65ciXvuuSdgeUg8znlJPvQyhI/zklA8EgA0tVn87iPllctiiW1FeCK1yiOHVxOR1LGdICKKHVEnOq+rq8Phw4dRV1fn9Z/zscOHD4d0XIVC4fa3M7DljcPhgEKhwPr163H22WfjoosuwmOPPYYXXngBHR0dXp+zdOlSGI1G178jR46EVD6KPue8JL0nzOW8JBSPnMGCQJgh6I5tRWiCCSYFwxQgOMrgKRFJBdsJIqLoEzVTqqioKKLHy8nJgVKp9LiD0dDQ4HGnw2ngwIE45ZRTkJGR4do2fPhwCIKA77//HiUlJR7P0Wq10Gq1ES07RV5+ZjJWzS7lvCQU95zBgjEFmSgzZPucU4oZgt3YVoQnUsEkDq8mIqljO0FEFDuiZkr1dujQIdx888341a9+hfPPPx8LFy7EoUOHgn6+RqPBmWeeiS1btrht37JlCyZMmOD1OWVlZTh69Cja2tpc27755hskJSVh0KBB4Z0ISUaGXoOhuakYW5iFobmpDEhRXHIGC9ZW12FeWTHKDNluj1cwQ9AN24rwRCqY5Bxe7Q2Dp0QkBWwniIhiRzJBqXfeeQenn346Pv30U4wePRojR47EJ598ghEjRng0CP4sWrQIzz33HNauXYsDBw7gtttuQ319PebPnw+gO0326quvdu1/xRVXIDs7G/PmzcP+/fvx4Ycf4s9//jMqKyt9TkpIJGVGsxWHGtpQU9+MQyfbYDQHN6SG5MsZLDBb7VhYVYPSwiw8P2cc1lx5Bp6fMw73Th+BgUFOQp0o2FaELlLBJA6vJiI5YDtBRBQbog7f62nJkiW47bbb8OCDD3psX7x4Mc4///ygjnPZZZehqakJK1aswLFjxzBy5Ehs3rzZNVTw2LFjqK+vd+2fmpqKLVu24Oabb8a4ceOQnZ2NSy+9FPfdd1/kTo4oRiKxMhbJT8+J/c1Wu9sKfGWGbEwdnQ+NSinb74DNZsP69etx4YUXYsCAARE5JtuK0DmDSUs27HFbRCKcYBKHVxOR1LGdICKKDYXga+m7GNPpdNi7d6/HeOtvvvkGo0ePRmdnp0glC8xkMiEjIwNGoxHp6eliF4cSlNFsxYKqGq8TEU8syQl6ZSySD6PZisY2K0ydXUjRqPB5fTPufWs/zNbu1UrLDNmYV1aMhVU1GFeUFdR3QKr1mV6vx4EDByI+F2EsSfW9DZXze8dgElFiipe6TIrEeG97XkukJ6uRk8I6nYj6LpT6TDKZUv3798cXX3zhEZT64osvkJubK1KpiOSDy6wnFm9ZcRUlOdh0YxnqmtqhSlKg5kgLFlbVwGy1y/47MH78eHzxxReyDkrFiww9OyxERPGAGfZEJAWSCUpdd911+MMf/oDDhw9jwoQJUCgUqK6uxkMPPYQ//vGPYhePSPK4zHriMJqtHheRALD9YCPueWsfKsuKAQCnD0zH6ivOwO76ZqytroOxQ77fgRtvvBGLFi3CkSNHcOaZZyIlJcXt8dGjR4tUMiIiIvnxdS3x4cFGLNmwhxn2RBQzkglKLVu2DGlpaXj00UexdOlSAEB+fj7uvvtuLFy4UOTSEUkfl1lPHP6y4nbUNuHGXxpw5XOfuLaVGbLx5OxSpGiVsSpixF122WUA4NYeKBQKCIIAhUIBu90uVtGIZI/DdygemEwmpKamIinJfR0nu92O9vZ2DjXshRn2RCQVkglKKRQK3HbbbbjtttvQ2toKAEhLSxO5VETy0XOy6964zHp8CZQV1zsjakdtExQA7psxMoqliq66ujqxi0AUlzh8h+LBxo0bsXjxYnzxxRfQ6/Vuj1ksFpx11ln461//imnTpolUQulhhj0RSUVS4F1iLy0tjQEpohBxmfXEESgrTqvyrNqra5vQaXNEq0hRV1RU5PcfEYUu0PAdo9kqUsmIQvPUU0/h9ttv9whIAd0LZSxevBirV68WoWTSxQx7IpIKyWRKnThxAn/605/w/vvvo6GhAb0XBeTQDKLAuMx6YvCXFVdmyEbNkRavzzNb5F+P7t+/H/X19bBa3TvLl1xyiUglIpIvDt+hePHll19izZo1Ph+fOHEi7rzzzhiWSPqYYU9EUiGZoNTcuXNRX1+PZcuWYeDAgVAoFGIXiUiWuDJW/HNmxS3ZsMftYrKiJAdzJgzGwqoa789Llu9dz8OHD2PmzJnYu3evay4pAK62gjcuKNbiYR4mDt+heNHc3Aybzebz8a6uLjQ3N8ewRNLn61qCGfZEFGuSCUpVV1dj+/btGDt2rNhFISKSPG9Zcak6Fe7YuBdmq2eApkLmdz1vueUWFBcX47333sOQIUPw6aefoqmpCX/84x/x17/+VeziUYKJl3mYOHyH4sXgwYOxa9cuDBs2zOvju3bt4lBvL5hhT0RSIJmgVEFBgceQPSIi8q13VpzRbMUfJg7BucNykZeug8XmgE6txHFjBwy5qSKWtO927tyJrVu3on///khKSkJSUhLKy8uxcuVKLFy4EDU13rPDiCItnpZR5/Adihe/+c1vcMcdd+D8889HXl6e22PHjx/HnXfeid///vcilU7amGFPRGKTTFDq8ccfx5IlS/DMM89g8ODBYheHiEh2mtqtaLPYsHnvMVTXNrm2VxiyMa+8GE3t8p0fxm63IzW1O7CWk5ODo0eP4rTTTkNRURG+/vprkUtHiSSe5mHi8B2KF0uWLMHrr7+OkpIS/P73v8dpp50GhUKBAwcOYP369SgoKMCSJUvELiYREXkhmaDUZZddBrPZjKFDh0Kv10Otdk8Z//HHH0UqGRGRPNgcAp6vrsOOHgEpANhe2wQHgLunjRCnYBEwcuRI7NmzB0OGDMH48ePx8MMPQ6PR4Nlnn8WQIUPELh4lkHibh4nDdygepKWlYceOHVi6dCleeeUV1/xRWVlZ+P3vf48HHniAK3sTEUmUZIJSjz/+uNhFICKSNYdD8AhIOe2obYLdId8h0nfeeSfa29sBAPfddx+mTp2KiooKZGdn45VXXhG5dBSvvE5mHmDBADnOw8ThOxQPMjIysGbNGvz9739HY2MjBEFA//79uXgSEZHESSYoNWfOHLGLQEQka2ar75WHuh+X7wp1F154oev/Q4YMwf79+/Hjjz8iKyuLHQ6KCl+TmT8wcxTOH56LLQcaPJ7jax6meFipj0guFAoF+vfvL3YxiIgoSJIJSvXU0dGBri739Pf09HSRSkNEJA+BMjTSdJKs8kN25MgRKBQKDBo0SOyiUJzyN5n5XzbuxcrfjILF5ghqHqZ4WamPSMoaGhpw5513wmQyYdmyZRgxQr7D1YmIEk2S2AVwam9vx4IFC5Cbm4vU1FRkZWW5/SMiIv90qiSUG7K9PlZuyIZOJZkqP2Q2mw3Lli1DRkYGBg8ejKKiImRkZODOO+/0uIlB1FeBJjPv7HJg1exSvL9oEjbdOAHvL5qEVbNLMbBXkCnQSn1GszVq50CUSObNm4cBAwZg5syZmDJlClf0JiKSEcn0UG6//XZs3boVa9asgVarxXPPPYd77rkH+fn5eOmll8QuHhGR5LVZbZhbVoyyXoGpMkM25pYVoy3A8D4pW7BgAZ599lk8/PDDqKmpQU1NDR5++GE8//zzuPnmm8UuHsWZYCYzz9BrMDQ3FWMLszA0N9XrcLxgVuojor6rqanBZZddhksvvRTHjx/HyZMnxS4SEREFSTJjOd5880289NJL+OUvf4nKykpUVFTAYDCgqKgI69evx5VXXil2EYmIJK3NYsfCqhpUlhejsqwYFpsDWlUSao60YGFVDV6sPFvsIoatqqoK//znPzFlyhTXttGjR6OwsBCXX345nn76aRFLR/EmPeBQ2OAmM4+3lfqIpGrGjBlYunQpioqKMHr0aOTm5opdJCIiCpJkglI//vgjiouLAXTPH/Xjjz8CAMrLy3HDDTeIWTQiIllI06lgttqxemutz8flSqfTYfDgwR7bBw8eDI2GE0ZTZOWkajCxJMdtzignX5OZexOp4BYR+bd69WpUVVWhpaUF999/v9jFISKiEEhm+N6QIUPw7bffAgBOP/10/L//9/8AdGdQZWZmilcwIiKZUCoUqDDkeH2swpADpYxXqbvppptw7733wmKxuLZZLBbcf//9WLBggYglkxej2YpDDW2oqW/GoZNtUZ/TKNavFykZeg0enDUaE0vcf0++JjP3xRnc8iaU4BYR+ZeUlIQrr7wSN910ExdHIiKSGcncNp83bx7++9//YtKkSVi6dCkuvvhirFq1CjabDY899pjYxSMikjxVkgLLpp2Oe9/ch+21Ta7tFYZsLJt2OlRJ8gpK/eY3v3H7+7333sOgQYMwZswYAMB///tfWK1WnHfeeWIUT3ZivQqc3Fedy89MxqrZpWhss6K1swtpOjVyUjVBB6SAn4NbSzbs8btSn9FsRWObFabOLqQnq5GTEtrrEBEREcmVQpDo8hT19fXYtWsXhg4d6uqASJXJZEJGRgaMRiPvzhDFMal0HH2V42hLB+7ctBen52egtCDTbU6pA0eNuHfGqIDBACnVZ/PmzQt633Xr1kWxJJEh5ntrNFuxoKrG66TbE0tysGp2aUS/y7F+Palz/ma9BbfkHryjxCOldiLe8L0longRSn0mmUyp3goLC1FYWCh2MYiIAEin4+ivHKbOLmz96iS2fuV91aE/d3YhH/Lp5Moh0CQXwawCF8kgUaxfT+oy9N4D2Eaz1eP3DHS/R0s27Em44B0RERElHkkFpd5//328//77aGhogMPhcHts7dq1IpWKiBKdVDqOgcqx4FyD3+ebOmzRLB5JWKxXgeOqc8Fh8I6IiIgSnWSCUvfccw9WrFiBcePGYeDAgVDIeEJeIoovUuk4BirH0ouG+31+uoxX36O+CXUVuL4OVeWqc8Fh8I6IpEoqUxYQUfyTTA/l6aefxgsvvICrrrpK7KIQEbmRSscxUDl0qiSUG7JR3WOSc6dyQzbSkxkIiDfBdhqcq8B96GOOp56rwEViqGoor5fIGLwjipz29na8/PLL+Oijj3D8+HEoFArk5eWhrKwMs2fPRkpKithFlA2pTFlARIkhSewCOFmtVkyYMEHsYhAReZBKxzFQOboEB+6dMRLlhmy37eWGbNw7YxSsXfZoFo9i7GhLBxZU1eC8x7Zh5pqPcN6j23BzVQ2OtnR47OtcBW5iSY7bdm+rwPkbImo0W4MqW7Cvl+icwTtvGLwjCt7+/ftx6qmn4vbbb0dzczMKCwsxaNAgNDc3489//jNOO+007N+/X+xiykKk2gEiomBJJlPq2muvxcsvv4xly5aJXRQiIjdSyfoIVA51UhIefvsrzCsrxuIpw9DWaUeqTokGkwUPv30Ai84/LSblpOgLZ56z/MxkrJpd6nMVOCCyQ1WDeb1YkeowFGfwbsmGPW6/awbviEJz0003YeLEiXjxxReh0bj/bqxWK+bOnYubbroJH3zwgUgllA+pTFlARIlD1KDUokWLXP93OBx49tln8d5772H06NFQq90zAh577LFYF4+ICIB0Oo6BymHq7MJ/vjyB/3x5wuvzbznv1JiUM9I4JMNTuJ0GX6vAOUV6qGqg14sFqQ9DkVLwjkiuPvnkE+zatcsjIAUAGo0Gf/nLX3D22WeLUDL5kcqUBUSUOEQNStXU1Lj9PXbsWADAl19+KUJpiIh8k0rH0V85jn7nOWyrp3ar/Fbf279/P84//3yYzWZMmjQJhYWFEAQBDQ0N+POf/4y7774b7777Lk4//XSxixpT0eo0SGWoaqRIZeXMQKQQvCOSs6ysLBw8eNBnW1BbW4usrKwYl0qe4q0dICLpEzUoxRRaIpITqXQcfZUjRaOCXqNEZXkxSgsyYbE5oFMrsbu+GWur65CikcyI7aBxSIZ30eo0hDpUNVrD4iJ1XA5DIUoM1113HebMmYM777wT559/PvLy8qBQKHD8+HFs2bIFDzzwAG699VaxiykZ/upYqUxZQESJQzI9lMrKSjzxxBNIS0tz297e3o6bb74Za9euFalkRETyoEgCnp8zDqs/qMXqrbWu7WWGbDw/ZxySJLO0RfA4JMO7aHUaQhmqGq1hcZE8LoehECWGu+++G8nJyXjsscdw++23Q6FQAAAEQcCAAQOwZMkS3H777SKXUhoC1bFSmbKAiBKHQhAEQexCAIBSqcSxY8eQm5vrtr2xsREDBgyAzSbdYScmkwkZGRkwGo1IT08XuzhElKDqTrbhrte/xPbaJo/HKgw5WDF9BIr7p/o9htTqs1NOOQVr1qzB9OnTvT6+adMm3HTTTfjhhx9iXLLQRfq9PdrS4bPTMLCPcyU576L7GqpqNFuxoKrGaxbSxJKcsIfFRfq4hxracN5j23w+/v6iSRia6/83QUTupNZO9FZXV4fjx48DAAYMGIDi4mKRSxS8aL+3odSxgdoBIiJ/QqnPRM+UMplMEAQBgiCgtbUVOp3O9ZjdbsfmzZs9AlUkPVJd2YgokVjsDq8BKQDYXtsIi90R4xL1HYdk+BbNec56HsPU2QUo3LdHa1hcpI/LYShEiae4uFhWgahYCqWOlcqUBUQU/0QPSmVmZkKhUEChUODUUz1XhlIoFLjnnntEKBkFS+orGxHFkpgB2tZO/xmlgR6XIg7J8C9anYZA9Xq0hsVFY/U/DkMhSjzNzc148cUXcfDgQQwcOBBz5sxBQUGB2MUSHYc0E5EUiR6U+uCDDyAIAs4991xs2LAB/fr1cz2m0WhQVFSE/Px8EUtI/shlZSOiWBA7QJuq9T/ReapW9Co/LIsXL8bixYtlPSRDToKp16M10Xo0jiuVlTOJKHry8/Oxd+9eZGdno66uDhMmTAAAjBo1Cm+88Qb++te/4uOPP8awYcNELqm4uLIeEUmR6D2USZMmAege/11YWOi6C07ywJWNiLpJIUCrCjDRuSpJ3vUrh2TERjD1erSGxUVzAne2RUTx6/jx47Db7QCAv/zlLxg2bBj+/e9/Q6/Xw2Kx4Le//S2WLVuGf/3rXyKXVFwc0kxEUiSZtZiKiopQXV2N3//+95gwYYJr0tr/+Z//QXV1tcilI1+YBkzULZiOfLRpVEqs+aAWO3rNK7WjtglrPjgEjUoyVX5IDhw4gHXr1uGrr74CAHz11Ve44YYbUFlZia1bt4pcuvgTTL3uHBY3sSTH7bG+DouL1nGJKHF88sknWLZsGfR6PQBAq9XizjvvxMcffyxyycRhNFtxqKENNfXNaGy3YuVvRuH84e7z9bKOJSIxiZ4p5bRhwwZcddVVuPLKK7F7925YLBYAQGtrKx544AFs3rxZ5BKSN0wDJuomhQCt1eZ/onOrTX4Tnb/99tuYPn06UlNTYTabsXHjRlx99dUYM2YMBEHAhRdeiHfeeQfnnnuu2EWNG8HW69EaFteX43LRDaLE5RxtYbFYkJeX5/ZYXl4eTp48KUaxROVrWoEHZo7C0ouGw9TBIc1EJD7J3Da/77778PTTT+Mf//gH1OqfL4gnTJiA3bt3i1gy8seZBuwN04ApkUghQNtm8T+ReXuAx6VoxYoV+POf/4ympiasW7cOV1xxBa677jps2bIF7733Hm6//XY8+OCDYhczroRSr2foNRiam4qxhVkYmpsasU5NOMc92tKBBVU1OO+xbZi55iOc9+g23FxVg6MtHREpExFJ23nnnYczzjgDJpMJ33zzjdtj9fX1yMnxXq/FK3/TCvxl415kp2giXncTEYVDMkGpr7/+GhMnTvTYnp6ejpaWltgXiILCoRZE3aQQoJVCYCzS9u3bh7lz5wIALr30UrS2tmLWrFmux2fPno09e/aIVLr4JMd6PdCcbkZz9IfPEpF4li9fjlmzZmH69On405/+5Bq65/Tmm2+ioqJCpNKJQwrTChARBUMyw/cGDhyI2tpaDB482G17dXU1hgwZIk6hKChc2YhIGkvPx/sEpklJSdDpdMjMzHRtS0tLg9FoFK9QEhCNIWtyqded526x2bnoBlECW758ud/HH3nkkRiVRDqkMK0AEVEwJBOUuv7663HLLbdg7dq1UCgUOHr0KHbu3Ik//elPuOuuu8QuHgXAlY2IxO/ISyEwFmmDBw9GbW0tDAYDAGDnzp0oLCx0PX7kyBEMHDhQrOKJztd8IQ/OGo38zOQ+HVvq9XrPc19z5Rl+92Xni4gSTTxmTxNRfJJMUOr222+H0WjE5MmT0dnZiYkTJ0Kr1eJPf/oTFixYIHbxiIiCEs2OfDAZMWIHxiLthhtucC3zDQAjR450e/w///lPwk5yHmjI2qrZpR6fe7xMBN773LUBVpZk54uIEk28Z08TUfyQzJxSAHD//fejsbERn376KT7++GOcPHkS9957b8jHWbNmDYqLi6HT6XDmmWdi+/btQT1vx44dUKlUGDt2bMivSUQUTaFM4hytyafFMH/+fFx88cU+H7///vvx3HPPhXVsubcVoc4XEk8Tgfc+95ojLSgzZHvdl50vIgqXnNsJOc4PSESJSfRMqcrKyqD2W7t2bVD7vfLKK7j11luxZs0alJWV4ZlnnsGUKVOwf/9+tyEfvRmNRlx99dU477zzcOLEiaBei4goFsLJiCH/4qGtCGW+kHj7DvU+97XVdXhydikAYEdtk2s7O19EFK54aCfiLXuaiOKTQhAEQcwCJCUloaioCKWlpfBXlI0bNwZ1vPHjx+OMM87AU0895do2fPhwzJgxAytXrvT5vMsvvxwlJSVQKpXYtGkTvvjiC5/7WiwWWCwW198mkwkFBQUwGo1IT08PqpxERME61NCG8x7b5vPx9xdNwtDc1Ii8lslkQkZGRtzXZ/HQVoTyvYjldygWvJ2PXqNEZXkxSgsykZGsRpZew84XURSwnYhcO9Fbory3RBT/QqnPRB++N3/+fBiNRhw+fBiTJ0/G888/j40bN3r8C4bVasXnn3+OCy64wG37BRdcgI8++sjn89atW4dDhw4FXLnDaeXKlcjIyHD9KygoCOp58cZotuJQQxtq6ptx6GQbl9wmipJQM2L4u/QvXtoK53wh3vQeshZvqzB5O3ez1Y7VW2vx4kffoiQ3VfZDV4lIPLFqJywWC0wmk9s/IqJEI3pQas2aNTh27BgWL16MN998EwUFBbj00kvxzjvv+M2c8qaxsRF2ux15eXlu2/Py8nD8+HGvzzl48CCWLFmC9evXQ6UKbjTj0qVLYTQaXf+OHDkSUjnjQTzNTUIkdcGuoMPfZXDipa0IZb6QeFuFiXOlEFE0xaqd4I1uIiIJzCkFAFqtFrNnz8bs2bPx3Xff4YUXXsCNN96Irq4u7N+/H6mpoQ0pUCgUbn8LguCxDQDsdjuuuOIK3HPPPTj11FNDKq9Wqw2pTL3JeQWkeJubhEjqgllBh7/L0MmhrQgk2PlC4nEVJs6VQkTRFu12YunSpVi0aJHrb+cwbyKiRCKJoFRPCoUCCoUCgiDA4XCE9NycnBwolUqPOxgNDQ0edzoAoLW1Fbt27UJNTQ0WLFgAAHA4HBAEASqVCu+++25Ulho/2tLh0XmcWJKDB2eNRn5mcsRfL9KCWfGJnQKiyHFmhSzZsMctqNAzK+RQQxt/l0GSS1sRrAx94EBMMN8hOQrm3ImIQhWrdiIWNy+IiKROEkEpi8WC1157DWvXrkV1dTWmTp2K1atX49e//jWSkoIfYajRaHDmmWdiy5YtmDlzpmv7li1bMH36dI/909PTsXfvXrdta9aswdatW/Hqq6+iuLg4/JPyIR6yGeJtbhIiOQiUFcLfZfDk0FZEAzOLiIiCEy/thJxHZhBR4hA9KHXjjTfin//8JwoLCzFv3jz885//RHZ2dtjHW7RoEa666iqMGzcO55xzDp599lnU19dj/vz5ALrTZH/44Qe89NJLSEpKwsiRI92en5ubC51O57E9UuIhyyje5iYhkgt/WSH8XYZG6m1FtDCziIgoOHJvJyIxMoNBLSKKBdGDUk8//TQKCwtRXFyMbdu2Yds270tWv/baa0Ed77LLLkNTUxNWrFiBY8eOYeTIkdi8eTOKiooAAMeOHUN9fX3Eyh+qeMhmiMe5SYjkzvm73PVdMyrLi1FakAmLzQGdWokTxg4kq0Vf10JSpN5WEBGRuOTcTkRiZIbcpxshIvlQCKEucRdhc+fO9TphYG/r1q2LQWnCYzKZkJGRAaPRiPT0dL/7Hmpow3mPeQ+8AcD7iyZhaG5oE7uL4WhLh8+5SQayoSISxQ8/mlHfbMbqD2qxo7bJtb3CkIMF5xowbEBawIvQUOozCg3fWyKKB6zLoidS721f+xtGsxULqmq8ju6YWJIji+lGiEhcodRnomdKvfDCC2IXIabiJctI7LlJmE5M5MkmCPh7r4AUAGyvbYQDAh6YMYq/E3JhPUpEFD961ulaVRIWnGvA2uo6mK12j30DjcyIh+lGiEg+RA9KJZp4WgFJrLlJmE5M5F27xYbqXgEppx21TWi32mJcIpKqaNSjDHIREYnDW51eZsjGk7NLsbCqxiMwlaZT+62z42G6ESKSDwalRCB2lpGcxcPqhUTR4u1uaCiPU2KIRj3KmwVEROLwVac7s6Yry4uxemuta/vEkhzo1Ekew/N61tlcPIWIYolBKZFwBaTwMJ04MTEDIzipWhVyUjV4aNZo5KZr0dZpR5pOhROmTizesAepWlb5FPl6lDcLiIjE469O31HbhMqyYtffE0ty8MDMUVj+xj6/dXa8TDdCRPLAHgrJCtOJEw8zMIKnUinwzz/8Asvf2Oc2r1S5IRv//MMvEMSaEpQAIl2P8mYBEZF4AtXpGclqbLpxgmtkRlO7Fe8daPC6r7POHpqbGjfTjRCR9DEoRbLCdOLEwgyM0GiTkvCXjXs9Jjqvrm3C3W/sw8qZo0QqGUlJpOtR3iwgIhJPoDo9S69xW2nvcGO73/2ddTanGyGiWEkSuwBEoXCmE3vDdOL4E0wGBv2svcuO7T4mOq+ubUIb55QiRL4e5c0CIiLxhFqnh1JnZ/wU0BpbmIWhuakMSBFRVDAoRbLiXL2wd+PLdOL4xAyM4BnNVvzQ3OF3H75fBES+HuXNAiIi8YRap7POJiKp4fA9kh2mEycOZmAEL5isMb5f5BTJetTZIeLcI0RE4gilTmedTURSw6AUyRJXL0wMXP0leKbOLtQcaUGZIdtjTikAqDDkIEWjFKFkJFWRrEd5s4CISFyh1Omss4lIShiUIiLJ4t284KXr1FhbXYcnZ5cCgFtgqsyQjRXTRyBZzaAURQ9vFhARyQfrbCKSCgaliEjSeDcvODmpGowrysLCqhpUlhejsqwYFpsDWlUSGkydUCcp0D9dJ3YxiYiIiIiIXBiUIiLJ4928wHpmla3eWuvaXlGSg/tnjsKgfnoRS0dEREREROSJQSkiojjBrDIiIiLqzWi2oqndCptDgEMQYLbYkKHXICeF1whEJD4GpURiNFvR2GaFqbML6clqNgpEFBE96xFTZxeg8NxORERE8cdb/8JstWPZ61/i8rMLsW5HnduckxNLcvDgrNHIz0wWsdRElOgYlBLB0ZYOLN6wB9t7TdzMRoGI+or1CxERUeLx1f7fONmAkadkeASkAODDg41YsmEPVs0u5c0riWECAyUSBqVizGi2ejQYABsFqYqnBiGezoW8Y/1C/J0TESUef+2/XRBw269OxePvHfT63A8PNqKxzcq2QkJ4g5ESDYNSMdbYZvVoMJzYKAQvFh2veGoQ4ulcyDfWL4mNv3MiosTkr/3fUduEmycLfp/f2tkVjWJRGHiDkRJRktgFSDSmAJU+G4XAjrZ0YEFVDc57bBtmrvkI5z26DTdX1eBoS0fEXiNQg2A0WyP2WtEWT+dC/hk7/H+Wxg7WL/GKv3MiCoXRbMWhhjbU1Dfj0Mk21hEyF6h/odcq/T6eplNHsjjUB8HcYCSKN8yUirH0AJU+GwX/YnX3IJ4yTuLpXMi/FK3/Kj0lwEUpyVe0fuccDkgUf5hVGX8C9S8AoMyQ7TGnFND92eeksl6XCiYwUCJiplSMpepUKDdke32s3JCNVB3jhP7E6u5BPDUI8XQu5J9amYQyH/VLmSEbaiWr/HgVjd+5t6zUBVU1+P5Hc7jFJCKRMasyPuWkajCxJMfrYxUlOfj6eCvmlRV7XCNMLMnBQ7NGI0OvYfacRDCBgRIRIyAx1m6xYW5ZMQTA7W5FmSEbc8uK0W6xeX0e71Z3i1WAJZ4ahHg6F/LvxzYL5pUVA/CsX+aVFePHdguG9E8Vq3gURZH+nfvquG4/2Iglr+3BQ7NG45QsfcjlJCJxMXs6PmXoNXhw1mgs2bAHH/bKgHto1mjoNUo0tVtx97QRsDsEmK12ZCSrXRlS3za2Y9mmvdje49qB2XPicAYYP/TyO2VWG8UrBqVizNjRhYVVNagsL0ZlWTEsNge0qiTUHGnBwqoavHzteI/nMM36Z7EKsMRTgxBP50L+pejUuHrdZz7rlw03TBC7iBQlkf6d++u4Vtc24bsmM1K1qj51XnmzhSj2mD0dv/Izk7Fqdika26xo7exCmq476OSsV73Vr0dbOrDtm5N4a89Rj6F9nFhbHIECjPwsKB4xKBVj6To1zFY7Vm+t9fp476AKV2BwF6sASzw1CPF0LvEkGh3yVI0S5wzp57ZNoVAAAM4Z0g+pGs4pFa8i/TsP1HFt6ejqU0YFb7YQiYPZ0/EtQx/8tYSzjzF3wmCvc00BzJ4TS6AAI1G8YVAqxkINqrSYuzB3wmDMPrsQOrUSu+ubsba6DmarPSEbilgGWOKpQYinc4kH0eqQpyersWzqCNyxaa9b4LvckI37ZoxCejI7G/Eskr/zQB1XrSop7IwK3mwhEg+zp8nJmRE7++xCv/sxe04coQQYieSOQakYCyWocrSlA3f2Gt9dZsjGk7NLsbCqBmarPSEbilgGWOKpQYinc5GzaHbIO20O3Llpr8cdz+raJty5aS8evXQsMsIuOclBpH7nOakaVJTkeB3CV2bIRs2RFswce0pYx+acNkTiYfY0OTkzYrUq/4ugMHuOiKKNQSkRBBNUcXVce3UunZ3NyvJirN5am7ANBQMsJFeR7pD3HAaoUytR7SMFv7q2Cc3tVuSl68IqNyWWDL0GK2eOwpLX9rh9p5yT5r/yaT1yyovDOjbntCESF7On41uw0wM4M2JrjrSgzJDtdQgfs+eIKBYYlBJJoKCKv47rjtomVJYVy6qhSJQJbRPlPCl8keyQ9x4GWHXdLwK8tvfVPYm8GdRPj4dmjcZ3TWa0dHS5Js1/5dN6rJg+Muy6jXPaEImPN/fiUyjTAziHcq6trsOTs0sBuK/cy+w5IooVBqUkKlDHFYBsGopEmdA2Uc6T+iZSHXJvwwBTdf4nMk/Tscqn0JySpUeqVuXKqJg59hTklBf3qe3hnDZERJEX6vQAPYdy9lwZHAAGZSVjQLpOFv0MIpI/9lAkqmfHVa9RorK8GKUFmbDYHNCplRiSo8dAGQQ6EmVC20Q5T+q7SHXIvWVTNpgsKDdkex3CV27IRrLa/7wRRN5EOqOCc9oQEUVeONMDcCgnEUkBg1IS5ey47vquGU/OLsW6HXVuq2nJJQMnVhPaij1sjhP3UrAi1SH3lk25eMMerL/2F7j3rX1ugalyQzbumjYCgtD38hNFAjtCRESRFe70ABzKSURiY1BKopwd123fnMS6HXUekw/KJQMnFhPaSmHYHCfupVDkZybjkd+NQXO7FaZOG9KTVcjSa0KahNzbMMDGNiuufO5jPDRrNP5y8ekwmruQqlOiwWTBk+99g/tnjorkaVCcECuoz44QEVHkcL4+IpIrBqUkLD8zGeOKsrD0tb1eH5dDBk60G0ipDJvjhQCFIhKBVF/DABvbrHhhRx3+/OthaDZb0dGlREOrBXdefLqk6woShxSC+kRE1Hecr4+I5IoTjEhcm8X/allSz8BxNpDeRKKBDGbYXCxE+zwpfgQKpBrNgb+zzsyWheeVoOq68VhwrgF6Tfck5xUlObhpcgkuf/Zj3Lh+Nypf+Az/2XsMjqicDclZJL6LREQkDc5RFr2vRzlfHxFJHTOlJE7uGTjRntBWKsPmOHEvBauv8495y2ypKMnBmzeXQxAEfPZtMypf/Axmq93tuHIY7kuxxbnwiIjiC+frIyI5YlBK4uIhFTeSDWTvuU/66TXQa5RuHfCeYhm044UABaMvgVRfmS3bDzbinjf24d7pI2U93JdiK1ZBfbEXoiAiSiScr4+I5IZBKYmLlwycSDSQvuY+WTv3LFS+8JlHYEqMoB0vBCiQvmQ/BspsabfKe7gvxVYsMnE5ZxURERER+cOglAwwA8f/3CcCgGVTT3fLEJFb0I4iT6rZGX3JfgyU2eIrY9BJ6sN9KbainYkrlYUoiIgodFK9jiKi+MOglEwkegaOvwyR7QcbcdfU0/H+okkJG7Qjd1LOzuhL9mOgzJaMZLXsh/tS3wXbkYh2Ji7nrCIikicpX0cRUfxhUIpkIVCGSLvFhrGFWTEqDUmZHLIzws1+DJTZkpumxX0zRuIvG/eiurbJ9Vi5IRv3zRgp+nlT9IXakYhmJq5UFqIgIqLgyeE6iojiC4NSJAtyX4WQYkeK2Rm+MldCLUegzBYAWPHWfowtzMK8smJYbA5oVUmoOdKCe9/aj7/+bgwvJOOY0WzFXa9/iTEFmZg7YTAsNgd0aiV21zdj+etf+vz8o5WJy3qbiEh+pHgdRUTxjUGpBCeX8eLxsAohxYbUsjMinQLvL7PlUEMb3jvQgPcONHh9Li8k41tTuxWXn12IdTvqsHprrWt7mSEb88qK0dQe288/VadCRUmO184N620iImmS2nUUEcU/BqVkri9BJTmNF4+XVQgp+qSUnRGtFHhfmS2mzi7oNUpUlhejtCDTLVNmbXUdLyTjnM0hYN2OOuzoMXQTgOvvu6eNiFlZjrZ04K7Xv8ScCYPhEAS3MrHeJiKSLildRxFRYkgSuwDRsGbNGhQXF0On0+HMM8/E9u3bfe772muv4fzzz0f//v2Rnp6Oc845B++8804MSxu+oy0dWFBVg/Me24aZaz7CeY9uw81VNTja0hHwuYE6y0azNVrFDpszQ+T9RZOw6cYJeH/RJKyaXYqBEgugkbicWXXexDo7I5gU+EjKSFbjydmlqKlvxjUv7sKN63ej8oXPUFPfjCdnlyI9mReSPcVbW+FwCB4BKacdtU2wO4SYlMPZvrx3oAELq2pQWpiF5+eMw5orz8DL147HI78bw3qbiGQh3tqJYEjpOoqIEkPcBaVeeeUV3HrrrbjjjjtQU1ODiooKTJkyBfX19V73//DDD3H++edj8+bN+PzzzzF58mRMmzYNNTU1MS55aPoaVIp1ZzlSMvQaDM1NxdjCLAzNTeWddvLgzKrrfUElRnZGrFPgU7Qqn5kyL+yoQ4qWybFO8dhWmK02v493dtlhNFtxqKENNfXNOHSyLSo3IHq2L2arHau31rqCpFc89wnaOv2Xk4hICuKlnehd758wdeLwSd/tQO/rKL1GiQXnGvDyteNxy3klaGy3SvLmNRHJl0IQhNjcOo2R8ePH44wzzsBTTz3l2jZ8+HDMmDEDK1euDOoYI0aMwGWXXYa77rrL6+MWiwUWi8X1t8lkQkFBAYxGI9LT0/t2AkE61NCG8x7b5vPx9xdNwtDcVJ+P19Q3Y+aaj3w+vunGCVzNjmTNObQ10iuKhaKvv1MxXs9kMiEjIyOm9ZkY4rGt8Pf556RqsGH+BNy5aS+29xpKF+kh22xf+kYucz1S4mI7Ebl2ordIv7fepuooN2RjblkxFlbVwGy1+2wHjGYrmtqtEADc/fqXUW87iCi+hFKfxVWmlNVqxeeff44LLrjAbfsFF1yAjz7yfYHck8PhQGtrK/r16+dzn5UrVyIjI8P1r6CgoE/lDkdfMzA4XpzinRSy6mKdAu+cU2rBuQbXcKm1c8/CgnMN0GuUnFPqJ/HaVvj6vuk1SvzPNePxl14BKSA6Q7bZvoSvL8PyiShyYtVOWCwWmEwmt3+R4mtURXVtE9btqENleTEA3+1Ahl6D7BQN7n5jX0zaDiJKXHEVlGpsbITdbkdeXp7b9ry8PBw/fjyoYzz66KNob2/HpZde6nOfpUuXwmg0uv4dOXKkT+XuLZjhFX296Od4caLoi/VQQs4pFZx4aSt68/V9Wzb1dDS3W33ONxXpIdtsX8Ijx7keieJVrNqJaN688DdVx47aJpQWZLr+9tUOyHW6DyKSl7icYEShULj9LQiCxzZvqqqqcPfdd+P1119Hbm6uz/20Wi20Wm2fy+lNsCviOS/6PwxzqW2uZkcUG84J+mMxlFCnVmLD50dQWVaMJVOGoa3TjjSdCidMndjw+RHcOTV2q6/JgZzbCl+8fd8cgoCDDW1+nxfJLDq2L+EJpvPH944otqLdTixduhSLFi1y/e0c5h2O3kN/jR3+A0YWm8Ptb2/tQKznxiSixBRXQamcnBwolUqPOxgNDQ0edzp6e+WVV3DNNdfgX//6F371q19Fs5g+hbJ8fCQu+mPZWSbxcH4S8WXoY/Oet1m7cOuvTsOKt/a5ZcWUG7KxbOoItFm7AHD+B7m3FYH0/r7V1DdDq/KfGB3pIXVsX0LHzh+RdMSqnYjUzQtvN7Vfvna8/9fu1S54awc4HJuIYiGuglIajQZnnnkmtmzZgpkzZ7q2b9myBdOnT/f5vKqqKlRWVqKqqgoXX3xxLIrqVah3SSNx0R+rzjKJI9jMO4oPakUS7nzrS49hWtW1Tbj3rX24d/pIkUomLXJvK0KVrlPj/a8aUGbI9jqEryLIIXWhBrjZvoSGnT8i6ZBTO+HrpvZHh5tQbshGtZd6v8yQjZojLa6/fY2y6OvIDCKiYMRVUAoAFi1ahKuuugrjxo3DOeecg2effRb19fWYP38+gO402R9++AEvvfQSgO7G4+qrr8YTTzyBX/ziF647IsnJycjIyIhaOb1d3LdZQr9Lyot+8iWUzDuKD502h895g6prm9DZK1U/kcmlrYiEnFQNvj5mwryy7klte2fRrZw5KmBdwAB39LHzRyQtcmknfN3UXltdhydnl0KhUPhcfQ/wP8qCw7GJKBbiLih12WWXoampCStWrMCxY8cwcuRIbN68GUVFRQCAY8eOob6+3rX/M888A5vNhptuugk33XSTa/ucOXPwwgsvRKWMvi7uV0wfCb1GCbPV7vV5vEtKoeD8JIkn0PAeDv/5mRzaCiAyw28z9BrcM30klr/+JUoLs1BZVgyLzYHMZDWKsvU4JUsfsAwMcEcfO39E0iKXdsLX0F+z1Y6FVTV4/aYyJCkUrlEVqToV2i02vHzt+KBGWXA4NhFFm0IQBEHsQsidyWRCRkYGjEYj0tPT/e5rNFuxoKrGa7BgYkkOpowaiKWv7fX6GC/8KRQ19c2Yucb3ssWbbpyAsYVZMSwRRduBYyZMeWK7z8f/c0sFhg/0X0eFUp9RaEJ9byOdneQMcIXaqTjU0IbzHtvm8/H3F03C0NzUkMuTqAIFGsP9nIhihe1E9ITz3rKOJiIpCqU+i7tMKakLlL1yx8XDPdL3eZdUvsScZJzzkySeFI3S5/wR5YZspGiUIpSKwhGN7KRwh3tzAu7ICSbQyGH5RBQKDv0lIrljUCrGAl3cd1jtTJGNE2LPwcKLlMRj7LBi2dQRuPetfW6BqXJDNu6aNgKmDiuAFPEKSEGT0vBbBrgjg8MgiSgaOPSXiOSOQakYC+binndJ5U8KnY9EuEgRMxNNbN7OPUWrxqXP7MRDs0Zj8ZRhaOu0I1WnRIPJgiv+8TFe+cM5YhebgiSl7CQGuCNDSoFGIoovnPeJiOSMQakYk9vFfSJ3+vtCKp2PeL5IETsTTUy+zv2BmaNQWpCJa17c5fEcKdYv5JuUspMSIcAdC1IKNBJR/OFNbSKSKwalYkxOF/eJ3OnvKyl1PuLxIkUKmWhi8Xfuf9m4Fyt/MwoWm0Py9Qv5F60bGOHeaAg2wM0bGb5JKdBIREREJBUMSolADtkridzpjwR2PqJLKploYgh07l02Bx74zSi0dtpg6uhCRnL38s8DGUiWlWjcwOjrjYZAAW7eyPBPbpnSRERERLHAoJRIpJ690pdOP++Us/MRbVLKRIukYH47/s69ICsZUCiweMMe7Og10fn9M0ehKJuTnMtJpG5gGM1WNLRaUP+jGfPKijGmIBNrq+tgttojdqOBNzICk1OmNBEREVGsMCglAVIM4oTb6Y/0nXIpvjfBYOcjuuIxEy3Y346/c//7lWfgjk173QJSAFBd24Q7Nu7FQ7NG45QsfeQLT1ETzA0Mf/Wkt+9VmSEbT84uxcKqGldgqq/ZhYmcvRgKOWRKE1F8keu1NBElDgalRCbV4Q7hdPojfadcqu9NsNj5iJ54y0QL5bfj79zVyiSPgJRTdW0TTJ02nBL54pOI/NWTKRql1++V8ztSWV6M1VtrAfQ9uzBesxejQeqZ0kQUP+R+LU1EiSFJ7AIkskAdUaPZKlLJfu74euOr0x/MnfJgSfm9CUWGXoOhuakYW5iFobmp7IhEiDMTrfd3VK6ZaKH8dvydu6mDgYFEEqiebGi1+Pxe7ahtQmlBpuvvvmYXxmP2IhGRnMXLtTQRxT9mSolIysMdwhl+Fsk75VJ+b0ga4ikTLdTfjq9zP2rs9HscBgbiS6B6siVAkNJicwDortdVSQrU1DeHPbQj3rIXiYjkzt+NCV5LE5GUMCglIqkPdwi10x/JO+VSf29IGuJlGEw4vx1v595msaHckI1qL0P4yg3ZSNexyo8ngerJFI3S7+NaVRIqSnJw42QDpjy5HWarHUB4Qzs4jx4RkXQcbelA/Y9mv/vwWpqIpII9FBHJYbhDKJ3+SN4pl8N7QxQpkfrtnJKlx/0zR+GOjXvdAlPO1fc4yXl8SdepodcoUVlejNKCTFhsDujUSuyub8ba6jqkaFQ+v1cVJTkY2j8FF40aiMoXPnMFpIDw5wGMp+xFIiK5cg7bmzthsN/9eC1NRFLBoJRIjGYrHIKA5+eMg0KhcHUiet6plttwh0jeKedQEEokkfztFGWn4KFZo2HqtLkCA+k6FQNScaLnKkqpWhU23DABj7zzlWvCcqB7db21c89Cpl7t93vV0WXH0tf2en2dcId2xEv2IhGRXDmHdo8pyESZIdvrAii8liYiKWFQSgRHWzqw+NU92F77cyehwpCN1VeUYsHLNRhXlNXn4Q5iLf8aqTvlHApCiSaSWSanZOm5yl4c8raKUrkhG3PLivHx4R9dNzV21DYhSaHA6tmlfr9XNfXNfl+PQzuIiOTFaLbCYrNjzZVnIEWjwq+G5wH4yi0wVcFraSKSGAalYsxotnoEpABge20ToFDgP7dUIDNZ3aeGwtfyrw/MHAWr3QFjR3QDVZG6U86hIJRoIvXbESsoTdHjaxWl6tomCAAqy4vdsqW298h08vW94jBpIqL44e36/9xh/bH418PQ2GZFZ5cdWlUSDP1TMTCEOQOJiKKNQakYa2i1eASknLYfbITV5uhzhpTP5V9f24OxhVmujks4k9nGGoeCEIXGWyamHH7r5J+/lfZ21DahsqzYY3ugTCcOkyYiig++rv+3fnUSFpsDpT9d/08sycGq2aUilZKIyLsksQuQaAIt0W0M8Hgg/jou1bVNKC3IdP3tnMzWaLb26TV7M5qtONTQhpr6Zhw62Rbx4xORd74yMT882IjFUfitU+wEWmnPYnN4bAuU6eQcJj2xJMdtO4dJExHJS6AbF6UFmazbiUiymCkVY4GW6NYHeDwQfx0XvUaJfikaPD9nnNsqTU3toU9m64uvoYPM0iDqu0DD8gJlYja0WngxKlOBhtppVe73mILNdOIwaSIi+Qt04yIjWR3yiqpERLHCoFSMpWhUPlfCKDNkQ6dS4tDJNp9zwPReeUmjTEJLhxWpuu4OaqrW+0eq1yjx5OxSPPbu193zV/V4zZmlkZkS2e/QwTCWFyfi3Eg/CybgG+1MTBKPv6F25YZs1Bxpcf1dUZKD5ZeMQFN7d2ZcoN8Mh0kTEclboBsXWazniUjCGJSKsUy9GjefWwIAboGpMkM2FkwuwZt7j+JvWw56zS7y1iktM2RjXlkxrnlxF1ZfcQbqTrZ7DXpVlhdj3Y46j+07aptw9xv7sDoCASN/qcPhLi9OiYtZdz8LNuAbKBMz0OMkXf5WJHUuYjH5tP6wdDnw0eEmTFtVDbPVnrC/GSKiRMI5AolIzhiUirEMvQZF/fSYOjoflWXFsNgc0KqScMLUic4uO57ZdhiAZ2fTV6fUGWR6aNZorNp6EDX1LXjypwkMewagzhmS7bYyU0/bIxQwCpQ63JflxZkxk1iYdecu2IBvmlaFckM2qr1kYpYbsn1mUpI8+BtqZzRbsfyNffzNEBEloAy9BvfNGIm/bNzrdg1QbsjGfTNGsv4nIkljD0UEAzOTcdHIAWhss6LZbIWxowtHjZ24798HYLbaXft92GMOmEATGC6ZMswVhFpYVYPK8mJX0EunVnrMN9JbXwJGTtFaXjxSGTMMbMkHs+7cBRvwNXfZMbesGAI8MzHnlhXD3GX3cQSSKm/11tDcVI/9+JshIkpcRrMVK97aj7GFWZjX46Z3zZEW3PvWfvz1d2PYBhCRZDEoJRLnHB419c245sVdPver/9GMFK0qYKe0rfPnzqbZavfIitq8sNzv88MNGPUUSupwsAGiSGXMcCiYvEQz606Ogg34GjtsHkFp50XpwqoavDDv7FgUlyIklHqLvxkiosTV2GbFewca8N6BBp+PMyhFRFLFoJTI0nVq6DVKVJYXo7Qg021VvLXVdQCAJRv2YNnU0/0eJ1UXaC4ZVdTHmvub8+ShWaMBAIdPtkEAcPfrX7pNuO6roxWJu/8cCiY/0cq6k6tgA77pOpXXoLRTuo5VvlyEWm/1/s14tCsaJYxmdkqIiOIRb0wQkZyxhyKynFQN1s49C6u2HnTrSJYZsvH8nHH49Nsf8eHBRmiUST47pWWGbDSYLD5X9ZtYkoNMvdprwKiiJAcrpo+M2Pn4mvPEbLVjQVUNxhRkoqa+2aOcvjpakWhkOaxFfjhhp7tAAV/n9zdFo/Q7pxQnOpePUOst529m13fN+MPEIThveC4aTBYoFArsP2bCn/71X4wrygoqO5RDnYmI5IU384hIzhiUkoC/bz3odVW8JIUCvxjSDwBg7LB67ZQ6V99bvGEPVl9xBpIUCo+hHs5Oa4YeWDW7FMdNnfi+uQMAUHOkBRc9uT3ozkowei8vbjRbcftPd/znThjsM4vDW0crEo1spO8escMWfcEGYRKJv0mundq7bFg2dQTufWufx0Snd00bgfYumxhFpzB4q7d6Zj81tVuBk22u+idDr8FDs0bjux/NWL31IB5/76DreWWGbDw5uxQLq2oCZodyqDMRkfzwZh4RyRmDUiJxBjYsNrvbMLaeth9sxC3nlQAAUrRqj05pilYFjTIJxg4rXvnDOchJ1WC1l04rABxqaIOxwwq9VgWrzQFVUhI+++5HrK2ug9lqd8tUAhDRoEvPO/4Wm8Pvvr0DRJFoZCN596ivHTYGtIIXTBAGSKz3tHfAt7fWDjtuWP8pHpo1GounDENbpx2pOiUaTBZc8Y+P8dTvz4xhaakvvA3He3J2KdbtqHML7FeU5GDlzFEY1E8PvUaJv2+t9ciUc970qCwvxuqttT6zQznUmSIhkepkIqngzTwikjMGpUTQM7Cx5soz/O7rEICXrx0PY4cVh366K+658lKK2189Gx5vQRRndtX+o0bX3XOz1Y5d3zWj2dyFZa9/GdG75D3v+AdaBbB3gCgSjWyk7h71tcPGDITQBQrC8D11l57cPadUzZEW11xCHV1K1Bxpgdlq55xSMpKTqkFFSY7ru11ZXox1O+o8smq3H2zEktf24KFZo2GxObC91vcqrZVlxQB8Z4dyqDP1Fetk+WDwMP4EezOPiEhq2EOJMaPZirte/xJjCjIxd8Jg9E/T+t3fZnfgiuc+cf0dalaOtyCKs1NTWpiFdTvqXHfPK8uLsWzTXo/Mrb7eJe95x7/mSIvfua+8BYj62shG6u5RXzpszECIvGi9p3K+UE9WKfH8nHFY/UGt1znqklWcU0pOlk8bgbvf+BLVtU0oLcj0OfS5urYJ3zWZkROgPXFmqvrKDuVEudQXbOfkg8HD+BXoZh4RkRQxKBVjTe1WXH52oWsIxoJzDT6DNBWGHHR02aHXKGG22gGEdnHnL4jivGu+emut6+65v05PX+6S98xUWltdhyd/GiK4o9fqe/4CRH1tZCNx96gvHba+ZiDIOVASLdHI6pD7hbrF7sCaD2q9z1EHBe6a5n8VT5KOFnMXHti8H2MLszCvrBh6jf/muqWjC/1S/H/ftaokv9mhnCiX+oKZdvLA4CEREUkNg1IxZnMIbkMwfAVpygzZmFM2GOs/+c5tiB0Q/MVdoCCK8655oHmenALdJfcVOOmdqbSwqgaV5cW46ZcGaNVJyEzWxCS9uK+Brb502PoS0JJyoETMYFk0JrCXy4W6r/fd7hB8z1FX2wi7Q4hxSSlc7VYbtn51Elu/OgkAeH7OOL/7a1VJMFvt/ldpbbX4Df5zolzqC2bayQODh0REJDUMSsWYwyG4BZ/MVrsrSFNZVow0nRpddgc6u+y4+adAlMXmcA2xcwrm4i5QEMU5v5Pz7vmgLP8BDn9Bl0CBk3gY596XDlu4AS0pB0rEDpZFOqtDLhfq/t53s9X/6nrOwDZJX3uvz6rmSAsqDDle54wqM2Sj5kgLZo49xWOosl6jxLKpp6O0MBNmiw3mLjuMZu/fZU6US33BTDt5YPCQiIikhkGpGGv30mk0W+2ugNNL15yNq5//FM/PGefqQO6obcIdF52OC08fgK1fn8Az2w4HdXHnL4ji7MRUGLLRP02Le6ePRKZeHVbQJdjAidzHufelwxZuQEuqgRIpBMsindUhhwv1QO/7HRcP9/v8NE50LhuZye51/NrqOrx83S8gQHBbXc+5cMUrn9Yjp7wYGXqN6wZAu6UL6ckaLNv0JZa+ttf1HH/B43i4gUDiYKadPDB4GH84xQMRyR17KDGWovX/ltvsAvQaJfqlaPD8nHGw2BzQqZWw2OxYtfUg/nTBabhgeJ7banz+5mHyFkRxdmJe/uQ7zCkrxuXPfoyXrx2PopyUsIIuUg2cREO4HbZwA1pSDZRI4TOPdFaHHC7UA73vdyUpfM5RV2bIhkbpf/VLko7cNK3b6ntmqx3XvvgZ1s49Czd02mDs6IJWlYSaIy145dN6rJg+0vWdd94AMJqtWFBV45FdFSh4LPcbCCQOZtrJA4OH8UXsrHUiokhgUCrGlAqF3yEYe75vwZOzS/HYu1+7zQ1TYcjBnLLBePTdrzE8P8OVWRWo4XEGUY6ZOtHQakGWXg2bXYDR3IXT8zNcc1U5O9zhBF2kEDiJ5V2iUDpsvcv1yO/GoN1ig6kjuPdWqoESKXzmQGSzOnJSNTh/eC5OG5iO0oJMV0B4d30zvj5mksSFeqD3vanNink/LVzQe466eWXFMHZYAaREs4gUIRl6De6fMRJ3bPx5RdTGNiuefO8g7pp2OrJTNGiz2DB9TD5yf8qQ6k0KwWNKLMy0kz4GD+OHFLLWiYgigUGpGNMqk7DgXAMAuAWmKgzZmFdejL0/GF0Toes1SlSWF7s6yHqNEleML4JSoXA9L5iGx7n9gX8fCOrOWKh3ycUOnEj1LpG/cg3pn+ra5i+gFok7mtEI2In9mfcUqayODL0Gy6aejqUb97rN31ZuyMYDM0dJ4sIu0PueqlNh3gufueaos9gcrmyahVU12HRjWYxKSn1lNFtxwtSJi0YNxNyyYljtDgzKSsbe74349RPbXcO7nXVKht7zGFIJHlNiYaad9DF4GB9444GI4gWDUjFmdThgttoxZdQAzC0b7Oo0njB1QgEFzh7cD3/bchB6jRJPzi7Fuh11bh3kCkMO7pw6HHqNMqTV+MK5MxZsMEPMVPBI3SWKdOAm2HIFCqj19Y5mtAJ28Zj+bzRbccemLz2GvlXXNuHOTV9K4o5joHnidColzizMcqsznCoMOVArFR7bSZqazVY8+f5BV5bUgnMN+N+Pv/P4fnqr65z1mc0hYO3cs7C7vhlrq+s8JrqXwpBUIhIHg4fy15397O9x3nggInlgUCrGHALwXPVhr3O+VBhycMuvSgAAleXFroypnrbXNuK+tw6EtRpfKHfGjrZ04K7Xv8Swn4YyHTN2okGvRmE/PU7Jcr8lL2YqeCTuEkUjcBNMuQAEFbgK945mNNO64zH9Xw53HAPNE2e2duHGyUPhgOAxfO/GyQZY7Q4xik1h6OhyuA3hLi3I9BpsBNy/n97qszJDNp6cXeoarg3IN3hMRETd9Br/3Ti9RhmjkhAR9Q2DUjHmcAheA1JAd8Bp6U+rZ/nrgGyvbcTcssFu24K94x3MnTGj2Yq7Xv8Sl59d6JGpVW7IxoO/GY1B/dwDU2Klgvd1eEq0AjfBlivYIEg4dzSjHWSJt/R/uQx16v2+p2hV2PVdMxZW1eCV63+Ba17c5XX43jUvfoYNN0wQu/gUpLZO95VaLTb/AUVjR5fP+szZ5jhvZsg5eExERN2SAixuokxidjQRyQODUjFmttr8Pi4IAioM2QE7ID0fj/Qd78Y2K4YNTPeaqVVd29Q9546XYI0YqeB9ndsoWoGbYMoV7SBILIIs8ZT+L6V5sgLp/b6naFX4T1EWmtu7YLbafQa02y3+6x+SjlSde/OsVflfOVGvUfqtz3bUNuGOi4Zj5thTZB08JiKibqokhd/FTRiUIiK54PrgMZaq9d+x/bHNimVTRyAj2f9+zg5KNO54mzq7UFqQ6Tujq8fwM7E559jxJphgXbQCN8GUK9pBEDkFWaSgr98lMTmzp3LTtH73C1SvkHToVEkoM2S7/q450uL2d0/OO+KB6jOrzYGhuakMSBERxYHsFA027f4elWXFePPmMlRd9wu8eXM5KsuKsWn398hOYV1PRPLATKkY06mT8MTvRuCMwf3RZrXD1NGFjGQ1UjVKWB12WGzdgZL8DB0qSnK83vWuKMmBoX8qtv/5l7DYHThm7ICxswtJCgVUSQpXI9Ri7kK71YZ2qx0ZyWpoVUloMVuRqlMjVatCu8UGY4fnxN7pOjWOGTv9nkcwwZpITh7u61h9ndsoWoGbYMsVzcnC43Ey8miS+zxZzvKt/M0o5KZpYbE5oFMrXZNcn1mUFTBoRdLxY7vV7Q742uo6PDm7FAp0Z6w69bwjzkA0EVHiyNBrsPjXw1yreVtsDnR02dFg6sTiXw+T/HULEZFTXAal1qxZg0ceeQTHjh3DiBEj8Pjjj6OiosLn/tu2bcOiRYuwb98+5Ofn4/bbb8f8+fOjUrZkhw1jivpjyca9bplIFYYc3DR5KCpf3AWz1Q69Ronn54wDBLgaG6C7AzJnwmDc89Y+XFcxBJ1dDtz08m6YrXZX5+TRd7/GbeefhuVvfOnxGvPKB2P2Pz7BGYWZmFtW7Jr4tufE3jmpGpww9a1zE8nJwwMdqy9zG0UzcBOoXNEOgsg9yCIGuc+T1W61Y/Oeo24TZJcZsvH8nHE45afVHOlnUm4rdBolFq791DU/mFqVBPVPQzUqy4egs8vumi/slU/r8dffjQEQ3UA3EVGikXI7YTRb8YOxE//ee8xj+F5x/1SkJ6vZ7hORLCgEQRDELkQkvfLKK7jqqquwZs0alJWV4ZlnnsFzzz2H/fv3o7Cw0GP/uro6jBw5Etdddx2uv/567NixAzfeeCOqqqowa9asoF7TZDIhIyMDRqMR6enpfvc90tTuEZByKjNko7THcu56jRJ3Xjwcp+aloaHVgoxkNTq77Lj5p0BSmSEbF48aiKPGTtdzygzZqCwrxlov80EBQIUhG2N+eo3erzexJMc1sfcPzWYs3rDH7Y68U8/9vDGarVhQVeM1yyvQc6N5LF+OtnT4DNwMDHP1vVA4s8CiFQSJ9vFJGoxmKxa8XOMWxHaqMGRj2ph8lJf0DxgUDqU+kzOptxV1J9tw5+s/31jQa5R4cnapx1x/vesqseszIop/bCek0U5819iOv2zy3ad4YMYoFOWkBHeyREQRFkp9FndBqfHjx+OMM87AU0895do2fPhwzJgxAytXrvTYf/HixXjjjTdw4MAB17b58+fjv//9L3bu3On1NSwWCywWi+tvk8mEgoKCoN7wA8dMmPLEdp+PPz9nHK55cZfPbb0ff37OOABw2/bmzWWYtmpHUK/R+3jvL5qEobmpAIDvfzRj6ca9HhlKgTo3hxracN5j23w+3vM1Aonksfxh4IbkLtBv5fk545CfmYzhA/3XUYnS2ZB6W1F3sg3HTZ1Y/UGtW2DqzouHY8ygTHR02ZGl13itq1ifEVE0sZ2IXDvRWyjv7f6jRlz0ZLXPxzcvLMfp+RlBvS4RUaSFUp/F1fA9q9WKzz//HEuWLHHbfsEFF+Cjjz7y+pydO3figgsucNt24YUX4vnnn0dXVxfUas9haitXrsQ999wTVhlNHf7nYvK26l7Pbb0f97Z/W6c96Nfo/fyec0UN6qfH6jCGMkVy8vBYrCAHxNcqcpSYAv1WLDZHxH4vcieHtuJHsxWdXQ5cPGogKsuKYbE5oFUl4YSpEw2tFqQnq3wG5FmfERH1TazaCW83L4LVbvV/vW8O8DgRkVTE1ep7jY2NsNvtyMvLc9uel5eH48ePe33O8ePHve5vs9nQ2Oh9ae2lS5fCaDS6/h05ciToMqYHuaqer229H9eqkjy2peqUQb9G7+f2nisqQ6/B0NxUjC3MCnrVpkhOtsuJe4mCE+i3olUl8ffyEzm0FSlaFW56eTeO9lp04qixEze9vBsp2ri6p0REJCmxaidWrlyJjIwM17+CgoKgy5gZoE/BFXeJSC7i8qpWoVC4/S0Igse2QPt72+6k1Wqh1Ya3ilWaToVyQ7bXuZrKDNmoOdLic1vvx8sM2Thh6nTrtJQZstFgsvh8jQo/x4vURLiRnDycK8gRBScnVeNzxc7ueqEz4NC9RCPltiJLr8EZhZmuOf96KjdkI4uZUEREURftdmLp0qVYtGiR62/nMO9g5KZp/a7UzRV3iUgu4ipTKicnB0ql0uMORkNDg8edC6cBAwZ43V+lUiE7OzviZRyUpcf9M0eh3OB+7ApDDm4+twRrq+tc25yr6a2trkN5j/87H1swuQQDM5Ldts0rK8Zru7/H3ZeMRJmX15hX7v14kVyRzbnq28SSHLft4bxGJI9FFM8y9Bo8NGs0Knr9Vpx1RZkhJ+SVL+OVHNqKvHQdHvDSVpQbsvHAzFHIS9dF/DWJiKhbrNoJrVaL9PR0t3/Bcrb73q6RH+Y1MhHJSFxlSmk0Gpx55pnYsmULZs6c6dq+ZcsWTJ8+3etzzjnnHLz55ptu2959912MGzfO69jvSCjKTsGDs0ajtdPmmqspTaOE1WHHhhsmoN1iQ6pOBU1SElo6rHj9pjKkaFVotXThxXlnQ69VQq9WQqdWoqPLjv+9Zjz0GiWUSQookxR4YOYoAMADM0ah3WqD2WpHuk4NrToJRrMVby4oR6pOhXaLDS9fOz4qE+HmZyZjVRjzUUX7WETxLD8zGatnl+K4qROmDhv0WiWS1d3/uPLaz+TSVhRmp+DRS8eiud0KU6cN6ToVslI0DEgREUWZXNoJXiMTUTyIq6AUACxatAhXXXUVxo0bh3POOQfPPvss6uvrMX/+fADdabI//PADXnrpJQDdq2KsXr0aixYtwnXXXYedO3fi+eefR1VVVVTLOShLH8azQutUem2QsmO3NGwkJ9vlxL1EweFvJThyaSvy0nUMQhERiUAu7QTbfSKSu7gLSl122WVoamrCihUrcOzYMYwcORKbN29GUVERAODYsWOor6937V9cXIzNmzfjtttuw9///nfk5+fjySefxKxZs8Q6BSIiijK2FURE5A/bCSKi2FAIzhn4KGwmkwkZGRkwGo0hjQUnIpIa1mfRw/eWiOIB67Lo4XtLRPEilPosriY6JyIiIiIiIiIieWBQioiIiIiIiIiIYo5BKSIiIiIiIiIiijkGpYiIiIiIiIiIKOYYlCIiIiIiIiIiophTiV2AeOBcwNBkMolcEiKivnHWY1yYNfLYVhBRPGA7ET1sJ4goXoTSVjAoFQGtra0AgIKCApFLQkQUGa2trcjIyBC7GHGFbQURxRO2E5HHdoKI4k0wbYVC4G2OPnM4HDh69CjS0tKgUCiCfp7JZEJBQQGOHDmC9PT0KJZQHDw/eeP5yVu45ycIAlpbW5Gfn4+kJI7wjiS2Fd7x/OQrns8N4Pn5wnYiethOeMfzkzeen7zFoq1gplQEJCUlYdCgQWE/Pz09PS6/wE48P3nj+clbOOfHO9/RwbbCP56ffMXzuQE8P2/YTkQH2wn/eH7yxvOTt2i2Fby9QUREREREREREMcegFBERERERERERxRyDUiLSarVYvnw5tFqt2EWJCp6fvPH85C3ezy+RxPtnyfOTr3g+N4DnR/IR758lz0/eeH7yFovz40TnREREREREREQUc8yUIiIiIiIiIiKimGNQioiIiIiIiIiIYo5BKSIiIiIiIiIiijkGpYiIiIiIiIiIKOYYlIqyNWvWoLi4GDqdDmeeeSa2b9/ud/9t27bhzDPPhE6nw5AhQ/D000/HqKThCeX8XnvtNZx//vno378/0tPTcc455+Cdd96JYWlDF+rn57Rjxw6oVCqMHTs2ugXso1DPz2Kx4I477kBRURG0Wi2GDh2KtWvXxqi0oQv1/NavX48xY8ZAr9dj4MCBmDdvHpqammJU2uB9+OGHmDZtGvLz86FQKLBp06aAz5Fb3ZJI2E78jO2E9LCdcCeXdgJgWxFv2Fb8jG2F9LCtcMe2IkQCRc0///lPQa1WC//4xz+E/fv3C7fccouQkpIifPfdd173P3z4sKDX64VbbrlF2L9/v/CPf/xDUKvVwquvvhrjkgcn1PO75ZZbhIceekj49NNPhW+++UZYunSpoFarhd27d8e45MEJ9fycWlpahCFDhggXXHCBMGbMmNgUNgzhnN8ll1wijB8/XtiyZYtQV1cnfPLJJ8KOHTtiWOrghXp+27dvF5KSkoQnnnhCOHz4sLB9+3ZhxIgRwowZM2Jc8sA2b94s3HHHHcKGDRsEAMLGjRv97i+3uiWRsJ1wx3ZCWthOuJNTOyEIbCviCdsKd2wrpIVthTu2FaFjUCqKzj77bGH+/Plu24YNGyYsWbLE6/633367MGzYMLdt119/vfCLX/wiamXsi1DPz5vTTz9duOeeeyJdtIgI9/wuu+wy4c477xSWL18u6QYk1PP7z3/+I2RkZAhNTU2xKF6fhXp+jzzyiDBkyBC3bU8++aQwaNCgqJUxEoJpPORWtyQSthOBsZ0QD9sJd3JtJwSBbYXcsa0IjG2FeNhWuGNbEToO34sSq9WKzz//HBdccIHb9gsuuAAfffSR1+fs3LnTY/8LL7wQu3btQldXV9TKGo5wzq83h8OB1tZW9OvXLxpF7JNwz2/dunU4dOgQli9fHu0i9kk45/fGG29g3LhxePjhh3HKKafg1FNPxZ/+9Cd0dHTEosghCef8JkyYgO+//x6bN2+GIAg4ceIEXn31VVx88cWxKHJUyaluSSRsJwJjOyEethOe4rmdAORVvyQSthWBsa0QD9sKT2wrQqeKRMHIU2NjI+x2O/Ly8ty25+Xl4fjx416fc/z4ca/722w2NDY2YuDAgVErb6jCOb/eHn30UbS3t+PSSy+NRhH7JJzzO3jwIJYsWYLt27dDpZL2Tyuc8zt8+DCqq6uh0+mwceNGNDY24sYbb8SPP/4ouTHg4ZzfhAkTsH79elx22WXo7OyEzWbDJZdcglWrVsWiyFElp7olkbCdCIzthHjYTniK53YCkFf9kkjYVgTGtkI8bCs8sa0IvX5hplSUKRQKt78FQfDYFmh/b9ulItTzc6qqqsLdd9+NV155Bbm5udEqXp8Fe352ux1XXHEF7rnnHpx66qmxKl6fhfL5ORwOKBQKrF+/HmeffTYuuugiPPbYY3jhhRckeWcDCO389u/fj4ULF+Kuu+7C559/jrfffht1dXWYP39+LIoadXKrWxIJ2wnv2E5IA9uJn8V7OwHIr35JJGwrvGNbIQ1sK37GtiJ00g69ylhOTg6USqVHBLWhocEjsug0YMAAr/urVCr8//buPain/P8D+LOL0k3r1k2UoejuQzax9oMpFE3EiklqWLtmS2Gxu3at1jTYmzVmsWZQyyqx25K2UjOo2Gq39FGjRrkkUaxLFNZu9f794dv5+Wz31CfV8zFzxpxz3u9z3q8+4/2a8zrncz4DBw7stLG2R3viqxcTE4Nly5bh2LFjcHNz68xhtltb46uqqkJ2djZyc3MRHBwM4MWEK4SApqYmkpOTMW3aNJWMvTXa8/mZmppiyJAhMDQ0lLbZ2NhACIGysjJYWVl16pjboj3xbd26FZMmTcK6desAAI6OjtDT08PkyZMRHh7+Wt1VbKvuNLf0JswTTWOe6HrMEw315DwBdK/5pTdhrmgac0XXY65oiLmi7fikVCfR0tLCuHHjkJKSorQ9JSUFEydObLSPq6trg/bJyclwdnZGnz59Om2s7dGe+IAXdzMCAwMRFRX1Wn+vtq3x9evXD/n5+VAoFNKyYsUKjBo1CgqFAi4uLqoaequ05/ObNGkSbt++jerqamlbUVER1NXVYW5u3qnjbav2xPf06VOoqytPiRoaGgD+v/rfXXWnuaU3YZ5oHPPE64F5oqGenCeA7jW/9CbMFY1jrng9MFc0xFzRDu1+RTq1qP7nI/fv3y8KCgrEqlWrhJ6enigpKRFCCPHxxx8Lf39/qX39zyuuXr1aFBQUiP3793eLn29tbXxRUVFCU1NT7Nq1S5SXl0tLZWVlV4XQrLbG91+v+y9ltDW+qqoqYW5uLubPny8uXbokUlNThZWVlXj33Xe7KoRmtTW+iIgIoampKXbv3i2uXr0qzp07J5ydncWbb77ZVSE0qaqqSuTm5orc3FwBQGzfvl3k5uZKP03b3eeW3oR5gnmCeaLr9OQ8IQRzRU/CXMFcwVzRdZgrOn9+YVGqk+3atUtYWFgILS0tMXbsWJGamirtCwgIEHK5XKn92bNnhUwmE1paWsLS0lLs2bNHxSNum7bEJ5fLBYAGS0BAgOoH3kpt/fxe9ronECHaHl9hYaFwc3MTOjo6wtzcXKxZs0Y8ffpUxaNuvbbGt3PnTmFrayt0dHSEqamp8PPzE2VlZSoedcvOnDnT7P+lnjC39CbME3JpnXni9cM8IVdq313yhBDMFT0Nc4VcWmeueP0wV8iV2jNXtI2aED3gGTIiIiIiIiIiIupW+E4pIiIiIiIiIiJSORaliIiIiIiIiIhI5ViUIiIiIiIiIiIilWNRioiIiIiIiIiIVI5FKSIiIiIiIiIiUjkWpYiIiIiIiIiISOVYlCIiIiIiIiIiIpVjUYqIiIiIiIiIiFSORSmiV6Cmpobjx4+3qm1YWBjGjBnTbJspU6Zg1apVrzyuzhIZGYk33nijq4dBRET/05rcQkRERPS6YlGKuo20tDR4eXnBzMysVcWg2NhYuLu7Y/DgwejXrx9cXV1x6tSpFs8TGBgINTU1qKmpoU+fPjA2Noa7uzsOHDiAuro6pbbl5eXw8PB4lbBeW5aWltixY0dXD4OIqNcICwuT8k/9YmJi0tXDIiKi18TWrVsxfvx4GBgYwMjICHPmzMHly5eV2rx8LVO/TJgwodnj1tbW4oMPPoCpqSk8PDxQUVGhtP/x48f49NNPMXr0aPTt2xcmJiZwc3NDbGwshBAdHif1LixKUbfx5MkTODk54fvvv29V+7S0NLi7uyMhIQE5OTmYOnUqvLy8kJub22LfmTNnory8HCUlJUhMTMTUqVMRGhqK2bNno6amRmpnYmICbW3tdsfU0WpraxsUzoiIqPuws7NDeXm5tOTn53fJOP79998uOS8RETUtNTUVQUFByMzMREpKCmpqajB9+nQ8efJEqV39tUz9kpCQ0Oxxo6OjUVpailOnTmHcuHHYuHGjtK+yshITJ07EwYMH8cknn+DChQtIS0uDr68v1q9fj0ePHnVKrNR7sChF3YaHhwfCw8Ph4+PTqvY7duzA+vXrMX78eFhZWWHLli2wsrLCyZMnW+yrra0NExMTDBkyBGPHjsWGDRtw4sQJJCYmIjIyUmr33ye2ysrKsHDhQgwYMAB6enpwdnZGVlaW0rEPHToES0tLGBoaYuHChaiqqmpyHA8fPsSSJUvQv39/6OrqwsPDA8XFxdL++q/TxcfHw9bWFtra2rhx40aL/QDg999/x9tvvw0dHR0MHToUISEhUkKbMmUKbty4gdWrV0t3WF526tQp2NjYQF9fX0p69f7880+4u7tj0KBBMDQ0hFwux4ULF5T6q6mpYd++fZg7dy50dXVhZWWFuLg4pTYFBQXw9PSEvr4+jI2N4e/vj3v37jX5tyIi6gk0NTVhYmIiLYMHD25Vv71792Lo0KHQ1dXFO++8g8rKSmlfa+flH374Ad7e3tDT00N4eHhHhkVERB0gKSkJgYGBsLOzg5OTEyIiIlBaWoqcnByldvXXMvXLgAEDmj1uZWUlLCwsYG9vDwcHB6VC04YNG1BSUoKsrCwEBATA1tYW1tbWWL58ORQKBfT19TslVuo9WJSiXqOurg5VVVUtTspNmTZtGpycnBAbG9vo/urqasjlcty+fRtxcXG4ePEi1q9fr/Tk0tWrV3H8+HHEx8cjPj4eqamp2LZtW5PnDAwMRHZ2NuLi4pCRkQEhBDw9PZXuYD99+hRbt27Fvn37cOnSJRgZGbXYLz8/HzNmzICPjw/y8vIQExODc+fOITg4GMCLrz6am5tj8+bN0h2Wl8/3zTff4NChQ0hLS0NpaSnWrl0r7a+qqkJAQADS09ORmZkJKysreHp6Nii+ffHFF1iwYAHy8vLg6ekJPz8/PHjwAMCLr0XK5XKMGTMG2dnZSEpKwp07d7BgwYLWflxERN1ScXExzMzMMHz4cCxcuBDXrl1rsc+VK1dw9OhRnDx5EklJSVAoFAgKCpL2t3Ze3rRpE7y9vZGfn4+lS5d2eGxERNSx6otH/72+OXv2LIyMjKTi0d27d5s9jr+/PzIzM6GtrY0PP/xQelKqrq4OR44cgZ+fH8zMzBr009fXh6amZgdFQ72WIOqGAIhff/21TX2++uorMWDAAHHnzp1m2wUEBAhvb+9G9/n6+gobG5tGx7F3715hYGAg7t+/32jfTZs2CV1dXfH48WNp27p164SLi4u0LpfLRWhoqBBCiKKiIgFAnD9/Xtp/7949oaOjI44ePSqEECIiIkIAEAqFQmrTmn7+/v7ivffeUxpfenq6UFdXF8+ePRNCCGFhYSG+++47pTb157ty5Yq0bdeuXcLY2LjRmIUQoqamRhgYGIiTJ09K2wCIzz77TFqvrq4WampqIjExUQghxMaNG8X06dOVjnPz5k0BQFy+fLnJcxERdWcJCQni559/Fnl5eSIlJUXI5XJhbGws7t2712SfTZs2CQ0NDXHz5k1pW2JiolBXVxfl5eWN9mlqXl61alXHBUNERJ2qrq5OeHl5ibfeektp+5EjR0R8fLzIz88XcXFxwsnJSdjZ2Ym///67xWOWl5eLmpoaaf3OnTsCgNi+fXuHj5+oHp+Uol4hOjoaYWFhiImJgZGREQAgPT0d+vr60nL48OEWjyOEaPBVtnoKhQIymazZJ7EsLS1hYGAgrZuamjZ556KwsBCamppwcXGRtg0cOBCjRo1CYWGhtE1LSwuOjo5t6peTk4PIyEil+GfMmIG6ujpcv3692b+Brq4uRowY0WQMd+/exYoVK2BtbQ1DQ0MYGhqiuroapaWlSsd5ecx6enowMDCQjpOTk4MzZ84ojW/06NEAXjxtRkTUE3l4eGDevHlwcHCAm5sbfvvtNwDAjz/+2Gy/YcOGwdzcXFp3dXVFXV2d9PLb1s7Lzs7OHRwRERF1luDgYOTl5SE6Olppu6+vL2bNmgV7e3t4eXkhMTERRUVFUk5pjomJCTQ0NKR18b+XmDd1/UPUEfisHfV4MTExWLZsGY4dOwY3Nzdpu7OzMxQKhbRubGzc4rEKCwsxfPjwRvfp6Oi02L9Pnz5K62pqak2+mFw08UsW/y2M6ejoKK23pl9dXR3ef/99hISENGg3bNiwNsfw8jkDAwPx119/YceOHbCwsIC2tjZcXV3xzz//tHic+r9FXV0dvLy88OWXXzY4v6mpabPjIyLqKfT09ODg4NDgnYAtqZ/r6/9t7bysp6fXMQMnIqJOtXLlSsTFxSEtLU3ppkRjTE1NYWFh0eZcAgCDBw9G//79lW6IE3U0PilFPVp0dDQCAwMRFRWFWbNmKe3T0dHByJEjpeXlJ5gac/r0aeTn52PevHmN7nd0dIRCoZDei/SqbG1tUVNTo/Si9Pv376OoqAg2Njav1G/s2LG4dOmSUvz1i5aWFoAXT2DV1ta2edzp6ekICQmBp6cn7OzsoK2t3eYXlNePz9LSssH4eNFERL3F8+fPUVhY2GIxvrS0FLdv35bWMzIyoK6uDmtrawAdMy8TEVHXE0IgODgYsbGxOH36dJM3y192//593Lx5s103dtXV1eHr64vDhw8r5Zl6T548UfplcqL2YFGKuo3q6mooFArp6abr169DoVA0+PpBvejoaCxZsgTffvstJkyYgIqKClRUVLTqZ0ufP3+OiooK3Lp1CxcuXMCWLVvg7e2N2bNnY8mSJY32WbRoEUxMTDBnzhycP38e165dwy+//IKMjIx2xWtlZQVvb28sX74c586dw8WLF7F48WIMGTIE3t7er9Tvo48+QkZGBoKCgqBQKFBcXIy4uDisXLlSOo6lpSXS0tJw69atNl28jBw5EocOHUJhYSGysrLg5+fXqqfIXhYUFIQHDx5g0aJF+OOPP3Dt2jUkJydj6dKl7SqUERF1B2vXrkVqaiquX7+OrKwszJ8/H48fP0ZAQECz/fr27YuAgABcvHhRKkAtWLAAJiYmADpmXiYioq4XFBSEn376CVFRUTAwMJCub549ewbgxfXS2rVrkZGRgZKSEpw9exZeXl4YNGgQ5s6d265zbtmyBUOHDoWLiwsOHjyIgoICFBcX48CBAxgzZgyqq6s7MkTqhViUom4jOzsbMpkMMpkMALBmzRrIZDJ8/vnnAICwsDBYWlpK7ffu3YuamhoEBQXB1NRUWkJDQ1s8V1JSEkxNTWFpaYmZM2fizJkz2LlzJ06cOKH0PeuXaWlpITk5GUZGRvD09ISDgwO2bdvWZPvWiIiIwLhx4zB79my4urpCCIGEhIQGX31raz9HR0ekpqaiuLgYkydPhkwmw8aNG5XuoGzevBklJSUYMWJEq3+SHAAOHDiAhw8fQiaTwd/fHyEhIdJ7vFrLzMwM58+fR21tLWbMmAF7e3uEhobC0NAQ6uqctoioZyorK8OiRYswatQo+Pj4QEtLC5mZmbCwsGi238iRI+Hj4wNPT09Mnz4d9vb22L17t7S/I+ZlIiLqenv27MGjR48wZcoUpeubmJgYAICGhgby8/Ph7e0Na2trBAQEwNraGhkZGS1+K6Qp/fv3R2ZmJhYvXozw8HDIZDJMnjwZ0dHR+Prrr2FoaNiRIVIvpCaaegENUTcTGBgIAIiMjOzScRARERERERFRy/iic+oxUlNTkZaW1tXDICIiIiIiIqJW4JNSRERERERERESkcnw5CxERERERERERqRyLUkREREREREREpHIsShERERERERERkcqxKEVERERERERERCrHohQREREREREREakci1JERERERERERKRyLEoREREREREREZHKsShFREREREREREQqx6IUERERERERERGp3P8BWmFL1PsfkyYAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from matplotlib.cm import viridis\n",
"import seaborn as sns\n",
"\n",
"fig, axs = plt.subplots(2,3, figsize = (12,8))\n",
"\n",
"for idx,target in enumerate(['Enantiomeric excess [-]','Conversion [-]']): #'ΔΔG‡ [kJ/mol] with sign'\n",
" \n",
" #repro\n",
" #repro_df = dupli_df.pivot(index='Ligand#', columns='Data group', values=target)\n",
" #category_values=dupli_df[dupli_df['Data group']=='Main data set'].loc[:,['Ligand#','Class']].merge(repro_df.reset_index(), on='Ligand#')['Class'].values=='PP'\n",
" #colors_mapping = dict(zip(list(set(category_values)), \n",
" # ['tab:blue','tab:orange','tab:green','tab:red','tab:purple','tab:brown', 'tab:pink']))\n",
" #colors = [colors_mapping.get(cat, \"black\") for cat in category_values]\n",
"\n",
" #axs[idx,0].scatter(repro_df.values[category_values==1,0],repro_df.values[category_values==1,1])\n",
" #axs[idx,0].scatter(repro_df.values[category_values==0,0],repro_df.values[category_values==0,1])\n",
" #axs[idx,0].set_xlabel('Run 1')\n",
" #axs[idx,0].set_ylabel('Run 2')\n",
" #axs[idx,0].set_title(f'{target} \\nReproducibility')\n",
" \n",
" \n",
" #solvent\n",
" if target=='Enantiomeric excess [-]': #'ΔΔG‡ [kJ/mol] with sign':\n",
" solv_red = solv_df[~((solv_df['Conversion [-]']<0.4)&(solv_df['|ee| [-]']==1))]\n",
" repro_df = solv_red.pivot(index=['Ligand#','Starting material','Hydrogen [bar]','Time [h]'], \n",
" columns='Solvent', values=target)\n",
" else:\n",
" repro_df = solv_df.pivot(index=['Ligand#','Starting material','Hydrogen [bar]','Time [h]'], \n",
" columns='Solvent', values=target)\n",
" \n",
" tmp = repro_df.reset_index().merge(data.loc[:,['Ligand#','Class']].drop_duplicates(), on = ['Ligand#'], how='inner')\n",
" sns.scatterplot(data=repro_df,x=repro_df.columns[0],y=repro_df.columns[1],ax=axs[idx,0])#, hue=(tmp['Class']=='PP').values,ax=axs[idx,0])\n",
" #axs[idx,0].scatter(repro_df.values[tmp['Class']=='PP',0],repro_df.values[tmp['Class']=='PP',1])#, c = category_values=='PP')\n",
" #axs[idx,0].scatter(repro_df.values[tmp['Class']!='PP',0],repro_df.values[tmp['Class']!='PP',1])#, c = category_values=='PP')\n",
" axs[idx,0].set_xlabel('1,2-Dichloroethane')\n",
" axs[idx,0].set_ylabel('Methanol')\n",
" axs[idx,0].set_title(f'{target} \\nSolvent effect')\n",
" #axs[idx,0].legend(['notPP','PP'])\n",
" \n",
" #time\n",
" #if target=='ΔΔG‡ [kJ/mol] with sign':\n",
" # time_red = time_df[~((time_df['Conversion [-]']<0.4)&(time_df['|ee| [-]']==1))]\n",
" # repro_df = time_red.pivot(index=['Ligand#','Starting material','Solvent'], columns='Time [h]', values=target)\n",
" #else:\n",
" # repro_df = time_df.pivot(index=['Ligand#','Starting material','Solvent'], columns='Time [h]', values=target)\n",
" \n",
" #tmp = repro_df.reset_index().merge(data.loc[:,['Ligand#','Class']].drop_duplicates(), on = ['Ligand#'], how='inner')\n",
" #sns.scatterplot(data=repro_df,x=repro_df.columns[0],y=repro_df.columns[1],ax=axs[idx,1])#, hue=(tmp['Class']=='PP').values,ax=axs[idx,1])\n",
" ##axs[idx,1].scatter(repro_df.values[tmp['Class']=='PP',0],repro_df.values[tmp['Class']=='PP',1])\n",
" ##axs[idx,1].scatter(repro_df.values[tmp['Class']!='PP',0],repro_df.values[tmp['Class']!='PP',1])\n",
" #axs[idx,1].set_xlabel('Time 1h')\n",
" #axs[idx,1].set_ylabel('Time 16h')\n",
" #axs[idx,1].set_title(f'{target} \\nTime effect')\n",
" ##axs[idx,1].legend(['notPP','PP'])\n",
" \n",
" #pressure\n",
" if target=='Enantiomeric excess [-]': #'ΔΔG‡ [kJ/mol] with sign':\n",
" press_red = press_df[~((press_df['Conversion [-]']<0.4)&(press_df['|ee| [-]']==1))]\n",
" repro_df = press_red.pivot(index=['Ligand#','Solvent'], columns='Data group', values=target)\n",
" category_values=press_red[(press_red['Data group']=='Main data set')&(press_red['Solvent']=='Methanol')].loc[:,['Ligand#','Class']].merge(repro_df.reset_index(), on='Ligand#', how = 'outer')['Class'].values=='PP'\n",
" \n",
" else:\n",
" repro_df = press_df.pivot(index=['Ligand#','Solvent'], columns='Data group', values=target)\n",
" category_values=press_df[(press_df['Data group']=='Main data set')&(press_df['Solvent']=='Methanol')].loc[:,['Ligand#','Class']].merge(repro_df.reset_index(), on='Ligand#', how = 'outer')['Class'].values=='PP'\n",
"\n",
" category_values=press_df[(press_df['Data group']=='Main data set')&(press_df['Solvent']=='Methanol')].loc[:,['Ligand#','Class']].merge(repro_df.reset_index(), on='Ligand#')['Class'].values=='PP'\n",
" colors_mapping = dict(zip(list(set(category_values)), \n",
" ['tab:blue','tab:orange','tab:green','tab:red','tab:purple','tab:brown', 'tab:pink']))\n",
" # Solution 1\n",
" colors = [colors_mapping.get(cat, \"black\") for cat in category_values]\n",
" sns.scatterplot(data=repro_df,x=repro_df.columns[0],y=repro_df.columns[1],ax=axs[idx,1])#, hue=category_values,ax=axs[idx,2])\n",
" #axs[idx,2].scatter(repro_df.values[category_values==1,0],repro_df.values[category_values==1,1])\n",
" #axs[idx,2].scatter(repro_df.values[category_values==0,0],repro_df.values[category_values==0,1])\n",
" axs[idx,1].set_xlabel(f'5 bar')\n",
" axs[idx,1].set_ylabel(f'30 bar')\n",
" axs[idx,1].set_title(f'{target} \\nPressure effect')\n",
" #axs[idx,2].legend(['notPP','PP'])\n",
" \n",
" #temperature\n",
" if target=='Enantiomeric excess [-]': #'ΔΔG‡ [kJ/mol] with sign':\n",
" temp_red = temp_df[~((temp_df['Conversion [-]']<0.4)&(temp_df['|ee| [-]']==1))]\n",
" repro_df = temp_red.pivot(index=['Ligand#'], columns='Temperature [°C]', values=target)\n",
" category_values=temp_red[temp_red['Temperature [°C]']==25]['Class'].values=='PP'\n",
" else:\n",
" repro_df = temp_df.pivot(index=['Ligand#'], columns='Temperature [°C]', values=target)\n",
" category_values=temp_df[temp_df['Temperature [°C]']==25]['Class'].values=='PP'\n",
"\n",
" category_values=temp_df[temp_df['Temperature [°C]']==25]['Class'].values=='PP'\n",
" colors_mapping = dict(zip(list(set(category_values)), \n",
" ['tab:blue','tab:orange','tab:green','tab:red','tab:purple','tab:brown', 'tab:pink']))\n",
" # Solution 1\n",
" colors = [colors_mapping.get(cat, \"black\") for cat in category_values]\n",
" sns.scatterplot(data=repro_df,x=repro_df.columns[0],y=repro_df.columns[1],ax=axs[idx,2])#, hue=category_values,ax=axs[idx,3])\n",
" #axs[idx,3].scatter(repro_df.values[category_values==1,0],repro_df.values[category_values==1,1])\n",
" #axs[idx,3].scatter(repro_df.values[category_values==0,0],repro_df.values[category_values==0,1])\n",
" axs[idx,2].set_xlabel(f'{repro_df.columns[0]} °C')\n",
" axs[idx,2].set_ylabel(f'{repro_df.columns[1]} °C')\n",
" axs[idx,2].set_title(f'{target} \\nTemperature effect')\n",
" if idx ==0:\n",
" axs[idx,2].set_ylim([-1.08,1.08])\n",
" axs[idx,2].set_xlim([-1.08,1.08])\n",
" #axs[idx,3].legend(['notPP','PP'])\n",
"\n",
"plt.tight_layout()\n",
"#plt.savefig(f'Internal_data_analysis.svg')\n",
"#plt.savefig(f'Internal_data_analysis.png', dpi = 600)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "e4aea8fe",
"metadata": {},
"source": [
"## Selected data"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "3b560330",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" Ligand# \n",
" \n",
" \n",
" Starting material \n",
" Solvent \n",
" Temperature [°C] \n",
" Hydrogen [bar] \n",
" Time [h] \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" SM1 \n",
" Methanol \n",
" 25 \n",
" 5 \n",
" 1 \n",
" 192 \n",
" \n",
" \n",
" SM2 \n",
" Methanol \n",
" 25 \n",
" 5 \n",
" 1 \n",
" 192 \n",
" \n",
" \n",
" SM3 \n",
" Methanol \n",
" 25 \n",
" 5 \n",
" 1 \n",
" 192 \n",
" \n",
" \n",
" SM4 \n",
" Methanol \n",
" 50 \n",
" 5 \n",
" 16 \n",
" 192 \n",
" \n",
" \n",
" SM5 \n",
" Methanol \n",
" 50 \n",
" 5 \n",
" 16 \n",
" 192 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Ligand#\n",
"Starting material Solvent Temperature [°C] Hydrogen [bar] Time [h] \n",
"SM1 Methanol 25 5 1 192\n",
"SM2 Methanol 25 5 1 192\n",
"SM3 Methanol 25 5 1 192\n",
"SM4 Methanol 50 5 16 192\n",
"SM5 Methanol 50 5 16 192"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = data[~data['Data group'].isin(['Reproducibility'])]\n",
"data = data[data['Starting material'].isin(['SM1','SM2','SM3','SM4','SM5'])]\n",
"data = data[data['Solvent'].isin(['Methanol'])]\n",
"data = data[data['Hydrogen [bar]'].isin([5])]\n",
"data = data[((data['Starting material'].isin(['SM1','SM2','SM3']))&(data['Time [h]']==1))|((data['Starting material'].isin(['SM4','SM5']))&(data['Temperature [°C]']==50))]\n",
"\n",
"grouped = data.loc[:,['Ligand#','Starting material','Solvent','Temperature [°C]', 'Hydrogen [bar]','Time [h]']].groupby(['Starting material','Solvent','Temperature [°C]', 'Hydrogen [bar]','Time [h]'])\n",
"grouped.aggregate('count')"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "3ac9019b",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAc8AAAF1CAYAAACOKWE4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+cUlEQVR4nO3de1yP9/8/8Me7g/dK9S5FyaIQRjY081UbZURznGHOZmPOpJwaKUbRHEKYNDLmsPkInx2ccgiNEclZiHJIDqmQSr1+f/h1fXqvmKtV73fvHvfb7brdvK/rdb3fz6vyflyv63pd16UQQggQERHRG9PTdAFEREQVDcOTiIhIJoYnERGRTAxPIiIimRieREREMjE8iYiIZGJ4EhERycTwJCIikslA0wVog/z8fNy5cwempqZQKBSaLoeIiDRACIHMzEzY2tpCT+/1fUuGJ4A7d+7Azs5O02UQEZEWSE5Oxttvv/3aNgxPAKampgBe/sDMzMw0XA0REWlCRkYG7OzspEx4HYYnIB2qNTMzY3gSEVVyb3L6jgOGiIiIZGJ4EhERycTwJCIikonhSUREJBPDk4iISCaGJxERkUwMTyIiIpk0Gp7R0dHo2rUrbG1toVAosH379le2HTFiBBQKBUJCQtTmZ2dnY9y4cbCyskLVqlXRrVs33Lp1q2wLJyKiSk2jN0l4+vQp3nvvPQwdOhSfffbZK9tt374dx48fh62tbZFlXl5e+O9//4vNmzfD0tISPj4+6NKlC2JjY6Gvr1+W5QMA7Kf9VuafUeDGvM7l9llERPRqGg1PT09PeHp6vrbN7du3MXbsWOzevRudO6uHR3p6On744QesX78e7du3BwBs2LABdnZ22LdvHzp27FhmtRMRUeWl1ec88/PzMWjQIEyePBlNmjQpsjw2Nha5ubnw8PCQ5tna2sLJyQkxMTGvfN/s7GxkZGSoTURERG9Kq8Nz/vz5MDAwwPjx44tdnpKSgipVqsDCwkJtvrW1NVJSUl75vkFBQVCpVNLEJ6oQEZEcWhuesbGxWLJkCSIiImQ/Y1MI8dp1fH19kZ6eLk3Jycn/tlwiIqpEtDY8Dx8+jNTUVNSuXRsGBgYwMDDAzZs34ePjA3t7ewCAjY0NcnJykJaWprZuamoqrK2tX/neSqVSeoIKn6RCRERyaW14Dho0CPHx8YiLi5MmW1tbTJ48Gbt37wYAODs7w9DQEHv37pXWu3v3Ls6dOwcXFxdNlU5ERDpOo6Ntnzx5gqtXr0qvExMTERcXh2rVqqF27dqwtLRUa29oaAgbGxs0bNgQAKBSqfDVV1/Bx8cHlpaWqFatGiZNmoSmTZtKo2+JiIhKm0bD8+TJk3B3d5dee3t7AwCGDBmCiIiIN3qPxYsXw8DAAH369EFWVhY+/vhjRERElMs1nkREVDkphBBC00VoWkZGBlQqFdLT02Wf/+RNEoiIdIOcLNDac55ERETaiuFJREQkE8OTiIhIJoYnERGRTAxPIiIimRieREREMjE8iYiIZGJ4EhERycTwJCIikonhSUREJBPDk4iISCaGJxERkUwMTyIiIpkYnkRERDIxPImIiGRieBIREcnE8CQiIpKJ4UlERCQTw5OIiEgmhicREZFMGg3P6OhodO3aFba2tlAoFNi+fbu0LDc3F1OnTkXTpk1RtWpV2NraYvDgwbhz547ae2RnZ2PcuHGwsrJC1apV0a1bN9y6dauct4SIiCoTjYbn06dP8d577yE0NLTIsmfPnuHUqVPw8/PDqVOnsG3bNly5cgXdunVTa+fl5YXIyEhs3rwZR44cwZMnT9ClSxfk5eWV12YQEVElY6DJD/f09ISnp2exy1QqFfbu3as2b9myZfjggw+QlJSE2rVrIz09HT/88APWr1+P9u3bAwA2bNgAOzs77Nu3Dx07dizzbSAiosqnQp3zTE9Ph0KhgLm5OQAgNjYWubm58PDwkNrY2trCyckJMTExr3yf7OxsZGRkqE1ERERvqsKE5/PnzzFt2jT0798fZmZmAICUlBRUqVIFFhYWam2tra2RkpLyyvcKCgqCSqWSJjs7uzKtnYiIdEuFCM/c3Fz07dsX+fn5WLFixT+2F0JAoVC8crmvry/S09OlKTk5uTTLJSIiHaf14Zmbm4s+ffogMTERe/fulXqdAGBjY4OcnBykpaWprZOamgpra+tXvqdSqYSZmZnaRERE9Ka0OjwLgjMhIQH79u2DpaWl2nJnZ2cYGhqqDSy6e/cuzp07BxcXl/Iul4iIKgmNjrZ98uQJrl69Kr1OTExEXFwcqlWrBltbW/Tq1QunTp3Cr7/+iry8POk8ZrVq1VClShWoVCp89dVX8PHxgaWlJapVq4ZJkyahadOm0uhbIiKi0qbR8Dx58iTc3d2l197e3gCAIUOGICAgADt37gQANGvWTG29AwcOwM3NDQCwePFiGBgYoE+fPsjKysLHH3+MiIgI6Ovrl8s2EBFR5aMQQghNF6FpGRkZUKlUSE9Pl33+037ab2VUVVE35nUut88iIqps5GSBVp/zJCIi0kYMTyIiIpkYnkRERDIxPImIiGRieBIREcnE8CQiIpKJ4UlERCQTw5OIiEgmhicREZFMDE8iIiKZGJ5EREQyMTyJiIhkYngSERHJxPAkIiKSieFJREQkE8OTiIhIJoYnERGRTAxPIiIimRieREREMjE8iYiIZNJoeEZHR6Nr166wtbWFQqHA9u3b1ZYLIRAQEABbW1sYGRnBzc0N58+fV2uTnZ2NcePGwcrKClWrVkW3bt1w69atctwKIiKqbDQank+fPsV7772H0NDQYpcHBwdj0aJFCA0NxYkTJ2BjY4MOHTogMzNTauPl5YXIyEhs3rwZR44cwZMnT9ClSxfk5eWV12YQEVElY6DJD/f09ISnp2exy4QQCAkJwfTp09GzZ08AwLp162BtbY2NGzdixIgRSE9Pxw8//ID169ejffv2AIANGzbAzs4O+/btQ8eOHcttW4iIqPLQ2nOeiYmJSElJgYeHhzRPqVSibdu2iImJAQDExsYiNzdXrY2trS2cnJykNsXJzs5GRkaG2kRERPSmtDY8U1JSAADW1tZq862traVlKSkpqFKlCiwsLF7ZpjhBQUFQqVTSZGdnV8rVExGRLtPa8CygUCjUXgshisz7u39q4+vri/T0dGlKTk4ulVqJiKhy0NrwtLGxAYAiPcjU1FSpN2pjY4OcnBykpaW9sk1xlEolzMzM1CYiIqI3pbXh6eDgABsbG+zdu1eal5OTg0OHDsHFxQUA4OzsDENDQ7U2d+/exblz56Q2REREpU2jo22fPHmCq1evSq8TExMRFxeHatWqoXbt2vDy8kJgYCAcHR3h6OiIwMBAGBsbo3///gAAlUqFr776Cj4+PrC0tES1atUwadIkNG3aVBp9S0REVNo0Gp4nT56Eu7u79Nrb2xsAMGTIEERERGDKlCnIysrC6NGjkZaWhlatWmHPnj0wNTWV1lm8eDEMDAzQp08fZGVl4eOPP0ZERAT09fXLfXuIiKhyUAghhKaL0LSMjAyoVCqkp6fLPv9pP+23MqqqqBvzOpfbZxERVTZyskBrz3kSERFpK4YnERGRTAxPIiIimRieREREMjE8iYiIZGJ4EhERycTwJCIikonhSUREJBPDk4iISCaGJxERkUwMTyIiIpkYnkRERDIxPImIiGRieBIREclUovCsW7cuHj58WGT+48ePUbdu3X9dFBERkTYrUXjeuHEDeXl5ReZnZ2fj9u3b/7ooIiIibWYgp/HOnTulf+/evRsqlUp6nZeXh6ioKNjb25dacURERNpIVnj26NEDAKBQKDBkyBC1ZYaGhrC3t8fChQtLrTgiIiJtJCs88/PzAQAODg44ceIErKysyqQoIiIibSYrPAskJiaWdh1EREQVRonCEwCioqIQFRWF1NRUqUdaYM2aNf+6MAB48eIFAgIC8NNPPyElJQU1a9bEF198gRkzZkBP7+VYJyEEZs2ahbCwMKSlpaFVq1ZYvnw5mjRpUio1EBER/V2JRtvOmjULHh4eiIqKwoMHD5CWlqY2lZb58+fj+++/R2hoKC5evIjg4GB89913WLZsmdQmODgYixYtQmhoKE6cOAEbGxt06NABmZmZpVYHERFRYSXqeX7//feIiIjAoEGDSrseNX/++Se6d++Ozp07AwDs7e2xadMmnDx5EsDLXmdISAimT5+Onj17AgDWrVsHa2trbNy4ESNGjCjT+oiIqHIqUc8zJycHLi4upV1LER9++CGioqJw5coVAMCZM2dw5MgRfPLJJwBenntNSUmBh4eHtI5SqUTbtm0RExPzyvfNzs5GRkaG2kRERPSmShSew4YNw8aNG0u7liKmTp2Kfv36oVGjRjA0NETz5s3h5eWFfv36AQBSUlIAANbW1mrrWVtbS8uKExQUBJVKJU12dnZltxFERKRzSnTY9vnz5wgLC8O+ffvw7rvvwtDQUG35okWLSqW4LVu2YMOGDdi4cSOaNGmCuLg4eHl5wdbWVu06U4VCobaeEKLIvMJ8fX3h7e0tvc7IyGCAEhHRGytReMbHx6NZs2YAgHPnzqkte11oyTV58mRMmzYNffv2BQA0bdoUN2/eRFBQEIYMGQIbGxsAkEbiFkhNTS3SGy1MqVRCqVSWWp1ERFS5lCg8Dxw4UNp1FOvZs2fSJSkF9PX11W7WYGNjg71796J58+YAXp6PPXToEObPn18uNRIRUeVT4us8y0PXrl0xd+5c1K5dG02aNMHp06exaNEifPnllwBe9nK9vLwQGBgIR0dHODo6IjAwEMbGxujfv7+GqyciIl1VovB0d3d/7eHZ/fv3l7igwpYtWwY/Pz+MHj0aqampsLW1xYgRIzBz5kypzZQpU5CVlYXRo0dLN0nYs2cPTE1NS6UGIiKiv1MIIYTclSZOnKj2Ojc3F3FxcTh37hyGDBmCJUuWlFqB5SEjIwMqlQrp6ekwMzOTta79tN/KqKqibszrXG6fRURU2cjJghL1PBcvXlzs/ICAADx58qQkb0lERFRhlOg6z1cZOHBgqd3XloiISFuVanj++eefeOutt0rzLYmIiLROiQ7bFtxHtoAQAnfv3sXJkyfh5+dXKoURERFpqxKFp0qlUnutp6eHhg0bYvbs2Wr3mSUiItJFJQrPtWvXlnYdREREFca/uklCbGwsLl68CIVCgcaNG0t3+SEiItJlJQrP1NRU9O3bFwcPHoS5uTmEEEhPT4e7uzs2b96M6tWrl3adREREWqNEo23HjRuHjIwMnD9/Ho8ePUJaWhrOnTuHjIwMjB8/vrRrJCIi0iol6nnu2rUL+/btwzvvvCPNa9y4MZYvX84BQ0REpPNK1PPMz88v8gxPADA0NJSeeEJERKSrShSe7dq1w4QJE3Dnzh1p3u3btzFx4kR8/PHHpVYcERGRNipReIaGhiIzMxP29vaoV68e6tevDwcHB2RmZmLZsmWlXSMREZFWKdE5Tzs7O5w6dQp79+7FpUuXIIRA48aN0b59+9Kuj4iISOvI6nnu378fjRs3RkZGBgCgQ4cOGDduHMaPH4+WLVuiSZMmOHz4cJkUSkREpC1khWdISAiGDx9e7HPOVCoVRowYgUWLFpVacURERNpIVnieOXMGnTp1euVyDw8PxMbG/uuiiIiItJms8Lx3716xl6gUMDAwwP379/91UURERNpMVnjWqlULZ8+efeXy+Ph41KxZ818XRUREpM1khecnn3yCmTNn4vnz50WWZWVlwd/fH126dCm14oiIiLSRrPCcMWMGHj16hAYNGiA4OBg7duzAzp07MX/+fDRs2BCPHj3C9OnTS7XA27dvY+DAgbC0tISxsTGaNWumdl5VCIGAgADY2trCyMgIbm5uOH/+fKnWQEREVJis6zytra0RExODUaNGwdfXF0IIAIBCoUDHjh2xYsUKWFtbl1pxaWlpcHV1hbu7O/744w/UqFED165dg7m5udQmODgYixYtQkREBBo0aIA5c+agQ4cOuHz5MkxNTUutFiIiogKyb5JQp04d/P7770hLS8PVq1chhICjoyMsLCxKvbj58+fDzs5O7eHb9vb20r+FEAgJCcH06dPRs2dPAMC6detgbW2NjRs3YsSIEaVeExERUYluzwcAFhYWaNmyJT744IMyCU4A2LlzJ95//3307t0bNWrUQPPmzbF69WppeWJiIlJSUtSe5KJUKtG2bVvExMS88n2zs7ORkZGhNhEREb2pEodnebh+/TpWrlwJR0dH7N69GyNHjsT48ePx448/AgBSUlIAoMihYmtra2lZcYKCgqBSqaTJzs6u7DaCiIh0jlaHZ35+Plq0aIHAwEA0b94cI0aMwPDhw7Fy5Uq1dgqFQu21EKLIvMJ8fX2Rnp4uTcnJyWVSPxER6SatDs+aNWuicePGavPeeecdJCUlAQBsbGwAoEgvMzU19bUDl5RKJczMzNQmIiKiN6XV4enq6orLly+rzbty5Qrq1KkDAHBwcICNjQ327t0rLc/JycGhQ4fg4uJSrrUSEVHlUaJHkpWXiRMnwsXFBYGBgejTpw/++usvhIWFISwsDMDLw7VeXl4IDAyEo6MjHB0dERgYCGNjY/Tv31/D1RMRka7S6vBs2bIlIiMj4evri9mzZ8PBwQEhISEYMGCA1GbKlCnIysrC6NGjkZaWhlatWmHPnj28xpOIiMqMQhTc6aASy8jIgEqlQnp6uuzzn/bTfiujqoq6Ma9zuX0WEVFlIycLtPqcJxERkTZieBIREcnE8CQiIpKJ4UlERCQTw5OIiEgmhicREZFMDE8iIiKZGJ5EREQyMTyJiIhkYngSERHJxPAkIiKSieFJREQkE8OTiIhIJoYnERGRTAxPIiIimRieREREMjE8iYiIZGJ4EhERycTwJCIikonhSUREJFOFCs+goCAoFAp4eXlJ84QQCAgIgK2tLYyMjODm5obz589rrkgiItJ5FSY8T5w4gbCwMLz77rtq84ODg7Fo0SKEhobixIkTsLGxQYcOHZCZmamhSomISNdViPB88uQJBgwYgNWrV8PCwkKaL4RASEgIpk+fjp49e8LJyQnr1q3Ds2fPsHHjRg1WTEREuqxChOeYMWPQuXNntG/fXm1+YmIiUlJS4OHhIc1TKpVo27YtYmJiXvl+2dnZyMjIUJuIiIjelIGmC/gnmzdvxqlTp3DixIkiy1JSUgAA1tbWavOtra1x8+bNV75nUFAQZs2aVbqFEhFRpaHVPc/k5GRMmDABGzZswFtvvfXKdgqFQu21EKLIvMJ8fX2Rnp4uTcnJyaVWMxER6T6t7nnGxsYiNTUVzs7O0ry8vDxER0cjNDQUly9fBvCyB1qzZk2pTWpqapHeaGFKpRJKpbLsCiciIp2m1T3Pjz/+GGfPnkVcXJw0vf/++xgwYADi4uJQt25d2NjYYO/evdI6OTk5OHToEFxcXDRYORER6TKt7nmamprCyclJbV7VqlVhaWkpzffy8kJgYCAcHR3h6OiIwMBAGBsbo3///poomYiIKgGtDs83MWXKFGRlZWH06NFIS0tDq1atsGfPHpiammq6NCIi0lEKIYTQdBGalpGRAZVKhfT0dJiZmcla137ab2VUVVE35nUut88iIqps5GSBVp/zJCIi0kYMTyIiIpkYnkRERDIxPImIiGRieBIREcnE8CQiIpKJ4UlERCQTw5OIiEgmhicREZFMDE8iIiKZGJ5EREQyMTyJiIhkYngSERHJxPAkIiKSieFJREQkE8OTiIhIJgNNF0Daqzwf9A3wYd9EVHGw50lERCQTw5OIiEgmhicREZFMWh2eQUFBaNmyJUxNTVGjRg306NEDly9fVmsjhEBAQABsbW1hZGQENzc3nD9/XkMVExFRZaDV4Xno0CGMGTMGx44dw969e/HixQt4eHjg6dOnUpvg4GAsWrQIoaGhOHHiBGxsbNChQwdkZmZqsHIiItJlWj3adteuXWqv165dixo1aiA2NhZt2rSBEAIhISGYPn06evbsCQBYt24drK2tsXHjRowYMUITZRMRkY7T6p7n36WnpwMAqlWrBgBITExESkoKPDw8pDZKpRJt27ZFTEzMK98nOzsbGRkZahMREdGbqjDhKYSAt7c3PvzwQzg5OQEAUlJSAADW1tZqba2traVlxQkKCoJKpZImOzu7siuciIh0ToUJz7FjxyI+Ph6bNm0qskyhUKi9FkIUmVeYr68v0tPTpSk5ObnU6yUiIt2l1ec8C4wbNw47d+5EdHQ03n77bWm+jY0NgJc90Jo1a0rzU1NTi/RGC1MqlVAqlWVXMBER6TSt7nkKITB27Fhs27YN+/fvh4ODg9pyBwcH2NjYYO/evdK8nJwcHDp0CC4uLuVdLhERVRJa3fMcM2YMNm7ciB07dsDU1FQ6j6lSqWBkZASFQgEvLy8EBgbC0dERjo6OCAwMhLGxMfr376/h6omISFdpdXiuXLkSAODm5qY2f+3atfjiiy8AAFOmTEFWVhZGjx6NtLQ0tGrVCnv27IGpqWk5V0tERJWFVoenEOIf2ygUCgQEBCAgIKDsCyIiIoKWn/MkIiLSRgxPIiIimRieREREMjE8iYiIZGJ4EhERycTwJCIikonhSUREJJNWX+dJVFbsp/1Wrp93Y17ncv08IipbDE8iHVSeOwfcMaDKiIdtiYiIZGJ4EhERycTwJCIikonhSUREJBPDk4iISCaGJxERkUwMTyIiIpkYnkRERDIxPImIiGRieBIREcnE8CQiIpJJZ8JzxYoVcHBwwFtvvQVnZ2ccPnxY0yUREZGO0okbw2/ZsgVeXl5YsWIFXF1dsWrVKnh6euLChQuoXbu2pssjolLEJ+KQNtCJ8Fy0aBG++uorDBs2DAAQEhKC3bt3Y+XKlQgKCtJwdUREb06Xn4ijSzs+FT48c3JyEBsbi2nTpqnN9/DwQExMTLHrZGdnIzs7W3qdnp4OAMjIyJD9+fnZz2SvU1Ilqe/fKM9tA8p3+3R52wD+XZYmXd4+Xd42QP72FbQXQvxzY1HB3b59WwAQR48eVZs/d+5c0aBBg2LX8ff3FwA4ceLEiROnIlNycvI/Zk+F73kWUCgUaq+FEEXmFfD19YW3t7f0Oj8/H48ePYKlpeUr1ylNGRkZsLOzQ3JyMszMzMr888oTt63i0uXt47ZVXOW5fUIIZGZmwtbW9h/bVvjwtLKygr6+PlJSUtTmp6amwtrauth1lEollEql2jxzc/OyKvGVzMzMdPKPHeC2VWS6vH3ctoqrvLZPpVK9UbsKf6lKlSpV4OzsjL1796rN37t3L1xcXDRUFRER6bIK3/MEAG9vbwwaNAjvv/8+WrdujbCwMCQlJWHkyJGaLo2IiHSQToTn559/jocPH2L27Nm4e/cunJyc8Pvvv6NOnTqaLq1YSqUS/v7+RQ4d6wJuW8Wly9vHbau4tHX7FEK8yZhcIiIiKlDhz3kSERGVN4YnERGRTAxPIiIimRieREREMjE8iYiIZGJ4UqnLz88HgDe7uTKRluLfr/Z69uzlDeY1+TtieGpAfn4+cnNz1ebpyn/UGzduYMWKFXjw4AEUCoXObJeuSk5ORnh4OJYsWYJ9+/ZpuhyNy8nJwYkTJwD8737ZBTuDFUVSUhI2bdqEpKQkTZdSJu7duwcXFxfs2LGjXO5F/io6cZOEiuTKlSsICQlBQkICWrRogX79+qFZs2Ya/SMoTeHh4Vi7di2ys7MxdOhQVKtW7bU36aeSyc/Ph57ev9v3jY+PR/fu3WFubo5r165BoVBg3rx5GDVqVClVWbEIIRAUFIRffvkFDg4O6NGjB3r16vXG9zrVBufOnUOfPn1gb28PKysr1K5dW9MllbpHjx7B0dER3t7eqFKlCjw9PTVTSMkfBkZyxcXFierVq4tOnTqJLl26CKVSKdzd3UViYqKmSytVPj4+okmTJiI4OFg8fPhQCCFEfn6+hqvSHXl5edK/T548KX777Tdx7tw58eDBgyLLX+XMmTPC2NhYTJ06VTx69EgcO3ZMDBo0SNSoUUOcOnWqzGrXdg8ePBCPHz8W48aNE+3btxf169cv8rhDbXXhwgVhYWEhpk2bJm7evFlsG135f3j27FkxdOhQUbt2bfH7779rpAaGZzk5c+aMMDU1FdOnT5fmnThxQigUChEaGqrBysrG+PHjGaBloPDPcOrUqaJhw4bC3t5euLq6ivbt24srV67843skJSUJKysr0bt3b7X527dvFyYmJuLYsWOlXndFkZubK4R4uQNy+fJlMWjQIGFkZCTWrl0rnj9/ruHqXu3Jkyfik08+ERMmTCiyLDU1Vdy7d0/623mTnStt8/z58yI//1OnTokvvvhC2NnZaSRAec6zHGRmZqJDhw6wt7fHnDlzALw8t+Ls7Ix3330Xjx490nCFJXfx4kXMmjULx48fR2pqqjR/yZIl8PDwwJo1a/DDDz/g4cOHPHRbCgp+hsuXL8fatWsRHh6OxMREtG7dGkePHsX169f/8T3y8vLg4OCA7OxsHDlyRJpfvXp1GBgYVJrfkyjmfLyBwcszWXp6emjQoAF+/PFHjB8/Hl9//TV+/fVXANp5DjQ/Px+pqalqT5KKiorC1KlT0bBhQ7Rv3x6DBw/Gixcv/vXh/vJ26dIltGvXDoMGDcK2bdtw6tQpAEDz5s3h7+8PNzc3jBw5Uvr9lJtyj+tKas2aNUKpVIpZs2aJrKwsIYQQiYmJwsDAQPz8888arq5kMjIyRI0aNYRCoRDNmjUT1tbWwtvbWyxfvlzag58xY4Zo0aKFmDdvnnRYkUouLy9P5ObmisGDB4v58+cLIYT473//K0xMTERYWJgQQohnz56Jx48fv/Z9rly5Ijp16iQ8PDzEhQsXpN/lpEmTynwbtEHhHvyePXvE6tWrxaRJk0RISIhISUkp0n78+PFCpVKJW7duFVlfkwp6kQ8ePBA1atQQU6dOFWlpaSI4OFg0adJEdOnSRXz33XciICBAODk5iQULFmi4YnlevHghvvzyS6FQKISVlZWwtrYWjRs3Fh999JEICgoS165dE4cPHxYTJ04UderUEVFRUeVWG8OzDCUlJYmwsDAREhIiDh8+LP773/8KPT09ERISIq5duyZq1aolxo4dq+ky/5VNmzYJIyMj8fnnn4uQkBDRr18/YW5uLpo0aSLat28vtm7dKlq1aiVat24tZs2aJdLS0jRdcoVT3Bd1165dRWRkpPjjjz+EiYmJWLlypRDi5WHHNWvWiF9++eUfD89duXJFeHp6irZt2woLCwvh5eUlLauIh/ZKYurUqaJu3bqidevWwt7eXpiYmAgbGxuxfv16kZ6eLrV7+vSp8PT0FH379tWaw7eJiYli2bJlUthv2LBBKBQKUadOHWFsbCyWLl0qLl68KIQQIisrS7Ro0aJCfd8U/A3eunVL9O7dW/To0UP4+/uLY8eOiZEjR4rWrVsLlUol2rZtK9q1ayccHR1FlSpVyu0cNcOzjJw5c0bY29uLZs2aCVNTU2FqairWrFkjIiMjhZ6enlAoFGL06NFS+4r0ZVV4p+DgwYPi999/F3p6emL58uXixYsX4v79+2L79u2iX79+ol27dsLc3FwoFArRqFEj6fwnvZmYmBjp33PnzpVCcsCAAaJ27dpCpVKJ1atXS23u3bsn2rdvL5YsWfJG73/lyhXRrl07UadOHXHo0CFpvrb0rMrS7NmzhZWVlTh27Jh49uyZEEKIP//8U3Tt2lWYmJiIiIgIIcT/fhabNm0S7u7uxfZMNWH69OnC1tZWLFiwQDx69EgI8XLQ0J49e8Tdu3eldvn5+eL58+eie/fuYt68edI8bZaYmCiWLl0qbcfNmzdF165dhZubm9i2bZvUbs+ePWLVqlXigw8+ELa2tkKhUIjLly+XS40MzzLwqpGM1atXFxcuXBA//fST0NfXF99++63W/xH/3at2CrZt2yb09PREQECAWvv79++LkydPilmzZpXbH7WuuH37ttSrnzhxojAxMRFnz54VQrw8TNeyZUtRr1498fDhQ5GWlibu3bsnPD09RevWrcWLFy/e+HMSEhJEp06dRMeOHcWRI0fKanO0SkJCgvjggw/Ezp07hRD/GygkhBCPHj0S3bp1E9WrVy8yavXdd98VQUFB5Vrr6/j4+IjGjRuL4OBgcf/+/WLbvHjxQsyYMUPY2dmJq1evlnOFJVN4x+DevXtCiJcB2r17d/Hhhx+KtWvXqrXPzc0Vd+7cUdtpKGsMz1L2qpGMkZGRwsTERPz5559CCCFWr14t9PT0RFBQUIXpdb5up+DixYvSNs2ZM0dt1KIQ2r+nq01iY2Olf//1119CqVQKExMTceHCBSGEENnZ2UKIl73SunXrCnt7e+Ho6Chat24tnJ2dRU5OjhBCyArQK1euiC5duoj/+7//k/5GddnJkydFtWrV1H7WhcXFxYlq1apJo+MLfqabNm0S4eHhWvX3XNzI9gJbt24VXl5ewsrKSpw+fVozBZZQwSVv8+fPlwI0KSlJdO/eXbRp00YtQDXx+2B4lrLExETRsmVL0a1bN3H48GFp/tGjR4VKpRLHjx+X5oWHhwuFQiEWLlyoiVJledOdgrCwsAq3U6BN/P39haurq/RlEBMTI4XngAEDirTPyckRq1evFqGhoSIyMlIKzMI9qTd18eJF0atXr1deI6hLdu3aJfT09MSlS5eEEMWfNmnRooUYMmSI2rzk5GSRmppaHiUWceHCBREQECCOHTsmhUmBiRMnikaNGong4GBpYN6xY8eEh4eH6Ny5szh//rwmSv7XCnYMigvQdu3aiVWrVmmsNoZnGZAzknHdunVSj0Kb6epOgTYq6FkW3DzjwYMH4siRI8LCwkJ8/vnn/7i+nB7nqz5b1924cUPUrl1bDBs2TDx9+lQI8b8ALfj5eXh4CD8/P43VWJjcke0F50CvX79eIcYZvMmOwfz586XzzUlJScLd3V107tz5H0eWlxWGZxnRxZGMurhToC1CQ0PVenz/+c9/hEKhEPv27RNCvDwstXv3blGtWjXRv39/qd3IkSOLDGyhf5afny8GDRokzM3NxdKlS6UALXDr1i3RpEkTsW7dOg1VWJSujmyXu2NQEK63bt0SycnJGqub4VmGdHEkoy7uFGjauXPnhEKhEF999ZW4c+eONL93797CyspKunatcIA2a9ZMtG7dWtSrV69Eh2gro4L/dwW9l9zcXNGqVSthbm4uxo4dK27cuCGSkpLEyZMnhZOTk+jWrZsmyxVCVJ6R7XJ2DAICArTimnGGZxnTxZGMurhToCkFP7MDBw4IpVIphg4dKpKSkqTlBV8ihS/+vnz5shg5cqTw9fWVgvPfHKqtDAp+zpGRkeLDDz8UN27cEEK8DNA+ffoIGxsbYWhoKKysrETz5s3Vzi9raqdQ10e2V/QdA4ZnOdDFkYy6uFOgCYV7jXv27BH6+vpi4sSJaodwCwJ0//79//geVFRBcG7btk0YGxuL5cuXCyGEyMzMFEK8DMe4uDjx008/icjISLXz95oMTl0e2a4LOwYMz3KiiyMZdXGnoDwV/pLz8/MTs2bNks79DBs2TO18zoABA4SlpaXGniBRURUOThMTE+khDDdu3BCenp6vPS+vqRDS9ZHturJjwPAsR7o4klEXdwrK2/z584WFhYXYv3+/iIqKEuHh4cLAwEAMHTpULUA9PT1Fx44dNVhpxfK64KxZs6YYNWqUVn0ZF9Dlke26tGPA8KR/TRd3CsrKwYMH1c5P5ufni65du4rx48ertdu1a5cwMDAQo0aNks7PCcFBWW+qIBQLHrNWODhr1aolRo4cqZXBWUBXR7br0o4Bw5OonIwfP17069dP7Us7KytLuLq6ilGjRgkhXoZjwd1sJkyYIPT09ES/fv3Urn1jgP7P6wJwy5YtwsDAQKxYsUII8b/gHDFihFYHZwFdHdmuKzsGCiGKeagdEZW67Oxs6OnpwdDQEJcvX4aDgwOqVKmCxYsXw9/fH3/88QdcXV0hhIBCoUBQUBAOHz6Mp0+f4sCBAxXuOYxlreDnBADR0dG4f/8+hBDo1asXAGDVqlV4+vQpvL29kZSUBBcXF3Tp0gUrV66sMM8sTUhIwMiRI3Ht2jX8+OOPaNOmDQD1ba+IEhISMGHCBDx79gzx8fEYMmQIFi9eDODls0krxN+6JpObqLIo3FPYsGGDqFevnvjll19Ebm6uSElJEZ9//rlo3LixdOnPkydPROfOncWOHTuKfY/KrnDP8ZtvvhGOjo7CwsJCmJmZiU6dOqm1vX79urCyshKjR4+uED3Ov9PVke0V/ZI3hidROXv69Klwc3MTrVq1Etu3bxdCvLwR+cCBA4Wenp547733RL169UTjxo2l0YYV5QulvHl5eQlLS0sRFRUl4uPjRUhIiKhWrZraIcD169eLwYMHV+ifoa6ObK/IOwY8bEtUhl51COrZs2fo1q0b0tLS4O/vj27duiEvLw+7d+/GpUuXoFQqMWLECBgYGCAvLw/6+voaqF67LVy4EJMnT8b58+fxzjvvAADS09PRqVMn1KlTB5s3b9ZwhaXr0qVL8PPzw8KFC1G7dm1Nl1NqEhIS4O3tjQcPHmDx4sX4v//7P02X9EYMNF0Aka4SQkjBGRERgQsXLsDZ2RktWrSAo6MjduzYgW7dumHWrFnIz8/HJ598Ik0FGJzFy8zMRHx8PJycnHDw4EEpPFUqFSwsLGBoaIi8vDwoFIqKcf7sDTRq1Ag//fQTqlSpoulSSpWjoyO+++47+Pn5wdbWVtPlvDH2PInKmL+/P0JDQ9GoUSPcvn0brVq1wvjx4+Hq6oqnT5+ie/fuePLkCcaNG4e+ffsyLF8hJycHwcHB8PLygomJCW7duoX58+fjr7/+Qp8+feDj44NFixbBz88P8fHxqFevnqZLJhlycnIq1I6BbuySEWmR/Px8AC97ns+fP0dCQgJ27dqFo0ePYuHChXj8+DECAwNx9OhRVK1aFTt37sTz589x4MABBudrHD9+HH/88QdMTEwAAG+//TamTZsGZ2dnREZGomPHjggMDMSuXbtQr1495OXlabhikqMiBSfA8CQqVYXPcZ4/fx63bt3Cs2fPULNmTQDAZ599htGjR+PFixcICgrC0aNHYWxsjGPHjiEsLEyTpWu9jz76CBkZGZgzZ440r1atWvjmm2/w3nvv4cyZM/j000/x0UcfAUCFvpSDtB/Dk6gUFQTnlClT0K5dO7i6uuLQoUO4ceOG1KZ79+4YM2YM8vPz4ePjg/j4eLz11lvQ09Njb+kfjBw5EqdOnZJ+nkIIvP3225gxYwY+++wznDt3DosWLQLw8nfBs1JUVnjOk6gUiEIXrZ88eRK9e/dGeHg4rly5gq1bt+LevXtYtWoVXF1dpXW2bNmCY8eOYeHChTozqKW0FP55XrhwAXl5eTAxMUHVqlXh7OyML774At9++y2A//X2b9++jaCgIMTGxqJjx44ICAjQ4BaQrmN4EpWiJUuWICUlBVWrVsWMGTMAvLz7zdKlS3Ht2jUsX74cLi4uRdarMHdVKQeFg3P27NnYunUrrl+/DnNzcyxfvhzm5uZwd3fHqlWrMHz4cLV1b9++jSlTpqBBgwbw9/fXRPlUSTA8iUrJw4cPMWzYMOzYsQMjRozAypUrpWXR0dFYtmwZEhMTsWDBAri5uWmu0ArCy8sLGzZsQFhYGDIyMrBnzx5s374d27Ztw/nz5zF58mSEhIRg+PDhMDIyktZLS0uDhYUFgIp/GzvSXrzOk6iE/v7FbGlpiVmzZkGlUmHt2rUYNGiQ1Mts06YNFAoF/P39ERERwfD8B7Nnz0ZoaCgSExNhZ2cHAHBycsK+fftw+vRp+Pr6wsDAAJMmTcL58+fRrVs3dO7cGQAYnFQu2PMkKoHCh1nFy9tcqo2y/fbbbxEVFYWdO3eidevW0npnzpxB06ZNeYj2NR4/foz27dvD0NAQK1euRLNmzaRlTZs2xeeffy4dEj98+DBCQkJw8+ZN2NjY4Ouvv4abmxvMzMw0VD1VFgxPIpkKB+f333+P6OhoKBQKfPDBB5gwYQKAlwE6d+5cREVFYceOHUVuOcZznK935coVeHt7Izc3FzNnzoSrqyvmzp2LoKAgXLx4EXZ2dtLP8PHjx0hLS8PSpUvxzjvv4NNPP0X16tU1vQmk4xieRCU0bdo0rF+/Hr169YKJiQkWLFiASZMmYe7cuQBeBmhQUBA2btwo3UqO3lxCQgLGjx8PpVKJ6tWrY8eOHdiyZQvc3d1fedtCHqqlclMut58n0jEFjxWLiYkRQggRGRkpDAwMhEKhECNHjpTanT59Wvj7+4sXL15oqtQK7fLly6JDhw7CyMhILFiwQAjx8gkzFfkJKaQb2PMkegN/P8y6evVqZGRkwMfHB7/99hsGDhyIOXPmwMjICMOGDYOvr6/UAy3Am7yXzLVr1zB69Gjo6+tj+vTpatfKEmkKw5NIhpkzZ6JRo0b49NNPcffuXZiYmKBjx47o378/Jk+ejHPnzqFt27ZIS0tDYGAgpk2bpumSdUJCQgK8vLyQn5+PyZMno127dpouiSo5jlggeo2Cm7wDwC+//IKIiAjY2dnByMgIdevWRXJyMp4/f47evXsDAIyMjNCjRw/s378fkydP1lTZOsfR0REhISF4+PAhYmNjNV0OEXueRG/i4MGD+Pnnn9GwYUNMmDBBGphy+fJlNG7cGN9++y0+/fRT+Pj4wMDAADt27IBCocCLFy9gYMDLqUtLSkoKbGxsNF0GEcOT6J/Ex8ejZ8+euHfvHnx9ffHNN98AeHkOU09PD4sXL8a0adNQp04dmJubIyYmBoaGhhz5WYb4syVNY3gS/U3BF3PhL+hNmzZJdw9auXIlWrRoodY+MTER9+/fR8uWLaGnp8ceJ5GOY3gSFVJ4VO3fA/Cnn37CggUL0Lx5c0ycOBFNmzYtsk5xr4lI9zA8if6/wqG3bNkyHDp0CABgb2+PBQsWAAB+/PFHLFmyBM2aNYOXl5cUoERUuXD3mOj/KwhOX19fzJ49G/Xq1YOZmRk2b96Mli1b4tGjRxg8eDDGjh2Ls2fPwt/fH9euXdNw1USkCTwpQ1TI+fPnsXnzZmzYsAEdO3YEAFy9ehU9e/ZEly5dEBMTg6FDhyI7Oxt//fUXHBwcNFwxEWkCe55EhTx+/BiZmZlo3LgxgJeDgerXr4+IiAjcuHEDmzdvBgCMHDkSa9asgZ6entq1oERUOTA8qdIq7nT/O++8gypVqmD79u0AII22rV27NoyMjJCRkVHkPTg4iKjy4f96qpTy8vKkYHz69Cmys7MBvLxDUNeuXbF9+3Zs3bpVam9sbAxzc3MYGhqqvQ+vNSSqnDjaliqVQ4cO4f3330fVqlUBAHPmzEFMTAxSU1Mxc+ZMdOvWDQkJCZg8eTJu3bqF999/Hy1atMDmzZvx4MEDnD59mjd3JyL2PKnyCA8Ph7u7O7Zt2wYAWLJkCZYsWYJWrVqhdu3a6NOnD+bNm4f69esjJCQEffr0wZEjR7Bx40ZUr14dsbGx0NfXR15enoa3hIg0jT1PqlQmTJiA1atXIyIiAn/99Rc6duyIDh06AACCgoIwb948TJs2DRMmTICxsTGEEMjKyoKxsTGAojdOIKLKid8CVCkUPEtzyZIlePHiBQYOHAgrKyspOIGX13cCwPz586Gvr49BgwahZs2aUnAKIRicRASA4UmVhL6+vtRrXL58OczNzREUFIS4uDh89NFHUkD6+vpCT08P06ZNg62tLQYOHCi9BwcHEVEBHrYlnfa6+8yOGzcOq1evxurVq9GrVy8YGRlJyzZs2IC+ffuyp0lExWJ4ks4q/FSUH374AfHx8ahRowacnJzQvXt3AMCoUaMQERGBsLAw9O7dG2+99Zbae/AcJxEVh98KpJMKB+fMmTOxaNEieHh4ICoqCnl5efjjjz/w/fffY+XKldDT08OoUaPw9OlTfPnll6hSpYr0PgxOIioOL1UhnVQQnGfOnMHx48fxxx9/YNu2bTh06BDGjRuHqKgoeHt7AwCWL1+Onj17YsuWLWrBSUT0KtytJp21fPly7NixA1lZWdK9ai0tLdGvXz+kp6dj+/btSEhIgKOjI3788UfpHrWFe61ERMVhz5N0xt9v0F6rVi3Ex8cjNjYWJ0+elOZbWFjA09MTp0+fxs2bN6X5BTd5Z3AS0T9heJJOKDyq9tixY3j27Bl69OiBn3/+GVZWVggPD1cL0Bo1asDBwaHI3YJ4k3ciehMcbUsVXuHg9PPzw+7duzFq1CgMGjQIBgYG2LNnD4YPHw5HR0d8+umnsLe3x/fff4/r168jPj6e96olItkYnqQzvvnmG4SFhWHr1q1o0qQJqlevLi3bs2cPvvrqK9y+fRt9+vSBjY0NFi1aBD09PenuQ0REb4rHqEgnxMfHY+fOndi+fTvc3NxgaGiIy5cvY+HChTh37hw8PDywfv16vP3226hevTqGDh0KPT09CCEYnEQkG0fbkk6oUqUKUlNTkZ2djXPnzmHFihXYv38/srOz4efnh+PHj8PNzQ3ff/+9dE3nmDFj4OzsrOnSiagCYs+TKpy/j6oFgOrVq+Pjjz/GkCFD0KpVKygUCsyZMweJiYlwcHDAr7/+CgD45JNPEB4ejl9++QVr1qxBTk5OeZdPRDqAPU+qUAoPDjp9+jQePXqEevXqoVatWggLC0N0dDTMzMzg4uICfX19PH/+HKampqhVqxaAl9dwdujQATt27ICdnR1vikBEJcIBQ1QhTZ06FVu3bkVaWhqsrKzg6OiIFStWoE6dOgCA58+fIykpCT4+Prhz5w6OHz8OAwMDFPy581pOIvo3eNiWKpwVK1YgPDwc4eHhiIuLg7+/P3Jzc9GjRw8kJycDAH7++WdMmDABjx8/xrFjx2BgYIC8vDwoFAoGJxH9a+x5UoXy4sULDBs2DJaWlli4cKE0Pzo6Gn5+fmjWrBmWLFmC06dP4/r16+jRo4faszyJiEoDv02oQjEwMMDz589x8eJFtflt2rRBy5YtsX//fuTl5aF58+Zo3rw5ACAvL4/BSUSliodtSWsVN6oWAJydnXH79m0cPHgQubm50vwWLVrA0NAQ6enpau15HScRlTYetiWtVPgw6549e5Cfnw+VSoXWrVsjKysLbm5uAIAZM2bAxcUFenp66N27N1QqFbZu3crzmkRUphiepFU+++wzdOjQASNHjgQATJ48GWFhYahevTpu3bqFuXPnwsfHB8+ePUPnzp1x//593L17Fw4ODsjNzcXJkydhaGjIx4oRUZniiSDSGllZWahVqxbGjh0LY2NjdOjQAbt378aBAwfw1ltvISoqCl5eXsjMzERAQAB2796N48eP4/Lly1CpVOjZsycHBxFRueA3DGkNIyMjBAcHw9bWFl988QUmTJgAd3d3tGjRAgDQuHFjKJVKjBo1Cnp6epg5cyY++ugjfPTRR9J7cHAQEZUHfsuQVti/fz+io6Px7NkzNGvWDKtWrcKoUaPUghEAvv76aygUCowdOxbPnj3DvHnz1JZzcBARlQeOtiWNCw8PR79+/RAVFYWNGzfi66+/xsOHD7Fy5UpER0dj7dq1au2HDx+OefPm4ejRo+ApeyLSBA4YIo0KDw/HmDFj8NNPP6FHjx64dOkS5syZg+PHj+M///kPIiMjMXfuXERERGDw4MFq6xYMCuLgICIqbzxsSxpz8OBBfP311wgICECvXr0ghICTkxM6deqEAwcOwNLSEjNmzIBCocCXX34JPT09DBw4UFqfwUlEmsLwJI2pVasWPvzwQ5w6dQrR0dFo06YNACAzMxMGBgYwMDCAUqnE1KlToVAoMHjwYFhZWaFTp07SezA4iUgTeNiWNCohIQHjx49Hfn4+QkNDkZycjM6dO2P9+vXo1auX1O7JkyfYvHkzvvjiC46mJSKNY3iSxiUkJGDChAm4d+8ezp49i7Vr12LAgAHIy8uDnp5ekd4lr+MkIk3jaFvSOEdHRyxZsgTm5uZo2LAh6tevD+DVl50wOIlI09jzJK1x9epVjBs3DsDLe9a6urpquCIiouKx50lao379+li6dCn09fXh5eWF+Ph4TZdERFQshidpFUdHR3z33Xdo06YNnJycNF0OEVGxeNiWtFp+fj709LiPR0TaheFJREQkE3fpiYiIZGJ4EhERycTwJCIikonhSUREJBPDk4iISCaGJ1ElolAosH37dk2XQVThMTyJdEhKSgrGjRuHunXrQqlUws7ODl27dkVUVJSmSyPSKbzDNpGOuHHjBlxdXWFubo7g4GC8++67yM3Nxe7duzFmzBhcunRJ0yUS6Qz2PIl0xOjRo6FQKPDXX3+hV69eaNCgAZo0aQJvb28cO3as2HWmTp2KBg0awNjYGHXr1oWfnx9yc3Ol5WfOnIG7uztMTU1hZmYGZ2dnnDx5EgBw8+ZNdO3aFRYWFqhatSqaNGmC33//vVy2lUjT2PMk0gGPHj3Crl27MHfuXFStWrXIcnNz82LXMzU1RUREBGxtbXH27FkMHz4cpqammDJlCgBgwIABaN68OVauXAl9fX3ExcXB0NAQADBmzBjk5OQgOjoaVatWxYULF2BiYlJm20ikTRieRDrg6tWrEEKgUaNGstabMWOG9G97e3v4+Phgy5YtUngmJSVh8uTJ0vs6OjpK7ZOSkvDZZ5+hadOmAIC6dev+280gqjB42JZIBxTcolqhUMhab+vWrfjwww9hY2MDExMT+Pn5ISkpSVru7e2NYcOGoX379pg3bx6uXbsmLRs/fjzmzJkDV1dX+Pv78xFyVKkwPIl0gKOjIxQKBS5evPjG6xw7dgx9+/aFp6cnfv31V5w+fRrTp09HTk6O1CYgIADnz59H586dsX//fjRu3BiRkZEAgGHDhuH69esYNGgQzp49i/fffx/Lli0r9W0j0kZ8qgqRjvD09MTZs2dx+fLlIuc9Hz9+DHNzcygUCkRGRqJHjx5YuHAhVqxYodabHDZsGLZu3YrHjx8X+xn9+vXD06dPsXPnziLLfH198dtvv7EHSpUCe55EOmLFihXIy8vDBx98gP/85z9ISEjAxYsXsXTpUrRu3bpI+/r16yMpKQmbN2/GtWvXsHTpUqlXCQBZWVkYO3YsDh48iJs3b+Lo0aM4ceIE3nnnHQCAl5cXdu/ejcTERJw6dQr79++XlhHpOg4YItIRDg4OOHXqFObOnQsfHx/cvXsX1atXh7OzM1auXFmkfffu3TFx4kSMHTsW2dnZ6Ny5M/z8/BAQEAAA0NfXx8OHDzF48GDcu3cPVlZW6NmzJ2bNmgUAyMvLw5gxY3Dr1i2YmZmhU6dOWLx4cXluMpHG8LAtERGRTDxsS0REJBPDk4iISCaGJxERkUwMTyIiIpkYnkRERDIxPImIiGRieBIREcnE8CQiIpKJ4UlERCQTw5OIiEgmhicREZFMDE8iIiKZ/h+yKS5kEEVHQAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"\n",
"# Assuming 'data' is your DataFrame and 'category_column' is the name of the categorical column\n",
"data_red = data.loc[:,['Ligand#','Class']].drop_duplicates()\n",
"category_counts = data_red['Class'].value_counts()\n",
"\n",
"# Now plot the counts\n",
"plt.figure(figsize=(5, 3)) # You can adjust the size to fit your needs\n",
"category_counts.plot(kind='bar')\n",
"plt.xlabel('Class')\n",
"plt.ylabel('Count')\n",
"#plt.title('Count of Unique Categories')\n",
"plt.xticks(rotation=45) # Rotate the x labels so they don't overlap\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "f3d8f0fb",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAroAAAEmCAYAAACNsTO8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD8v0lEQVR4nOz9eXgc13XnjX9uVfW+AmjsAFcQJLiIgkhttmR5j+XdceItDim/diZx5ufE0XgSO7EZW/FYGW+vJn7HdiaZRJS8yI4d20q8KtFmyVpICiRFEiQALiCABgg0Gr13V3ctvz8KAAEQIAESO+vzPHgA9Hqr6t5b5577PecI0zRNbGxsbGxsbGxsbFYZ0lI3wMbGxsbGxsbGxmYhsA1dGxsbGxsbGxubVYlt6NrY2NjY2NjY2KxKbEPXxsbGxsbGxsZmVWIbujY2NjY2NjY2NqsS29C1sbGxsbGxsbFZldiGro2NjY2NjY2NzarENnRtbGxsbGxsbGxWJcpSN2C5YRgG0WiUQCCAEGKpm2NjY2NjY2NjYzMF0zRJp9PU1dUhSTP7bW1DdwrRaJTGxsalboaNjY2NjY2Njc0V6OnpoaGhYcbnbUN3CoFAALBOXDAYXOLW2NjY2NjY2NjYTCWVStHY2Dhut82EbehOYUyuEAwGbUPXxsbGxsbGxmYZcyWZqR2MZmNjY2NjY2NjsyqxDV0bGxsbGxsbG5tVyYqSLjz99NN86Utf4tChQ/T39/OjH/2Id77znePP33PPPezfv3/Se2699Vaef/75RW7p7DENk3hXnEKygDvkprypHCFNdsMbBnR1QTIJoYBBk9GBdOIYmCb4/VBeDmVl0NQEl4k8nPlDQ3N77/x9xOpniU+SfY1sbBaGuYwtexzazCfLrT/lckXu+8xznDtjsG6DxL6/uR2v17l0DZrCijJ0s9ksO3fu5EMf+hDvfve7p33Nm970Jv75n/95/H+nc/mc7Kn0t/VzZP8RhtqH0AoailuhsqWSnXt3UttaC0BbG+zfD+3tUIilcUfP0pI5wF7jn2nVD4IQEAjAxo1w662wdy+0tl7+iyd9aAHcbmhpmd175+8jVj9LfJLsa2RjszDMZWzZ49BmPllu/eme9z/BD3+wnbx2OyYCgcn//rsk7/6dYzz43dcsfoOmYUUZunfffTd33333ZV/jcrmoqalZpBZdPf1t/Tx131PkYjmCDUEcPgelbInooSiJ7gR37buLAWq57z6IxaDBF8cXfY5sPM8hfSvd5p+zT/4ftIrD1rLu9Gmr13d3w759M/f4tjYufmgD+HyQzcKhQ1d+7/x9xOpniU+SfY1sbBaGuYwtexzazCfLrT/d8/4n+M73bkM3FRShIqOho5DTwnzne7cBTywLY3fVbZ48+eSTVFVV0dzczB/8wR8wODh42derqkoqlZr0s9CYhsmR/UfIxXJEWiK4gi4kWcIVdBFpiZCL5Ti8/yj7HzSJxaBli0mwrx05NUJQytEinSJmVvCQ2IPh9oIsW729WIShIXjoIWtvYyqGYS0FYzFrCRgMWu8NBq3/Y7GZ3zt/H7H6WeKTZF8jG5uFYS5jyx6HNvPJcutPuVyRH/5gO7qp4BJZFElDSKBIGi6RRTcV/vWH28jliovToMuwqgzdu+++m29/+9s8/vjjfOUrX+HAgQO89rWvRVXVGd9z//33EwqFxn8Wo1hEvCvOUPsQwYbgJWkxhBAEG4K8fDDP0UMlGhpApJMwFLM0ubKMMA0a5CgnjC10mRtBUaznhochHIYTJywBz1S6uqz9joYGS/Iw+Yutx2d67/x9xOpniU+SfY1sbBaGuYwtexzazCfLrT/d95nnyGshFKEipliSQgJFqORKYe77zHOL06DLsKoM3fe+97285S1vYfv27bztbW/j5z//OR0dHfz0pz+d8T2f+tSnSCaT4z89PT0L3s5CsoBW0HD4HNM+7/A6yORkclkTnw/LU6uVANPq0aaJV+QpmG6SZvCiCl3TrCVeoWDJGaaSTFrP+XzTN8zrnfm98/cRq58lPkn2NbKxWRjmMrbscWgznyy3/nTujIGJQEab9nkJDRPBuTNLv2WxqgzdqdTW1rJ27Vo6OztnfI3L5RovDrFYRSLcITeKW6GULU37fClXwu/V8foE2SzgdILiACwjFyHImR7cokBIpC7uVSgK6LqlTg+FLv3gUMh6LpudvmG53Mzvnb+PWP0s8Umyr5GNzcIwl7Flj0Ob+WS59ad1GyQEJvoMoV4GCgKTdRuW3sxc+hYsIMPDw/T09FBbW7vUTZlEeVM5lS2VpHpTmKY56TnTNEn1ptix28MNuxz09oIZCEFlxPLm6jqmkOjV69gqnaRJnLY8uUJARQUkErB1q5VvZCpNTZaYp7fXMpgnf7H1+Ezvnb+PWP0s8Umyr5GNzcIwl7Flj0Ob+WS59ad9f3M7HiWJZrowpzhtTQM004XXkWDf39y+OA26DCvK0M1kMhw+fJjDhw8DcPbsWQ4fPsz58+fJZDJ84hOf4LnnnuPcuXM8+eSTvO1tbyMSifCud71raRs+BSEJdu7diTfiJdYeQ02pGJqBmlKJtcfwRXzcuPcG9t4jiESg/aQgVd+CFiwjZXhpNzYTETH2mA8hFXKWF9fnszy/lZWwZ8/0SfUkycpBEolYYp9UyjKSUynr/0hk5vfO30esfpb4JNnXyMZmYZjL2LLHoc18stz6k9fr5N2/cwxZaKimD81QMAzQDAXV9CELjd9+9/FlkU9XmFNdisuYJ598kte85tJUFXv37uUb3/gG73znO2lrayORSFBbW8trXvMa/uZv/mZOAWapVIpQKEQymVxwGcN0eXSrtlZxw54bLptHd2vmRfYYD16aR/e226yefjV5dLdund175+8jVj9LfJLsa2RjszDMZWzZ49BmPllu/eliHt3QeB5dryPBb7/7+IKnFputvbaiDN3FYDENXbAro6167MpoNjarErsyms1Ssdz601JVRrMN3atksQ1dGxsbGxsbGxubuTFbe21FVUazsbGxsbGxsbGZwHJz8S4zbEPXxsbGxsbGxmYlMp1ot6XFilyzReCAbeja2NjY2NjY2Kw82trgvvus+r8NDVb2pWwWDh2C7m7Yt882dllh6cVsbGxsbGxsbK57DMPy5MZilgc3GLQqowaD1v+xGDz00MWCUtcxtqFrY2NjY2NjY7OS6Oqy5AoNDVaa0YkIYT1+4oT1ugXCMKCjAw4csH4vV5vali7Y2NjY2NjY2KwkkklLk+vzTf+81wvRqPW6BWCiNDift4zcxkZ473vh7W9fXrFwy6gpNjY2NjY2NjY2VyQUsgLPstnpn8/lrOdDoXn/6jFp8KFDlvN4eBhOn4af/Qz+y3+BD37Qes1ywTZ0bWxsbGxsbGxWEk1Nlha3t9cqHjUR07Qe37rVet08MlEaXFkJp05BPG45lmtqrK9+6in43OeWj7FrG7o2NjY2NjY2NisJSbJSiEUiln4glQJNs363t1uP79kz7xqCMWlwfT10dlrqiXAYHA7rq4JBy8vb27t8YuFsQ9fGxsbGxsbGZj5ZjEit1lYrhdiuXZZbtavL+r1794KlFhuTBus6JBKXSoQVxXquvHzBY+FmjR2MZmNjY2NjY2MzXyxmEYfWVti5c9Eqo41Jg8ccyFMNXU2zjN1gEIaGFiwWbk7Yhq6NjY2NjY2NzXywFEUcJAmam+f3M2dgTBr8zDNW2l5Ns2QLYOlzs1moqrKM3QWKhZsztnTBxsbGxsbGxuZauQ6KOIxJgxsaLMM2mbQOp1i0pAwej2UM9/UtSCzcVWEbujY2NjY2NjY218oyKOKwGLS2wl//Ndx1l3VYAwNWNrNIBDZvtiQLCxQLd1XY0gUbGxsbGxsbm2tliYs4XBOGMSedb2srfOtb8Oij8MgjVpYFSbK8vLt3W0buAsTCXRW2oWtjY2NjY2Njc61MLOIQDF76/AIWcbgmrjJ4TpLgne+0KqEtUizcVWEbujY2NjY2NjY218pYpNahQ9bvifKFsSIOu3cvD+HqGPMQPLeIsXBXxTKyuW1sbGxsbGxsVihLVMThqrkOgufANnRtbGxsbGxsbOaHJSjicNVcJ8FztnTBxsbGxsbGxma+WOQiDlfNPAXPzTGObdGxDV0bGxsbGxsbm/lkuQtXYV6C59ra4MEHLUlvLmfZxrt2wT33LB/ntW3o2tjY2NjY2Nhcb1xj8FxbG9x7L3R0TJbxnj0LR4/CV7+6PIzdZeRctrGxsbGxsbGxWRSuIXjOMOBLX7IMWl038TpUgq48XoeKrpscPQpf/vLyiGNbUYbu008/zdve9jbq6uoQQvDjH/940vOmafLZz36Wuro6PB4Pr371qzl+/PjSNNbGxsbGxsbGZjlzlcFzHR3w7LMgGSXC6gWcsX6kgX6csX7C6gUko8Qzz1ivW2pWlHQhm82yc+dOPvShD/Hud7/7kue/+MUv8tWvfpUHH3yQ5uZmPv/5z/OGN7yBU6dOEQgElqDFNjY2NjY2NjbLmKsInjt2DFIjGmXFQYSes6QOo4hSiYCsM6JXc+yYwpYti3EQM7OiDN27776bu+++e9rnTNPkgQce4K/+6q/47d/+bQD2799PdXU13/nOd/jDP/zDxWyqjY2NjY2Njc3KYK7Bc6YBhQJCU0EyrfcLYRm8hgHFIhgFML0stXhgRUkXLsfZs2cZGBjgjW984/hjLpeLu+66i9/85jdL2DIbGxsbGxsbm9XDdt9ZgkaClBkESaaIg4LhoogDJJm0GSBoJNjuO7vUTV1ZHt3LMTAwAEB1dfWkx6urq+nu7p7xfaqqoqrq+P+pVGphGmhjY2OznFjuyS9trg77utosAs2ZNl4pGfzMeBPdpdpLMjY4hcYd0uM0ZyRg45K1E1aRoTuGmFLdwzTNSx6byP3338/nPve5hW6WjY2NzfKhrc0q/dnebiWMd7ut9EJ79y6PfEA2V4d9XW0WCUmCtym/5Ff668iZbsQEja6JwCvyvFX5JZI0vdx0MVk1y7yamhrgomd3jMHBwUu8vBP51Kc+RTKZHP/p6elZ0Hba2NjYLCltbXDffVbuzPJy2LTJ+n3okPV4W9tSt9DmarCvq80iYmzdzgvyK6hgmIDIYCLQkTARBESGCoZ5Ub4dY+v2pW7q6jF0169fT01NDY899tj4Y8VikaeeeopXvOIVM77P5XIRDAYn/djY2NisSgzD8vjFYpanLxgEWbZ+t7RYjz/00OIkvzQMK/fQgQOXZpy3mRvL6braXBd0Sc284LqTESNM3nQhYaCgI2GQN12MGGGed72KLmnpq8OtKOlCJpOhq6tr/P+zZ89y+PBhysvLWbNmDR//+Mf5whe+wKZNm9i0aRNf+MIX8Hq9fOADH1jCVtvY2NgsE7q6rG3thoZJmjrTNEmqKbRyL54jB/B0diBtXsCcQPYW+/wyw3UFrP8bGuDECet1y70s7TLCMA264l0kC0lC7hBN5U1IYtX4B6+JkaTEaX09SWEgmzpOikgYGEhoKCRFiNN6GSPJpT9fK8rQPXjwIK95zWvG/7/33nsB2Lt3Lw8++CB//ud/Tj6f54//+I8ZGRnh1ltv5Ve/+pWdQ9fGxsYGrAClQgF8vvGHYrkYHcMdjBQSmFqJNYMqj/3is7w2+Be01i6A0Tm2xR6LWQaYzwfZrLXF3t192ST1NjMwzXWdhNcL0aj1OptZ0dbfxv4j+2kfaqegFXArbloqW9i7c+/CjItlyOUM/Xgc0gUHKAZONIRugimQhYkkQx4H6YJEPL7EB8EKM3Rf/epXY04QPE9FCMFnP/tZPvvZzy5eo2xsbGxWCqGQ5T3NZiEYJJaLcaj/JQpaAZ/DR6DkwHQJDmW7eOap+9h31775valP3WIf8z6ObbG3t1tb7Dt32pkC5sKU63oJuZz1fCi0+G1bgbT1t3HfU/cRy8VoCDbgc/jIlrIcih6iO9E9/+NiGTFm3L7Y+yKPnXmM/nQ/qq5eYuhnMlbKXIEBug6GCVjGLmgIycA0JTKZpT6iVaTRtbGZF2zdoM1qpqnJMih7ezENg47hDgpagTJ3GKekUD6cY3BdJYGtrcRyMR46+hCGOY9jYC5b7DazZ8J1ZaozyDStx7dutV5nc1kM02D/kf3EcjFaIi0EXUFkSSboCtISaVmYcbFMaOtv495f3sveH+/l47/8OI+eepTuZDdl7jLKPeUcih7ivqfuo62/DSHAKYpIJRXVcFCUHGiSgi5JFA0FSVNxiuIlw3wpWFEeXRubBcXWDdqsdiTJ6s/d3eRfbqMgYgQ8Hty5ImWxLJmghxdeswlkiYZgAycGT9AV76K5Yp50nfYW+8Iw4bqOLyS8XsuT29sLkQjs2WN7yWdBV7yL9qF2GoINl6QmFUIszLhYBox5sYdyQ8TzcRShEPKESKpJjlw4wk21N9ESaaE91s5DRx/iD7Zsw6cliRPAEDKGaZ0rSRh4HXkkTSeoJ9m+pYqlNjXtXm9jA3ZqHpvrh9ZW2LeP1PZN+NMF6i/k8aWLnNtUxU/fdxM9GyMAeB1eClqBZGEejc6JW+zTYW+xXz2j15VduywBZVeX9Xv3blv3PAeSheS4lGc6FmRcLDETvdj1gXpyxRx+lx+n4iTsDpPX8nTGOwHGDf2z//4zZFQMISMJDY9cwC2rVtYF3YXpkLjD9wzNPf+5xEe31Ga2jc1ywNYN2lxvtLaSuv+v+eY/91BreJHCZQzVhjClix6sXCmHW3ETcs+j0Tm2xX7o0OSxBhe32HfvtrfYr5bWVmuesiujXTUhdwi34iZbyhJ0Xap3XpBxscRM9GKruopmavgky9AXQuBz+hjJj5BUk/idfvqS/fzgZ1VUBocwihKJQhB93KOro5sKfneae+/8MtLgR5fy0ADb0LWxsVPz2FyXNEWaCd6wm6ejh2iJrJu0TWuaJr2pXnbX76apfB6NTnuLfeGRJHuemgNTKyZv2NhES2ULh6KHaIm0LM64WGImerFNTBShoBkaDtkBgCIp5MwcRb1IrpTDGN7A2WQ1m2sOsFY9w6n4JoYLleimgiw0gs4kFZ44voYMVC69ltk2dG1sbN2gzXWIJCT27txLd6Kb9pjlzfE6vORKOXpTvUR8EfbcsGf+84aObbGP6eGjUUuusHu3ZeTaW+w2i8T0YRkSt775j+j2fmpxx8USMtWLHfaEiWVjhN1hEKAZGopQcEgOelO9NLrfRZ83gruYwW/ohGpipIohSoYTh1TEp2ToTm5iyAzQvKtlyTWytqFrY2On5rG5TmmtbWXfXfvG84VG01Hcipvd9bvZc8OehUuhZG+x2ywxl0/nvIX3fPR+Xgh/c3HHxRJgmAaGaVDmKaNzuJPWmlaay5vJqBkShQReh5dsKUvIFSKajlLpr+S9zW/iKz8ocqHgo05J4dCgzHnREZRRA7icBRLhBGfyCZba920bujY2tm7Q5jqmtbaVnTU7F78ClL3FbrNEzCYs48Wfb+HLX/4qZxKrtzLaxKIYsVyMnlQP/Zl+dlTtYGf1TtqH2xnMDCJLMuWecm5uuJk9N+xhZ/VWHqh7iVMH6glXpvAmQRlVKJgm9GUb2Nx8kI66Ts4OdPAn6968pMdpG7o2NqtEN2iXq7S5WiQhrapUSauaqaJS2xM+Z2YblnHmtETzKl2MTS2K0RhspNJbycuDL/PSwEs0BhtZG1rL7Q238/r1r+eWhlvGdcld8Q4qb/8FXQdbONvXwppwL149R67opS/XQKQsxu9teph/OGdyw87cEh+pbeja2FiscN2gXa7SxuY6wM71PS9c72EZU4tijAXcrQ2vpTHUSNtAG80Vzey7ax/NFc3jDpOJ95kO/SR/RDl9mT10GFuJKvW4HQVaGw/y/uqH2frMYd7igu63akt5qIBt6NrYXGSF6gav53KVNjbXDZcXldq5cufA9R6WcbmiGJKQ2FS+ieHcMJKQJhm5E+8zr8hF+ODQS7hLR3jRbOag6/UUSl62FI4Q6DpKqQB3KuCOL31pNNvQtbGZyArTDc60Mh8rVzlWxWZnzU5bxmBjs1Kxc33PK9d7WMZsimJE09HxohjT3WcaBw2CRdgv3sP/yfw5A8k1aCgoaNTI5/lD5xfZW/weTf3qYh7atNiGro3NCuZ6LVdpY3Ndsci5vle73n+VhGVcNXMtijHdfabCW8G/au/jfv0r5E0vYUZwoaLiolffwBcKX8WvSNxTvWNRj206bEPXxmYFM9eVuc0yww4sun64lmu9iKLS60Xvv8LDMq6JpvAGXqXWcK7jCJV1zcTqwuNVEacrijHdfaavLsJP9D+nYHqpIUoeHxkClkeXKBfMOr5m/Dn3tLiX5BgnYhu6NjYrmOuxXOWqwQ4sun641mu9SKLS603vv0LDMq6Ntjak/fv52OEOei70kpW6ia2r4sDrWzjZ6BkvivHBHR8c9+rH83FcsmvSfaYtdiu9rMFBkfOsR8MBCMBEoYSfNL3mGv7zfJDf2r6kR2wbujY2K5mm8uuvXOWqwA4sun6Yj2u9CKLS61Xvf7mwjFUn4ZjQF4MN66iuq6Y72k5j1yCB/mEuvGsTNbfcxi11t/Dw0YfHvfouxcVQboih3BA3192MEAKp20nedFPCiYmEhD5m51LCSYIynEaJ6NFBeHPdkh62beja2KxglqyMq83VYwcWXT/M17VeBFGprfefzKqTcEzTFyMEqWiuIrkmybpTp9gW3czZbR/g88984RKv/lB2iAvZCxyIHmBLZAtuekaNXBkwMJDBHPsyExOZIkCpC1haQ9eeRW1sVjhjZVx31e0ino/TFe8ino+zu343+161urYaVwVzCSyyWdnM57UeE5Xu2gXxuPWeeNzy5M7DDsBs9P4FrbC89f6GAR0dcOCA9dswrupjxiQch6KHKPeUs6l8E+Wecg5FD3HfU/fR1t82zw1fBGboi0IIwp4wgQ0tlJ2O8otf/H/jXv2gK4gsyQRdQW6uu5lqXzUAw7lherVhQGACJgIB4z/m6OMgyClXdw3mE9uja3N9ssqCgJasjKvN3Lnes9VfT8z3tZ6rqHQO89yK1/vPoIM2fn8vXYHWWU/1q1bCMYu+mO/uYqAvRcO29dN69bdEtjCcH+bPbv8z/v2ZAQ4Ic9SLKzAxx5QLWOYuCGFQSJgsNbaha3P9sUqDgOwyriuE6z1b/fXEQlzr2eb6nuM8t6L1/jPooNueSrH/33por9pIwRmc1VS/aiUcs+iLJYdM3Klf1qvfMdzB/sP7cfWsQQgTJ0VKpoKJNK5cEBg4hIYhJIKJ7MId0yxZQcsRG5t5YGxCPHQIysth0ybr96FD1uNtK3BLymZlMRZY1NtrBRJNZCywaOvW1Zut/npiqa71VcxzY3r/iDdCe6ydlJpCMzRSaor2WPvy1ftP1Z4GgyDLtBW3cd/Ixzg0tJbyeCebmsxZTfWrQsIxHbPoi/rWLQzXlZEtTW+c9qX66En10DXcRVXFeZyyioGEImlIwkASJpIwUCQNAwmXrFJX2bsIB3d5llmPtVmWzJPuacmZYUIcDwyJxazAkJV6fDYrg7HAokjE8ralUqBp1u/29tWfrf56Yimu9TXMcytS7z+N9tQwBfs7biNW8NNSOUQwN4CcTc5qqp8o4ZiOZS/hmIlZ9MXwH3yMLdVb6U31Yk4xhg3T4OXBl3FIDlprWulvcFHj7cdAQjOcCOsvBAaa4cRAotrbj765cYkO+CK2dMHm8qymbf5Fri5kYzOVccmk1kpo7/+g6Yl/QDp54vrKVn+9sdiVCa5xnltxev9ptKddyUraE7U0+EYQDsWSiBSLwJVPwYqWcFyJnTute/cjj0BPj2X8ejzjfVFqbWVvvzRtFp/OeCclo8RNNTchSRKl7QXcrgxOpYhhCDTdiYGlznXIKpJk4nVnaXrd+qU+atvQtbkMqy3Xpx0EZLOEXLpm3ErLlq+y96Pnaa0fvGKkzCqLn7y+WMzKBPMwz60ovf802tNk0UNBc+DzqpbXUpHB6Rx/y+VOwapN2ThxAsrnrcfq6+G974W3v328L4559cdSq0XTUdyKm+aKZkzTpCHYAEB5sgbJW8SVypHRguPZF8BEN2S8jhSyt4TUH1zq7GK2oWszA6sx16cdBGSzRMy4ZnxJ0H1+Lfv2raX1MnbFatpYuW6ZbRDZtXK9zXPTFNMIOfO4lRJZzUUwF4dIJQQvHu+VTsFMxt7u+t3suWHP8pRwzIRhwKOPwgMPQCZjna/GRqt/9PZaE8vatZMmkum8+oZp8Kc//9OLWTmyTlKFEOmiH8O8aEqaCHRTIV30k8yHSMRyS3DQk1lVhu5nP/tZPve5z016rLq6moGBgSVq0QpmtttfHR3WBL4S3EyLUF3IxmYqs1oz7jfZ6elESl86jlbbxorNAnO9zXPTFNNo8um0eLs51F9PS7kb0dw8fh5mewpWnIRjOtra4MEH4cc/hkQCAgFQVWvBFYlc1mk11atvmMYkSUeiOMzAcCOG4QAMxGiqMSFZ51g3HPTH64nGfg3sWOQDn8yqMnQBtm3bxn/8x3+M/y/L8hK2ZgUzm+2vjg747GdhZGRJ3UyzLtO4CNWFbGymcsU1oy/OiR8N0nXwizTLpyeNI2Nn66rbWLFZYK7HeW6KDloqRNlb/u90a39Ee/AVNDgDeLW5n4IVJeGYytgKuafH0idHItbjQ0OWZ/emm6zHZhmbMlXS0XfkXRRLHqycBuZ4IgfTsEQMICiWXBzuCvHbC3yoV2LVGbqKolBTU7PUzVj5XGn7q6/PGkBCWKlrlsjNNOcyjYsdGGJz3XPZNWMshre9jWiikuTmWlgjTRpHXXv/B+3tW+34SZu5cT3Oc1N00K2hEPvSTex/WLpuTsE4E7eRGhut+7XDYU0aDofl3e3shIqKOcWmjEk6vvjDx3jh12+D8RIRF0tFTKyPZpqCrt4ZnGWLyKozdDs7O6mrq8PlcnHrrbfyhS98gQ0bNsz4elVVUVV1/P9UKrUYzVz+XG77yzDg5ZetAdPaenFZvMhuprEyjVNrch+KHqI70c2+u2ZIh7OYgSE21z0zrhlNEzo6LL1gwEGoTJqcBqq9neT3fkEh34LPJ6b9bDt+0mZGrsd5booOuhXY2Xp9nQJg8jaSaYKiWEF5Y8auz2ftxCaT1smYg2bbMODkf9yCqbmmPDN1jrIMYGe5Ph9HdE2sqst966238tBDD/HLX/6Sf/iHf2BgYIBXvOIVDA8Pz/ie+++/n1AoNP7T2Lj0Od+WBZfLudfWBqUS7Nhx6Ywx1/rtV8nUMo0Ta3K3RFqI5WI8dPQhDHOGnLhjE+LNN1u/l3rmWy25im0uYcY87akk5sgIvTSwtTxKU2jo4nOj4yjUcwy3kSM7Q3Gh1RZXtBxYVUNxuc1zS8B1eQombiMFgxAOM2kSGTN8i8U5FS1p62/jk9//R851evGUx0YfnW4RftHLW7sufe3Hc42sKo/u3XffPf73jh07uP3229m4cSP79+/n3nvvnfY9n/rUpyY9l0qlrk9jd7rcRTNtfzU3W3fshobpP2sR3EyrqkyjHVK/qplRMjmi0ZtuJFKWZ8+mF5DElGpFXi9N0mla6tMc6vVdF3FFS409FG1WBVO3kZqbLV1uImEZv2Ort54eS9pwBcGyYRp0DHfwxWe/SO+QAzchVKHO+PoxI1emRKR86eOkVpWhOxWfz8eOHTvo7Oyc8TUulwuXa6oL/jrjSrP71O0vw4A//dMlTV8zmzKN0XR0+ZdptEPqrwumXTPqHnaHu9iz5QCtkfilb8rlkDwu9r5XpXv/9RNXtFTYQ9Fm1TBVehiJWMFnHR2WZCGdtry8d9xxxVXcWBzMwb6DHI8dR9G3kjdi6P0bmKzLnYqBWxRwn9cW4ADnxqo2dFVVpb29nTvvvHOpm7J8me3sPjHSxTCWPH3NxDKNQZdlbAvDpLI/iSdXZEgp4gm5lneZxtWYq9hmRi5ZMwY8NH3j10gvHQRz5nHU+vZG9q29vuKKFht7KNqsKqbbRgqHYds2awJqaoKPf3xSoYjpmBgH43V6cctupMh5RtxnMfM7EBgIITBNMVoswkJgIAkDr7uAsxhd+OO9AqvK0P3EJz7B2972NtasWcPg4CCf//znSaVS7N27d6mbtjy52tl9GaSvmVqmcc2ZYW57vIPangSOokaCAvnmdTTtSEPFgjXj2rBLEl93TI6VkeCePXD+3BXH0fUYV7SY2ENxdWFXEWRm6eGdd85qhTw1DiapJjFMg1QpjtT0OMbLb8dAwjQnDxhJGMiihBCCqtAQ61y2oTuv9Pb28v73v59YLEZlZSW33XYbzz//PGvXrl3qpi1PrmV2X+L0NRNz+mmHDvBbPx8ilNEYKnMRD5iEdB83RUH6m88v3z1HuySxzRzG0WIV1roesYfi6sHWWU/gGlbIU+Nggq4guqlT0kvI2WoMHKOvnGw7GKaEJCQccold6w9SX3d8AQ5sbqwqQ/eRRx5Z6iasLK51dl9iN1NrbSv77vw0yUc+gjuZ5WSNC1k2qHBX0lzRTMBTsbz3HJd7qU7bLbI42O7aJWe5D0Wb2WHrrKfhKlfIU+Ng0sU0spDZEttF9MUPk0RCkTQ0w8FkY1egGU6EbvD6HY8RL9gaXZulZD5m9yV2M7VmA5i5StLb6qn2OnHKTkKu4MVMDMt5z3E5l+q03SKLi+2uXVKW81BcCcy6OuVCtsGA/Q+axHrytDRmEKYTpBDBALRsTNJ+Uuahfyyx8+/CSPIqWUQuoDNiYhxMwBFiuKeCNf07cfz6v6LmKgj7BxlJ1zB9IBrousJ3nvsg76m/nzvmpUVXj23ornSupaOvhtk9mUSoKsE1awhOV+55Oe85Xk7r3NMDHg/s2nUxeGCxPHy2W8TmSpgGpLuglARHCAJNVpH7CSwH42e2LEnYwSrZMZlzdcoFouvRE7T/WKKhGEX0ZUCRIeKGWhBSgQaPixMvhOn68S9pfs2boXyFz2EL7IwYi4N56rkUWtvvEOuuxJUsERtsoqg5cTsyGMZYf52cGlGgI4TJs513cMepwDW35VqxDd2VzLV29GUQVDZbZrwnrPQ9x+k0msWidT11Hf7hH+DhhxfPm7paw89nYZjZzJJ4G5zZD6l20AsguyHYAhv2jhsPy8X4mQuLGnYwj0bKUi4oLled8lz8PPes+Tz1rq0Lb8e3tZF84DsUEr+HL2JaY1xkQemBBBCswhtwEh3xkYyeg5fvgx37Vq6xuwjOCElI3Cr9Ed/7WYJ0wkVlxQXqpAKxofXoukwiUzWaacGYVADYeq/Aoajkix56zt1yTe2YD2xDd6UyXx19BdREv+w9Yecq8EpP1Gi++KJ1sLJsJfJebG/qagw/n4VhZjNL4m2WkaDGwNcAig+0LMQPQbYbduyjTeXqSnMvA+Ykl75aj+w8GilLuaCYGpU/JhcLuoJUpt7IC9/dTFtcYq3PxOOGlqYR9v5uP627HNPvAFytg3t0cR7KDOIOOMgSICgKEMyCQ4IsQJacP4LbbRCqqQb1JJx9CMp2rrwF7yI5IwwD/u1fytEyQMUhikLFpfhwOHPohoRaCGDJFsQUf64JQkcWOiUEWS1y1W2YL2xDdyUy3x19GQfDXPmeING6QrzSl0WSrHP+9a9b1vzWrUvjTV1t4eezMMxsY3eWmIa1YFBjEJow7ziC1v/Jdsyz+3lo0JzW+GmJtHBy8AQ//9n/YueOjyKFy5bNPDORWcmlZ+mRNQ2TeFecQrKAO+SmfEMYMU9z9+W8qYuxoJipOmXsdCNtj7yFYtKNEY5SW+tCSsQ59Gsn3UcS7NvzXVp3OSfvAFyLg3t0cd7UVEGL2s+hobW0eLoRDhV0BzjALKj0pgLs3tFLU2MM9AZInrB2eYIrZME+xiI5Ix79zQn+4wUV3X+BsCeM21TxOIYJeBOoBf+kvLlTGoFuyKiaB0Uqsa5q8KrbMF/Yhu5KZCE6+jIMhpm1Pf+VVqRl7pWeFcvBm7rSpSATmYVhtmK9OktBusvyivtm6J++BnKxgyRj0BBsvKQ095ozw7zzsSGqzp+kEDiON1C+MgMcZ+mR7W/r58j+Iwy1D6EVNBS3wtoalVs6DuNed21j/HLe1JZIC+2xdh46+hA7a3YumIxhuuqUpiHoePw28ik/5Y19iOIInnQGl2LSst5H+/k1PPT4W9m59m+RxnYAuluvzcE9ujiX/F72Nj9Pd6aC9kQdDe40XqlEruilNx4hUp9kz5tfQJJMwAt61JIyrTQWwRlhmAbfePY7JLNvQfbEKRR0ME1qHLChpotYfM0lcoXJSGiGoDbcS9WNPVfdjvnCNnRXIqvN6zYDc7L7lrFXetYsh+u62AGKCxmQMwvDbMV6dRaQS7yQTeUISVhGgV6wvOLTIXvRtSwOXSBNKc3deDrGWx55CV8qz/mAILO2Di/elRfgOMvVd79RxVOf/zW5WI5gQxCHz0EpWyJxpINU7wX06jp806wjZzvGZ/KmAgghaAg2cGLwBF3xLporFqZvT1edMtlfSaKnFl9kBN3U2CAVkE0BrggCaKhKcKJ7LV3pV9EsPYVx+mH2f/tGYjFx9Q7uCYvz1kgP+276KfvPtNKeLSdadOOWVHbXvcye3z9N6+YR6z16zpIwOVbAgn0qi+CMePTkoxwY/g9M+bXImh/Zk0fTNTqKsFkUcclFChjA5eZqQUUgTl2T66rbMV/Yhu5KZDYd3eWCeBwOHLhmA2KpgoPnbPctgVd6Xs/NcvCmLmaA4kKnMJuFYbZivToLxHReyMqWSnbu3UntxpBlHGhZyys+FT2HrPgoyZCfUpr7tsc78KfydNf5UI0iTqcH3CswwHEWq2/z+HE6/+7n5GISkZbIuCHqCrrwNtdR7JbQ2qN4q5ovMVJnO8an86ZOxOvwEk1HSRYWrm9PrU4phKCY86CVHHjdKnoxRZkDZOfFvuJ1q0SHwiSzXqhroOtEgvaXczQ0+K7ewT1lcd4a6WFnRQ9dwT6SskYomaKpOYO06zZAWAv2bC9U7La0wiuNBXZGGKbBI8cfQQudxFd3HrVnO7L7NIqskDQcnFadaLqCiYTl051JwmDSE1uLbNgaXZur4Uod/eRJ6++vfAVUdc4GxMQo3r6OKp74yRpOtotFT6c6o91nmpBKkhvRcOseQgEPl19Zzh8TvV0dfT5+8kSI9pPzdG6ucQKb0RM3VxYjQHExUpg5rmyYrVivzgLQ39bPU/c9dYkXMnooSqI7wV2fuZPaYIulbw5N0z+zvXgjuwkZJp39L40bP5X9SWp7EoxEfGS1HJXeCKFRI3jFBTjOYvWtdXWTSfURXL/tEkM2F64jV7WO0GAXanIN7rDn4pNzMFKm86ZO+p5SDrfiJuReuL49sTple8zyLsvuDMh54skCdQEFn+JGSI7x9+QKLtyuEiF/HmQvybRCIa9f2ybWNItzyeulOa1B4wGoAzbcDKYOWs4yct0RWL9nZUqW5tMZMY2npmuki95kLz6XB/mWH6KNNFAc2IhSNoBDMcmXnBRKXsYC0S5HMh/kyEGNd35oXo78qrEN3ZXI5Tr6yZNw4QJUV0NFxZwNiIlRvLHTjfT824dwFDR2bCpjU2P5oiYAmNbui8WgowNzZITedCO7w100fePXcM/Ca3EnertOx4L8W08rBYdO8wadxnLI6m4OHQzQ3S2u7txcwwR2WU9ca+3cD3ZMCtLZAbFj4AXWb4fQPBgisxVf79gBZ85cvbs80GRlV7iMYbZivTrMb1op0zA5sv8IuVjuEi9kpCVCrD3G0YePUfPpPYhst6Vv9jWMesUvGg9i/V721MG55Plx46chk0dSVS4ESrgVD80VUzyZCyzJWZhdlwxUm6AUQXNCPgQIyOXQZQd53YnD57j0/UIi2vJ6XMP9hE+dgpYNV2WkTOdNHcM0TXpTveyu301T+cL27dbaVvbdtW/8npF39eOs2Y3Ut5Pm9RKOzAkwSiA5LTt+sIzdLedoahgCPUco4MHtka99E2umxXnkTbDLBNewJVGS3daYX79nZQehzsYZcaWUijPsqJXu3o0kJCo8FcSqDlDxpv9N6sV3og5sxNSq0TUDh1LAMASGOU0fn4BuKERj5Qt8Mq6MbeiuVKbr6K5RLUx1Ndx885wFTxOjeOv9jfS99F7MXDl61TFOZdz4AruIBCOLttt4id3ni+Ntb7PuCWwgUpZnz5YDSC8dhPPnFtTynujt8tcHealvO8WSREvmOTwH8+BXCLqdtITKaM/u4KGHAld3bq7Cm3pFT9y+u67O2E0cgfR+UNshV4CReUrLNRvx9fPPw4c/DAMDVy9rEJLV1ssYZivVqzPfaaXiXXGG2ocINgSn1XwGG4IMnhgkPrybih37JqRri15iPLTCJOPnZClOVjaok8pYW7udiHfKVuYCSnLmXR3T1AS7KkB/ChoFSDoYCmTDcGETnBjC3LKdXLQOT7aEK3ipPjHmaSSz6V1UNffBwNmr2jGZzpvqdXjJlXL0pnqJ+CLsuWHPouTTba1tZWfNzou7gBuqePB/rWGgFxRfHK8WJWcE6R0sIxLOWAFhwoBsL01bb6Zlh3d+duFnitMQrM4c2peLS7lSSsXL7Kit6TzO9ttKnFnXQLaUJV/5HOF3vIwZ30gx6yF9IUzk6T9lZHADGfXyhi6AfwZ5zWJiG7ormakdPR635AoVFSAEpmmSVFMU9aJVGre+HjHDFuHUKN5ktJpkTx3ByjROd5hYfpgjFw6zq3YXIVeYhgaxKLuN43bfgybtPx4kmqjEHXCwu7yXPZteoDUSB3NulvdcPTxTvV3RpJ/+IYWNxeP4yFHEgaE58TldiOEhGuQ2Tjx/I11dwSuem2nlBnMIrJuVJ+6ho9TsrJmbjGEh03Jdafs3n4fOTut3S8u1yRrCOyG0F6Lfg5EecEkge1a0V2ch0koVkgW0gja9FxJweB2ko2kKyQI0t1qZKi5jPEwyfnIjbOj+OmXHTiM8FZM/eAFzXc+3OsYwDXq6H6WstQNvbxY5piBcIXCZ4B2A8ig03YD7//cHVD48SPRQdNKYtA7XJNWbInDbLbi/9Ho4c/qqXc1TvanRdBS34mZ3/W723LBnch9Y6IIppgTDzZCErfXwmc9YdW7aj24iOuzGrWTZvbmTPW8+QOuGk5C0FprSxt9n714xfyEBM8VpLKdg0/m8FtMd75Xm7u2fhv0Pz7ij5j9xgve8VGBfrUxrTSud8U4ShQSl4BHMoIkirUOES6ynm5d7dlymcQITky1ldtYFm2thqsVmGJYm1+cjlovRMdzBSCGBbmjIkkK5I8j2pJvANFuEU6N4x4IKZCXJhWyCglYgpabIFLNUeivZGG6mUIgwMgIdHQsbqNbaCjs9nXQd+iLJzbWEyiSaQkNIYjS5yRx0flfj4Znq7coVZUQmjd9IU3L5wDTRSwYGMnK4DO9IkmjPIMkRP5fTDl9RbjCLFcSsPXFdcSqaK2b4lCnMJl/qmYeIDzVQSBXnrge+XNCdaVoXR9dh8+aLz19NLuFJFzsPVUBzHbztfXDT21ekV2eh0kq5Q24Ut0JpBi9kKVdCcSu4Q27rASFd0XiQhGRF/FcAf+i0rM5FynU951TjVzA+2vrbeOjwg9w5/GOaSJB0u9iYMYjkMjizEsguqDNhVx3iphvZKV0g0Z0g1h6zdlm8Dkq5EqneFL6Ijxv23IBQ5Gv2Ekz1pk4rYVnggikzzam///sQCARJnlcIJR+jKfRrJDMP6uQdgBvDJn+yN8m3v6dwpseJJjnweMSKyw45K2a4Fsa6vXTFW6/9PjqblIptX4P26Iw7aqKxkZv6z7Ej7eGoNMS2ym2WPRHvIFlIolScoVh9htzQDbNokMBjjlzFgcwvtqG7nJlm8jWwjNLSwRep/dFjlJ3pR4wFnNXUQLFIPNbLocyp8ahch8NHydDIJAbpygtcah9buXnSV02N4nV68xhyjqFEDtOZR5EUMEwckkIsN8RIUqO8cBNf/7r/mnaXZ4uUTtIsn4Y1klU1bCqz0PnN1cMzto7ofE6nN+5lS4M1XCrUKF7dQVoJ4xNFqwiiYWAYJjKQc5XjziYIJbqB9dO2Zb7kBnPyxM2WK6TlyqkVZF98mmefqGVksHLueuAZg+5MKPWAOwpbIhCaYgTPJXBppov9dC+c2A/71q7IO+jl0kphSgQzu3nueY3Hwt284eb1s75ZljeVU9lSeVkvZP3uesqbrlJvt8gVGOeUmjByeUNwzIPuyfew0V0kL1Wglkkc9GYoLylsDzcTDlZZOvZiDNJd1LY2c9e+u8YXsuloGsWtUL+7nhv23HB1UqIZGF9QTMdC7swYBm2P9nDfAwFiGTcNTR58fnHJnHrz6zeD+SlI/+4lC4mJi/3b8xrNlOGqq2LX+5p4xdurln0Sjjkxw7VoezHF/r/toT2+kYIevLb7aLoLM3WCol6JNpRDdsq4Qi5rPI+lVBw6CS4dfGum/wyvl6Dp5E+27OUb4iAv9L5AZ7wT3dCpCdTQUtFC4Y1HONI2m8YJnj15Bx+c42HMN7ahu4yYGFxSVexjzfATiNTJ0cnXxXDGxc96ipzuuMDrnu7ByBmcra1ibX0LEdMDp09jDg6SvXCaQqNEmads/LOdkkJNWqatQeaF9JN82Xz7pFX/1CjeYM0gesXLlM5uwlNXAAwkIeGUXfgcAXrO1JDR8gQ9PhobxYJXqjUDQUq6jNYzhFQWxhV0Tb7RX0HnN1cPz0QvRTpeRvrs7axJZXjD9n5udHayRS5xSG+lSekB00RIAkkS1k6sWslu92GawibTGbrzKTeYsyduQhtmzNBwmbRc2aEssUP9+DwxqtwXEE2bKOX0uRno0wTdmVU5imVHkeVBpHUqwp9FaM/DYDNkJmg6ZxO4NJeLvcL0ezOllYqdbqTj8duI99SQyWn89ePl/Lx19jdLIQl27t15ZS/k1WTxGGMRc13POjXh+VPQP7MhaGz/NPuPPEwsF+NNZY141D5SwoFTknB6yhgWCU6IIW4PNSFMHfL94+nqaltrqdlZM7dMKPO5rb2QBVPa2jAefIj9P76TWKKJlkAPQi2D5maCkeniOC7dAZi62A/6HISyJVK9J+ndf54La6eZSxZagjHPjM+ziRzlqb/HbQxBsAU1VUQvFnj5fBN/+713MRwTNNS+jK9hK9limEOHxFXdR2PHTiN19DM8UIGhxRGyhKfMTXlzBb6I14pRkHTwy+M7aqZpoqZU9KJuGcaoCLebzRtv4ctN7+PDj36YvJZnc8VmQu4QAgFb4pyt6mRg+Mo7EiejG67hDM4PtqG7TJgYXNKox/iQ0oPmdBAu244z48ToehmnHuNtWTCfUjDPCzo3lTNAitjgEXbV3kRk61bUZBxpsJ/mC17SVUVUl4JL1SiLZckEPRx+w2aOx9ovSSQ+NYo3VUoi3/htHLF7KQ1sxAj04PXquBNuMrFyHDk/hi9B/QYHQU8YWLhKtf1t/Rx58DRrexyUJdpJBerxlHkuDt5Z6Pzm4uHJZic7AxsaFE6noLM/yLAawNM8yO/6f8i5zDq6io1UGRcIeDQy+OhLlBFRRtjT+CRS2Y3TtmU+5QZX44m7omRihrRc5lAM4+lDRIpxHKbB5mM/o0brpKf5tThbNsxNDzzBw5fpeRzCnZhujVRBwpuSMESBQHk/zrUZ6L7porE7m8Cl2V7so4+C9uSCbekuBNOllYqdbuSlR95CPuXHVTZIIJQiUr5hzovO2tbaS72QLolNG01aXh8k4kuDUX1tg3qRcl3PKiW1yySU/AEEZjYEEye/xqkLfezOBKlIZxBhE5dboyCcIMDn9DGST5BUU4RlMTldnWkgMl1UVCShJgSB2kv740TmW2KwUAVTRndLuno8tBc30lCRR0guiA1BJg037UJEIpfdfJnLYt9EWGuj86cIJX9wUQJxDedn3KmUHyFiJFjrDSM5y8YN5/nIaDJxnvW6ern9zmfRCKFp3WgFDV0z+T9PvpnBQY2ta04iCwOGYwRdlbRsaKb9TGRO99H+tn5e+sZJdm4zcPlKGPgxNIPsUA41XaR2Vy2+kAb+MlhTC8+eIVu5lnhnnHyigKkZCFkQMQdxvvqV+JuaODPSxUB6gJZIy6Q0dmu0IaqAjlmch9TQNSyO54lrMnTT6TSmaY7/L0kSfr//mht1vTExuKQxUM97zT7KdZO2XAH/wDPc0KchFzWyDpNwRODZVaR0VqGpaxh3jY9+V4Hj2nFuqb6F7IYGRnK9JOvKCI8UCMdzlBwK5zZV8cJrNjG4PkxhdABPZGoUr9fhZmNjG843f5mO3/w2pfNbqD7vJVTK0ywf5UypCb/SixnbBo3h8c+Z77SYE1f9SsvrCbX/kLLcAKmBIAOpPLUtIbzZ4Svq/Gbr4RkZge9+d6ozUNC4PYSs9tMT9/Nv527gS4EH+UTuqzykfYCzYj1J2Y+vaLC78hx7lO/Setuot2oaD8R8yg3m6omblWTixmnScsViGC8eQE4nkeqhMFBBIR0hlOnCkxmk46b3UWxomJseuLWVtkqNkZ//Kw1CJiYiaD4v605dwJfIcUEzqK4CZ1UnZCqs3ORjC5oNG2YWh8/mYqsd0P0AePT539JdQKYuSDGl8ZKr4cZ+kuoIEW8ldZEAdZG5LzoneiH1Fw8SeOxHuKNnEP+gwsOLmET7GplVSuobRmgK/Ro8MxuCjugh/uTRQRrPKDhLOmVvzBBZk+ZsoJJM0IMiKeTMLEVNhULsYrq6uRqtCyExWIiCKRN2S5KNb6LQ58HnSIHkhLATEqNBGxUVeL1ixs2X2S72n3w0yU+eDNN+NEVhWMOtvIGWja3sfesBWjeevKrzM+ZUKg69wGvMHoRUQHe6qAqsIVh5KyeDt/LNMy9cU0aTqfNspMaBLJcYOq1imiW8VT5iZiXnE7XUh7tHM7BJCKGAOoTQ0jRU3cyJE+Wzuo+OLRwunAugbt9I2NdFJudHdkgEIjqlbIrU6SLezQai4mZ4zwfJv/Bpsk8dpCiFcAR8OBw6rnSMlOHhZHQ9O49cIFk1eQfJxKQid473ll7kweH/Matz4dOys3rdQjInQ/fw4cP81V/9FT/96U8BqKurI5fLjT8vhOC5557j5ptvnukjbKYwNbik2kxSV0gSM10US0kaLxRQipB0CxAS+aSOv8akVFbE3wMb0wUiLki4U5w6reEO1aJJgh/cVUkx6CNUAClcRqwujCkJcmpqxkTiY1G8/3HoS6wZfpJIMIk3/CSutc+SO9DEyJFKVGEyLJXxjVP/nep8Cv+xU+ApswzNUSYajdcSqDZ11Z8XlXT63kdjx+MERnrQEwly7Sk873oVYu/ldX6zLTqWSEzvDPRGfNTtqkU9OExnj4sfS7fx7uIjfF58ijORW5A2baTGn6UpeQipsgL2fMxKzzXNzc7neMdVyQ2AaVNGTOuJm0YPeCUvymD7ID/71s/YUbmD6opXsyZ7DpFsB289dJwEPQu1oBfcZI7VQTUU1wRxDw3R0Pk4id0fIl3Qrmigjx3CSMLgkcP/wntdGRLuajTJCUCsoQxvQcebUUkrEuVlwwi9D06lrH52yy3wiU/MHFF4xYudha0x6wKHbprfLd0FZuqCNJjZTbynBlfZIEl1BLfinpSn9moWnUISVGTPww+/Ob8FPRaxxOKsUlL/Tj+SlgelYfoPSeTx9PayKa5xwVuO4fNTPKuwzj/EptIA3SLCoMeJX4C/0INKNcncm3AeeYpQ8n8h1OHZGa3TSQxM03rcFYFcj/X8XPvjQhRMmbBbEjIKuJUSWc1F0Dk65n0+y9hNJcmJ8IybL7NZ7B/rcPDtB1xkNZMGXye+2ihZo5pDHZvo/qda9n1YprU5MKfxOuZUKsuf46PuIUJCY8j00V5QiWo9bFHjJHLfJ6VWUx7YclUZTaabZzXDh5oTOD0liqqbUraI5sijak68rhKmAbpmIktOhByA4ghecYpo/jaSyQk3ohnG0MWFQ5jewdfi9QwSCnQiSyqKXECESwh09FQVSvN/xVxzEy/VvoVQx0+oEjHkfBZdcZCqbaan6TX0Dgbp+19dhD6wBn1oIxlfjpKpIiWO8Eeu8+SH1pEtBi57HsbwReKzet1CMidD92tf+xp33HHHpMcefvhh6uvrMU2Tf/qnf+Lv/u7vePjhh+e1kauZqcElHqOIw9QYVAt4CxrlBUHWYWIAipAQqoHsNXE6oSiDYlg/VVkDVT3HSLFAylvkqcRR+n0BFJdC2AzTXGimwlNxxUTirS64MZAjL2ppvwDpTJamEQPfpnZyzWfoPloB8Y043FlyrjIiRW18BT9mMORyUCzC178+TRrUPQatTbPTWE236k9VrOdcy5sIjPRQyhUZpIo7/+j/oWJL5WXP82yLjoXDl3cGKpQwFA/Frbs4G3CwvufXNA0exXn8MMFNVSRu3ED/219LOP0b6p7+PkLKQnkTOPzjN7uQ6xwbdr2eU78uzS3w5zIpI2pbW6+oB7ycF+WM4wyPtT7GueI5PN/1EAwGubuuhr0hL1WJ82BEocxJoctLqT+Ef0cUR2UWoRhQNKkdeI6B9BZS7h3TG+jTHEI8XeBC+rcZbtjIXa/+OZs2nAIgE3TT3RQhcj6OJ5VHdxnI2Rhi9yssI/f737+8AbZz5+UvdroL6rGuy7Vu6S6BZnBiWqnnX9DI5DRLruCtpLmieVKe2quqxTDnlAWzYKHLPU/DFePfNjrg4AyGoGnC6XZkFVKVNcQGM5RJXuL5AGqnwoaqQWqkJJpDwiECDHeG6W5v5EL0IFtveAqjoQ9XY+tFLfXlFlFTJQZqDFIdUEyAqVmv6f0RVL8aGt85+xOwEAVTJuyWNElDtIT7OTS0lhZHv/XxigLZHKZapDc2s5rsSrEFarbEc7FtJIXCDduTiNgAyB6CUoGWdf20n6vloZ/dys5NvUgzjdcpY9Pwb2D/kf0M54b4rwGNsK7RL4VBCEKyl5HCCE8nYjTJJd7vr+CHzgCmEHPOaDLdPBsfKGeoWElNYx/xIS+ylKXcV8SllMipXoK+EXTNgdBkK9Za8ZFL53E7coRCo33oMmOooFWNLxxSmY1EB+9g87qHcTrSgIRhKORzHrwBH3R/n2SihjPDITx3/gGDZhylmENzesmGajk9HOaxoVrOn/TjPx4havw5p8KHcNz4bb7W0keTovGvZ24mp3pn1WVu3vgb4H2zeu1CMSdD99lnn+Wee+6Z9Nhtt93Ghg2W2Njj8fCe97xn3hp3PTA1uCQvnORNE9lQ8RgSsgElSw6GaZp4MTBLQA4cGjiAkAq6BN6SjkuL8kK9lx6/C8m0AsiGckOMFEao9FayrmzdzInERz0LYrgbb2eGG+IFCoU8TlVDc0h4NhbYdFs/ddkBduWO83LvzVB1DhKDkEpCKIxpmJw8rpJOm8imSeO6CZG4z6fpPnyWfe//Jq0bjl9xO2/qqj8YO01jx+P4Ez3IWglNchASEfSDN8KW35p8HFOMD0mSruzh+X0DH9245XKyCUGwPDB+czBNk+GOOPkc+EMK1evcFMPbOLWhBW8iSlfvIY7u6Masaec1X32MV22LU6jRkbNhnBWq5U6LRCDUgki2s/POo/S0v3r2gT8zpow4CMPH4aN7Edt2U1ENVKSt4xZlTCzROJMX5bRymm+7vk28GMc/7MeVcZH35Xmw5whPNDby/9W/gw2/ySHVbKDYGcV3cwdKUEdPuTFLMsKh4axPsUH7CWLt2hkj86cegrs8w9CZBMfO3sj54fV88He+SfP6drSCxoW8Tl/Qiz+gsUkPMxB+Gw0f2Evtt78ywQADPEkIF6GqFl6KWgbYV75yabCbx0M6MYjo60VqduKtqUA4RmVWpgnJlLU6czoh4LU88Ffa0p3F9vRcnJhzKeE8llbqsbJu/vrxciLlG6iLBC4tOXs1tRjGvXb14E1Orv51Ndqklw7B//tJzOwgpfIqSrlaFL2I8+BBxAKXWGy90WDn+i66ThVI5kKE6hpp2iSNphS7jCGYSII+iChVsca1jSGljZFCAp/DhxF3c+J8hMBLCQ68q4ZbSz6EGWXztihbdph4XDHiQ9XEhwYsXWRk1CCYaRE1UWKgxmD4JTDy1v/Ca1UWU4fh1APgWzt7CcN8FkwZm1OVbqjSIZtBCobY2/w83ZkK2hO1NPhG8JoZcvjp7fETaZxZTXal2IKuLohRyaaNCsV0BqVYBMWD5BrtglUjnDhbR1dvJc0NJUy9j+TpbrKazxo7Fd2Isw9NGpsJZw3FoQ52BcqpNboZkXwXr7kAp+IikUmQ8JVTZySoMhKYQuAxi+SEg2ER4aWulzhQcYBbbrplxrE5cZ41TRM1qZK5kOPYqZsIRxKUV12gmFdorBpkS91J2rp3EPAmKKoeJANkwEShd6ic3XekaWryXTFlkG/vn0xYODioLj+ALJUwDBdC6JgmGKYD07MO1BhK9Dtohdtw+INk5frxtp+OBXnkpWZSeQcBkWJdXYkglTx1rBn3hT/CFx7kJXT2//oedEMBDC6XQlORiuxo6Lxy/1pg5mTo9vT0sGbNxZQU9913H5EJW9a1tbVcuHBh/lp3HTA1uGRIhDhv+qmR4sQVF7oEDkOgKxJyScMTAPUcOPtBMsEUUJSse77LgGCZiX+Dn7vUCHlnjvpkEj2rc1TTMZoq+fSdn7649TL1LlxlQMfjcPQMpEo4hIRkCjBAOHUkB5huQangY++Nv+CLI5tpH1lHg68PbzpGrmTQc3qEVMxNwJtlc+gUZsKFkSsn4HLQUtFDe3cDDz3+VnbeUEIyMpO386YkoXcHy8YHb2Wxl+aXHsGZT1HwRch73YhClkjqPKH9fwfbqqyb5WWMj9bW1pk9PO84SavxTYzESVrCH+bQqS20NKURoWZwRVBTKvmRHBnZz9bqHppqOsgXakFIvFyp8p01R6m7cIFP/qREtbeIswbiqoRkZImM9OI4NgwtO6BqLfga8KvdvPYv1vDSI5krpx+aycNWV4Qbk2Aeh2NHYNANCGu70xWB4BZQXgOlegiFcAfKLvGiGBj8SvyK4fwwkVgESZJwB90U5ALOEScnSx38UzLI36QiCIdC+Z1xdIdGIepBVmSEJDBzUEw6cTaVuKHlCEKYTK2BPt0hmAUnuk+nyn+WWN86fvnU21lXfYxCPIehmRhOg7BHEBtq4uVjNQz+5Q94XeYw7nUNEBiGqg7wJUDSrOpUlV44/rzVpye481KHX2Bw+DwJVM7UujmxLcL7SiNUpXspL/qsHYmRBOgayApUeGFt+eW3dGehqWzrbmX/fpP2l3MU8jpuj0zLDi97fh/WBiYbtANHBuZcwlkSEm+4eT0/b7Xud3VTCo5ddS2GZBJ8MdjZB/4kSCXrcdUHQxtBa4BoYXZu4uFD8ORH0LecoSTJ6IUe1AteYm21SNkIVdkoroUqsTg6F0ipdprH5oJ0CyRGFyKXNQRPQU6G4RYi3kp21d40npc8V8riUGQaHW7uxkBR0uAIoxkSDjmN05GlvGqQwaiLeIcTb4XnoiE3nS52TGJQylieXCMPjvAEI0wCJQBaZu6SmvJWa269TCW72Z5H6/15eE0PdJ+F0q1WFbybfsr+jttoH6klmnbiDrvZfYeHPZdx1l8ptgB/I2TdjBzrhfwwlZUlDCOFcDhxhdx43SrRoTDJjIfc0DDZnizP/p82RgZ7qazr5eZX/pxwvY6rasP42HSMHOH99HJSbMNhaqhiskdSIDBMg6Jw4DeyvLV4CJ9ZRCqp6DmNgazMMznB0W/+I2rkZTa9525qb6q/5NjGvNWp3hTpvjSFRAG9oKOmIzxVuoudrzpCw4bTuN0Z7nnV/6Xnx5/mVH8zNcFBnIZGKuun90KASCjOng+EkLjyDkvoyUep3PIGoi8NsO2OLiLlhxGYlDQfpiljlIr4/FmcpWPg3YKzeJqyqk2UsqHRe4GBx93Ps2fryBahzpfEKOo4PTJlLhlvzTkc/XX85JnfI2dAruiiJtzPmcENGOZMfdFgS+1JyvQVptF1uVz09vaydu1aAP7sz/5s0vM9PT14vbNzZ9tYXBJcIgTPKht5daGPSl+JbMAklBKU/A5cAQ1jGLTfWGsoRVjxObIBYh3od4CjFt4UGeL1wThe0wQNdCHIxWWOPd1PZEsP1O2afhtkvQkNpyBpgNsDkoSsaZhaCakKTEmAJih3VXD7mjPse/032f/iW2mPrSV6voDb3U1TVT+l/AZqA+cx83FkWUUUz0EGEILasM6RrjpeOuNnV5NAjG3ntX8ZnBFInxw3UMuDLWzY1cSpp1Vak4/jzKfIhButqm9AvuhA1G/AmU9anrw1Bhz7/GWNj9bW1kszHJW3IR2/D+IxJF8De995gu5/XEd7p4+G6hN467aSGiqSpMjaqlP88Ru/zrb602SyjZwffA2PS0+QldP83mGdsKoxssVHmTOH05RxlqsY7iImWUTsNyBFwb8R9AJVm1z81ldfeWUv3nRZBPwxWPsSKHkousFMgKpZOYbNYVCd0PUIZB6Cw3VwoZ7yLVvZUNHEqZ6Lkol+uZ+z+lmCqSCSkFCDKv2BfrIii+7X0TWdf0g/wT01t9EU78JZkaGUCeNwG2hFHTQdp15AD4TxblyPRzoK/Y9B7Rsm3YynO4SgK0TYHeZCLkNdRT8XetYQPVNJuT+N3wNBZxpVC6HG30GkpQr9xW5ysWFct4QRa49Yx676QDhALkJkGLYPw4UXLU9jayttVQb/+P3jFOOV+CvryTTWkNWyHM3/ml3nn8d33o1L6BB0geSBAlDqhzYdGtNw0zSD9oppm07Q9uiPuO87FcQG8zSU9+ELpMiqHg48toaXfubkDRXtNDiHUNwK3gov6f40hmbMOafyJVrUehOvI0kuq9Hb7yVS42HPHjE3G9LRB7f0gM8E0wWKCg4VfHEoi0KoCnJ1l3cTmwb0PgptX8AQXeSTLkoFB4rXxLM2i6uym8GfG/QPuKl5vg33fJZYHPvukw9YxmFgsnRokk52JkMweCMc8wAeCELEG6HCUzFeadKdU/FuOkJGzoFLwuU8ixAGYIIwUOQcZZEYgwNB1KSKOzwq55lOFzsmMRh6Boojo57cCXOAlrUWrv6mq8uSUN56xUp202Jo0Pn3cOafwFAhtA0cjdDohdIBSD8F2ZtpDWvs3HbCmlOb6gl9/EM0vf3Kfe5ysQWVjWt45G/TJMwiwVAAnSAOZxI1J6GXcujectyuEo5inMyZkwxG16Ap6yjf5KB53Q8w1Rg9xxqp3aXgi8jgCKIHNhNOdNNcOk9JknGhUcB5sdtgIgmJcjNHGVlMQ5AsOQgWspQ5izR7dV6FiVb3XdLx/yTx6A9R1D+j8vY3Tj7dG8NUrUkwcPAULnxorlocHgd6Uaevswq9tI3KugFKmocbGtv572/+33zn2XfTMbiJoT4fLpdC65o23v+Ws9z4ik/OKouMaD/BTR99N4nzCSKu/0QSJdRiGaYh0EsGkuxA8gURRgayvTicZVQ1uzj5dIoNN6dYU/04F7KC4fwOmmoPo2g6JbEeV9BFT7yHnJajtixK29ndaAjqy3vwyEXODW3AMC91bACEPUlev+M/8TjbL98RFoE5Gbqtra38+Mc/5pWvfOW0z//rv/4rrcs8Gne5MV3N8pKrnm8OV/EG0c9t1QpVXvCqGqkLLsxfFPCeBgTkZUi6QF4rCL3ZRPhBy4PHaSAMA0kINL9EQXfiq9W41RvD/Lu/gmgWfvCDydsgmQw88xi8rQh+NxijRRkUB8KvgLeEKJmWda0aIEHrmiPsLHuaLu0GkgEvobCTaGoHf/G/awi5+1GUImDllhXCxDANvHKMfLaMl06foOiOWppCxQcDj4F3DQQ3jRuoIn6Im247hXF6K67jp8kGyzABo6RTzJZwuBXKN0cQzjCcOAYHPw/6WQhstjwgQkyrjZMk6eI91TTg0GSjpXVLlH1/8Ev2//RW2jv8RIf6ccp5bt54nHe0PsWGihSlUoBQoIu1nvN4R/LsOOdjXeICIw0hlJKEkEwCFQWEBFoJFOFC1nXIDoA6gulrJNFnkDsTxR1yU7erbuaUXJdkETAtb6aSh1wIgoOYQsfQfRiSGyl/AakQRZgCKgy4qxv6NcShIW5KnCKtvIpoOwQbgsQdcVSPir/kJ+/LE62MokkabsON23RTokSaNJ+vP8/XDIVAIY3DjKBUujDyRWv7LOxGalYQxklIZuDlv4bozydt4U+XCEEUh2lVCmRlFWEWiBcjVBkm68JpYgZ05oMYfb9HMNNkXcr6Sgp9JnroGIqSh5IbfCOYioppGmCYUGkiMt9DmB/AAPa//DBHQwVaNt5CTggkIKCE6JBv4a4zP0OqSWG63Aiy46eWfBieCUDyW3Bj66WexsulbVKHMfIx9n+/hlhPHy117QhJAkMioCTZEunlRN82ThT9bN+qo2dLnHvqHFpBY+1da8c97XPJqTzuvP77QdoPx4nmirgdBXav72XPu07Tuvb1QOvs9MSmAdoTEHbAUAHqklbeTV0BzWEZvWX98ErFkshMR7wNTj8IfT/GzA9jugooVQYiKWPknGgxBUckS/krhhn4l0ZyPcO4RhLT3CqvgngbnHkQen9saVwdActIC1o7M+NzwZn9VilobVTmc9OXIXPm4rnxbYB//8QknbcQgrA7ZLnKEy+hNxZRHCVkJxi6G8OUkYSGIudQZBW3O4EiZ9GL+ui5nUEXO+ZZHjkMpTRIrtFgNM0ycmU3BJqteXFCnt45MYtKdpM49104/j8hfQqMIggF8gOWwVzdBJIXel6AfDs8k0Nye2i+cyvs+QC0bp3110yXa7hsQxm/+G+/otrRQJ9eS1jJkM3XEwrkcfsKqDkH3T0BXrn7HA3aL8ikvcRKb8YV9ODz9BEORymWatAKOvGO4XGPesgd4rS7Ck/+AglXFVVGin7JMbq9BEVNxe/0sN5MgFDI4qBaH8Ht0HDJBrppIiFwKCWCZUlk5Tj6oc9iNkcQFTdZJaLPPYrr/CNs2XGEloYCuu4gEa/j1LFbKeWrKakqO24/jCxrxBMthAOd7F73G26of4nu7HZSSfA5M4RMk+NPvZNfnnyM3btNIrNIGVRV7+K1f7EG5UgGreTA1EoYpgOHR8EVcuFwK2D4oDiMcIZpetsuUtFfs678X/B585zov4NMwU/EHcPtLRAMdoNaRW+6FxMT1VUiE/MjYeJyZImlt+GQVTRj+nYl8wEq/EPE4ua0zy8mczJ0//iP/5j3ve99rFu3jo9+9KNWEmhA13W+/vWv87WvfY3vfOc7C9LQ1cijf/lPvOP+DwI7gO/xkfd9iPNvjlFIFyg663ggo7DV4+SNzjA3HhnCfyxNXY+KwzBJOyHpBs0hE7ndQATA6ANpIzhkKOWg5FJwKDp+uYBx2kSuBrmsE/7sT6G+EcayY6RSMDwM/QZEBWwsWRb02K3Ho4A8un2ZBcwS+PsxRR78go3el5CkPJS10v90OT5XioLmxuksWYbDqKdDAIWih4Ajz1bfILHsEBk1zZ1eCY+ugrfxYlDIqIHqoZ1dbz9D4VnBsO7ASKoIRcIX8V7Mo+u+AJuOwkgBFKelZ3OGrZuDO3L5AKMZjJbWdW3s/L3v09XtJ5kUBH15arwjxC+UY1KJpnvJ5Bpx+Du5uyzJb9o8uAUkAg4USihOHcVpoOZkDNPEVARoAD4MdZh0zM2/f/UEWuHElbepp2YR8CStLXvVB7KGIQoYeUFOVRFKHq8riykbGLoXuSSBrEMkDq9W8TwJd3jP8kxkJ0Mnh9GyGkqzguk3GakaQVM0/MbFFIGSkHBpLg6ENPYHq/ioM4hUyCKyAllWYE0QqnIgZUC4rAWGK3KJ5+ySRAhqDOKHcOsFTKWMaA6KcomSM0XahKeGtuLrfx8btU3jbVGrG0nXhUimnWRymwmVRdngHcTMCYySQBYapkdgXPg12V8/SGzbHTNWESuPZfGWTHQhkEwDWQirv4+9rqp6Zh3qTGmbCjGIv0TX+Rrae5tpKO+1ZBxGCVNI6JoDQ1dorOhmMFNF1hjGTdD6Wkkw0jWCN+Idb+tcciq3rm1j53v/hq5b3CSN9dZORc1ZpHwPvPwbWPseiL1w5XRX6S5InYS67WA8ZxmJmtsy9g0T8gKcEtS64Ny3LkoAsDTGyaNP4jr3tyjGeRQjg2F6MQwVJagi+zSK0RBGzoWWcuOszBCoy1LohkTCpGzGo5slY3KSfA/oRasfCkAdguEMVNxkPebwWcFd8YMg5MnnomJCxqDLifo3+aDcRMoZlIp+azGDpYNUS2HczjgOJYfLk0N2AKXU5XWx5a2w5eNw6E9By1ntForV3rF5rJSae5aEq+Hcd+Gl/2Z9H4AyuktbSkHseevvyiYI3QkNvfDmP4HKG646i4aQxKS+PdwxzPDJId64Q+GHpyroSfiJ+BR0YxOSPMxgOkDEN8Dv7v4hg30NRGOvI89Gq6lKDlkqoetunH6T/Ehh3KMuhGBtRQsX+of5YQ7udinUGAmGTCexQoE6yWCrU8OJTt4wWG8OImQT3QQwKZkyLhQEJpJUQnGClh0k/tgDHF27l4Ox/8srkv+BTy8QRSB8AWpSLiqru/H7Y5RybyRS56VmfRw1qxDy9SKEjuLUcHjSbPE8hxZ2oBsejnd9hAItpA5FeeF4ktcVBe4rpQwKhagqH8FMeNHTZbj0NKYjhOxSLi4ihWL1L28jVbfcxh0j+yl2q8T6a1DUPE6piCqC+EMBFCmNmjhGvpTF43AzknESdhbwC410upp4toyS7mD0Jn9Js0xk/unJD/Oh1z7LO+bcK+aXORm67373u7n33nv52Mc+xl/+5V+yYcMGhBCcPn2aTCbDvffey+/8zu8sVFtnzde//nW+9KUv0d/fz7Zt23jggQe48847l7pZkxCiBHxowiMy//jIt+ARjRd7DxNyh0iraR4++jCPDrXzL691sGGnwWtfruUt//oyumlgCglHhYmr2kTEwPCC5ANU0ARIuolUMhBuKHklzKyM0ijAmYCoDC+/DIODlvVRKkE6C88IiBhQUYC0E0oSKBK4BORMSAmoi2PIJlrRQcZwce7CGoq6E4+is8bzAlsbbuLw+Rvwu08iSaPbeVj3yd54A7vXH2RX5ct0ikqG9CzFfA63K4CQnVNPEvga8BZ78NwWwlcoR3N6EQ6FHrOBgZKXUClKU9MhJHfOyuXoKrO8UmrM0ryV32TdJGbKGTmd0TIaECIZeZrrR6DiAjgr0DUdmSxDF8BQypEUiUymjI3eQQ7XFHFvktl00wU81SWcXg0hmbh8OsWCQJgmyKBraQpZJ4W0QWVjGpW11jb1wSiDxwfZuXcnDbc0TJYwTE0ZoRQtXaruRTNzCK2EpjvBpeByJkaNKzAKOjhGo3hVHzgKcFMO/zPn+K3PbCQu3Ur/kX5+/fNfc7rqNFlHFrdxMWOCiUmePJ6cB/+Il18Ez/JaymgoT+IIbkFyexBmO7KpIyllCC1p3Zg9ddbPBC96U5N08RC2mIhUB3ohRz7jQivoJGJraKo/gqtYoKIQ5r2Oatq1jZMuVUc0wLfSnyP5MwlVd+ByFdhccYoP7v4WuxraMIWCqvtxmBlSz/4jp0vVqFqeDbKGTx8kL5wMCctI2C1OIwu40OOgOhxBdjjAlCyvpTcB63vhZPn0OtTp0jaZJqQ7wCiQVCsolFz4XKNeYkkBQwejhKE7cElFiiUFv+NXmCM7wVBwBVzkR/KTt7mZZU7lUSmFVBqieVsLiNjoEwFwtsDwATj6aXDXgq/x8umuxsZDWRUUPJARUNJB0yzjzOUGvwJljZMWjlZy/DaaI39DdVU7mqwjufIIYSIHDYQJpjBwr0lQ6C7DKDgQSgGvNEKvexNl4bqLhu7VZLKYKCfxNEKuD8vCFOBwQCkBqU4ImFa/LCYsDbuvceZzcbm0De9qQhrcBwUXesFEmZA4wDCcFEt+FDmDP6Tiks6D6rmyLrbh7XDhCYg9ax2D7LL611i6savJkjBXDA3j2JfoOl9DsrSLkNJNU20PkgwosmUkjRwB/6j21SXDlrUwUwniq2AsmKt5U5b3+Tp4vKORnoSfeK4Wh1LJhvIB7qzspKz6HTz/0xjlmyJW+wBN86IbDhS5gGl6MPXSRY86EHF6cJZtQjaa+ed4B68qnmGzEacVkwrZQNJkNMVNQZEImHkkDBwSlEwZp+lAIIGkoWkOZNJkYtWY+jN87aWDvLPxAuEw9ItKCmoKVU6R8eXID9axJpxl+61txHKvI1RTQjGTuAICyV2O7HSSH44jjDwIJ5oRQNUrx3d1LpwwGCiEqes4S2nNRmSXcrEy6EQhfkUaTn0dkTmLggHkQSuAXI4h/HRF60kmBSFfGU23vhcpcwa/6zzm9h14N7ioLRjcOBDn8Nn1VDkHSGQqyeVVJM1J0FfGYKqMdMNBbncVOdDxKnKqF80YHWOMeW0n/g098UZ60m+dt75xtczJ0AX4n//zf/Kud72L7373u3R2WtF0d955J+9///u57bbb5r2Bc+V73/seH//4x/n617/OK1/5Sv7+7/+eu+++mxMnTkwKpFtKLCN3plOvcEvDjZimFRnfWts6XqGlL93Hk9sfJ3zyHK0nkzh1A7di3UfzGqh+iQphYBjW/dpT0sEE0wkoArnoAIdu1WQ/NwIHDlgrcEWxbgZCwDngX034LRnqdVA0yxMZV0DXodaLHpRJpQS/6d/CD154H939WyhqLpyKSlOkk1c2v0hPvI6T/ZZXy+PMUSh66Y03UBGI8YE7HkaRdCrUBDlHCNlQUeU63I7QeJTqeDnCgAfhkhCb63A93ceJyjey/8TttA9VUtAU3OE4LZ0t7L39V7Q2HAJTtwxeZ9i6maU7wFVxURunBKyAj7GbqBKYbLSY5uSAEC1jnRfFg+x04iFORMTp7w1i6iaS4qMs6CZ4Y4HQBhW/USCvOTA0gWbIKC4NlwekkoopucllAwxfKMdfruINa5TSEnpRp5AokDqeYqh9iMqtlVRtrbro4Z0qxNwcBF1C1wqc7KokXd6A12+w0XMaBRWhmyBA0kpg6JiKgjBly9gNZ8A1gkinqLh5M+VN5bzj+XfwtfzXyLvyOHQHJUpoQkM1VZS8wp26n/c0D1DjG6HMCKEoKfT084xEKwmFhykJEyUfRfb4UCKbLnpFJ3jRpWDzxUM4lqdWySHyMpmck/5cBHe4n913/hPDoUHUkkmd/zmG/TuoyNwOwOmhAN89sA7N42ZrXRs+qZtM1ktb742cH2nkL+/+Its3dGFIMqcGthEdqKbnkef46C1nac6cwueQKAmFfilMh1xLmTOLmpFQDAmhu2CCVg/VB+5hqApDcLS/FEes/uQMW/0muAXiL13U6JZS1vOyl5BrELdDJat6CXoyVsSzDkIykBWdnOrD48qzce0xyta8wJrqBk4du43+MzWTbspwhZzKY1xOSgFW31fjULb7kh2TS9JdjQdGJa0FbmUNlDTQDZAla9rSi9b7C4NQSo4nx6/wP0PdDSdAmBiGjMCY7OzRTYRTw1WfoHTBi5QvoZYCnGu8k9qyUa/h1VYHm3gOTNPyXBkajG1NKz4oxiFxzDLWlAA4yyyP7uVSf81Utjh+ADHsweVTKamgqTqyQ7KCMw0DE52i4Udv/u+IHa2zM9iFBBvugez5i3EGpm61d65ZEq6Stv94kf3f+C+0R1soFN24lTQt9afY++rv0br+Zcv41jLWQsIZWhAP88TUYxsjKdZXHKc/6SNXVPA6NcpFHHUkgKNmG4r7uUnBtdl8LZlsI6FAF2qhDiFLyM5RK3h0sRCsuo1PtX6Jtv98iDM//QV9Io9S1UdVzSlKWgDZyOJVFRz+EnrJRJI1nAh0rD5tGoJSHmRFwxASajBBg+ZhCwYXRpzoLh1RlHDhRnUXGI7EKU/WEC6Lcra9B8etKWS5iOSpQXEpaEWdYt6JJDtxudI4lAyaZo13IQQOv4tnTm/kjuJ53F0HyHsrUMqDVDR6LhZLes8tVnxKYci635WSlnOnNEJbez37n7mH9r4tFEou3D4fLad3sPcdJ2jVCwiHH3dYxg18+LcPcO8Da/nZb3ZgGALD0MiYYEiCQG0fjbf8jFd7Bmjv20a+bzMXDduJ887Y3yaaoaBkLk0ft9jM2dAFK6XYcjBqp+OrX/0qH/7wh/nIRz4CwAMPPMAvf/lLvvGNb3D//fcvcessucJkT+50KDz6l//E27/w/yBMQcVwBWfPn+Ufzv0DKRJU3LmR8vjLlGUNznsMNkometCBt2TpYA0HyCZIpokhW8oBQzcoSnmECXKZiZTRYVCAe2xbqmRNBJIE3SY8pMP2SvBJkDUgOwzvlTHLTbJ5wbP9TXztZ39OMhOhpqwPtytLsejhaPQG+pON/O7tj3DwzM20921FLdXjVApsqOriddv+E58rS0kXeCWN6lKGoiQoOSLow3niHcPkRwqYuoGQJfwVBuVrJdxvex9tv3ma+/7zlcSKQRo4i8+VIutycvDsjZzN7OCvIv8vu9b9BslTZq12FZ9lfBSTkI9a0ohjX4BMh2V5OMusG5yzArI91t+lJEYhSdfgNpL5ckLKeZqqUkjC2taWPQH8TpW1DWE03Yci5yiYTbwq0UdCMeC0glvSISgwDINiWsLjEgjDSTG0i/52gdtfxDBMNM1LbihD/sWXCRayeDxe4kY5skO+NBBpknfpBG36dh7segcvn99K0eHC48rSUnWCe+56kNa1bZglYWXLcOmQBPIGuJ2glKw656OBREISvPuD7+bsA2f5R+8/MuIYwRAGAJImscst8ccbYpQ5daIlB7FUA4VCkoqqKOWRXhwOK8+nYciU0gJTasdRJab1oo8fwjdTHP21h3QmgsOjUr/+ee645TtsbuhEaAFKhTyaJ8sTvh+zMxOhsqeaRw+sIat72H2zD7/hwMyaeI0Cm9ynOTWwmf2H9vI+x7/y/RffzonereRVNw5RZE1XHbtv/g5b1pwjGJJZ6xii0RjG6dSIKxKRrMApTdlJ0BUgBzf4If0NOPeilbRfL1g3eu8a8K23Vphj0fp63nreLNFUX6SlsZNDp3ewpaETa+9TIISJJGn0J+rYtf4Q6yu6GYrWUtXQSyD8M14o/Ray8+Ji/LI5lSdyuQpYpeToYk2xJEcTmU7SMzEwSsiWTtQ54fwUE6OSAGvL35SDo8nxM9zxqqPIcolCsQyXI4mlzzfBHJ2EZMAYNRyqMqQ7GnlOvBPPbbdYx3ct1cEmnQPJWpCoMes3jBq+KUtvCtbOz8TcuZeTN01XtthZBt5GZHrwlxcpZBVKBQPJ0FAcRYTsRA6txXfTq+ceOHatWRKukrY2uO/LDcR6oKFyGK97kGxWcPD0Ts4NNrLvd/8nN60/Oqrjzll64nn0MI+V3U14E6jbVNQDKlUtVUhCUB+2dkdM0yTWbo2JDa/bQNfPu6akKJPoGXwtHvcgXud5DF8droCMWUyixc+hmWFU+e2cfrKDv/+Cl47ox1B1Hz5Xgi11HXzwld9h1/qD6FoJdIEkBKYpEMJAYCAknZKqjNbzkDB8JdJSiSDVeJx5BlMCPa9a601T4NJd5Jx5MpJJwKMjS5Zm2+EXyE7L/DJ1E0zTkr9MkbPmYjli7TEKuQjHWt5FS+YAvuFuzN44ySEXxhtuw//f/hCMhyEdg/BWKA6Pp6hri76W+370R8QyERqqRvD5imTdmzl0SNDdtYZ9b9tG6/aR6QuKYCKEQEKiZGo4JCfbw+vYVvEU737z39LZ8zCxjJfpZAsW1uO6ZsxH97gmrsrQ7ezs5Cc/+Qnnzp1DCMGGDRt4xzveMZ5Pd6koFoscOnSIT37yk5Mef+Mb38hvfvObad+jqiqqqo7/n0qlFrSNliZ3dq+L/q5VK/tC+wW+1fAtfMUO7j0p2JhXkUsyflXH3wkiCt41Gv1pCZcsUe0wcGSwAoBdVkErJBPXWmvHm7dacxX9JsbTRaR+jzXIdN36cTgACbqLlvFbKkFFHTS9EUP+EXk9waPP/x6JdIRIaIB4wY9Dc1LrH2ZLXTvtfS0cOLObL7/vE5wZ3MiLZ27mP19+A/3xev7vk/+Fbz+7h+a6E7z3jm+TD55FUnzcnMvS3x5FK+g4/Q4kxYGh6UilXs61NRF4683sd28hpqZpMY4hZAmcJgFvhs2con2ghX/80TvYvOdZ3J4LSL4QDpfTuvmlT1k3uqGnrRun5LB+tJSl33OGreeT7bSd3c7+f/s0J3q2UCgquJ0ltq49w95XfYfWLb0gFISZw+UDl8sLyW5cgS3cDHQ6vVxYk6BuIENt3vLkCsNaqRNyo7mCmHoSr3eEZGYT8vkcW57+PsF0H05ZR8s7iFHJUO5uii3bLg1EGvUutT3aw31fEQwOjlBZfh6fO45WKvFSbyvn/62Rz7z1PlojRxBeMIsCcwBMcwS5rhyRLUFTLWY4TuLoC+QKdbjDXt6w5w18+6lvUzAL+Eo+HLoDU9N5z7osbrfB8YKbciOEFHeQKoTRNAdrNlqVzoulIJruxSgVEZkLKEoeUb4LZOclHp/WVljz0W5OhO5npFDNYPA0/qqj+Aw/Axc2kc0HKXMNo7va6ctnOBv7MTc/93v05UOE/BlGuoo41jfgMHqRJB1dl6kJRjlw+kbao5tQNTcRV4yGmvOkskGOn72dztg63vlb99NS30k+4mOdPILTyDJcF6IhqiASCfD7rJ0NTQM1CeUyNI3A4NNWHzE1y4jSVWtRpBcsj7+v0dKEF+PWgHOEMEOt7Hn7i2QeXcNwbjNVgQt4nFYVpIFEDZs3JXj/qx9Hda2j4GqkkJMJVcbZ+prz9KTvQPJIaAWNzECG8OYwLb/fglpUmRHTb0XD665LjV1TxxLnO0CuAfyTn5f91rFlkzBW3aphD+TSlmzJLIEUBnQr0tVVDoGtUIhD2W2M9AdIxpI03moihxRyjiZ0WUYoPlRAEjoX796W0as7ZTAUDunvwGi9kR2/v8OS21w2k8UVql9NlZMEmi3pUjFhnRPTsH509aLudYr325Q8aJk0I4c7cIRHCNcKhCs8yRM7nus44aFc3onblUd26nidIxilEqYpg6MW2e1CVL/q6ozAq82ScA2Mp/9L+mmp78RERlcFXrlES90J2qMtPPTE77Cz/nlkCWvhV3bDvHiYTcPkyRef5Nunvs2Zwhk0p4bUJOFRPdxy9hZ2hHZMm2dcUqRpU5QNRRsYOfNbtOw8wNrWHMWBE6T6Swz1VdLZfhtH+zM8nXSTym+kKpCmztuLZhZ56Vwr52Jr+cw7/wetaw9hGgayQ2DqAAaSVMIwFNS8E4ejSD7vxxsq8qLqJFooo2gO4XGapDIGslPB0HRMTWDIBrIjj1ZUMAzIZ714yk2MfBwDD4YhIck6ipxHM9yUtACKUgAT4h1xSrmSJW1a28SJ0A34kv0oxSyDPSqBylbeuMGPeGnCjo4rAhU3YSQ62f/4O4ilK2ipP4nwr4HwDoKucloqoP2En4eeeg871+5DKgtgmBL7f3obmi7z5le8TDpZoigqyQYaOJlpY6S3moPPvQ7trd9je8NhPvTKr/GlX37hCldXsMl57Jr6x3wwZ0P3/vvvZ9++fRiGQVVVFaZpMjQ0xF/8xV/whS98gU984hML0c5ZEYvF0HWd6urqSY9XV1czMDAw7Xvuv/9+Pve5zy1G80aZ7aQg8eTnniQ7nOVc8zl8Zgd/+lySioxJLOimtCZCPhVjzaAKhyVKTQbaRpOcLvBIUO6z0o7pRWsX3rvRmo/MEphhy66jFsRmlcKPS8iHXDiEQCgKVFVBOm1VOwsGYcsW+NjHYFOA1C8P8Kvz1TzbeTupXBmnhzaMRhvrdPsSbK45RXm4jxO92zg7tJFc0cePDvwOsUwFDeW9+FxZMnkfhzp3cXJgI9mbvsndr3axfWAAv7cHzV+DroMi5/AGoui6h57DGzj/tU5OnKihwZ9AhOrBMNBECdOIYSqCen8fXf3rOXLuVWyvfx5XKY0UEMgK4G0YjWhOgbty1LuljXqBRg2I0Fbazu7kr//pFoZHHNSFo1R7SySz5Tx3vJWzA7V89j1fobWpwzqRRtG6+bojUPN6gpmz3NRwB8mqLMXNKmZ6CFk9jUADlx/0PIqUJlzeTy4dZODgGjb85juIdJyMs4y87ELSClQXe6g8/gNOOWQC9evHA5HKNpXRFe9iJJfk67/YyJBZRtN2mfzZXmSzhFdOE6g6ycmhLTz83B5ueOt/Q6QN1CGBmTNQjBS6kUH2udHXdJP91z+gkIbEcA1nuu/k/657iUhVBKfmtOq7m24a83la3HBeM9CFTk2+Gr2oIykSZZFh9JKCkAWSpIEOQnZSyCk4vHnk1ClrAVFx8yU3+0KxjnJJZeOWJ/mNnqC3ZxdPvPheegY2UdJcBJxZwmVn6K9+ErOmDe1GH0q7n4AvRS6WpXtYUF0bwuMZQRIGPm+GvrP1lBfjbK1ox+UpIksGLjQ2V/bRMdzAiwf3sr72zymlioiQgxtlJ5trIrjqt0Bn52ge3ayVnq3OCZEAuBVr29/ULuY1VbyW8WSUrMHkqoLt+6CUxOz4OgPaRhKBV+G5RfCxnQYZVaakrcVEIDBxyCV8Li8O+Y/pNyX0ZgXJNMnI4JKgUfVi6DIIkB0yTr+TrDPL2bNnLzNXmBD+qNUnpSklVR0GeN5j9Vl5OvmDYSXgjrsgMfYdHqj4EwikrMnDNK33C2nUyzv6vzOMpg6z4cMbUJwGw44NxDEuptmasIWJGN3kNME0ZEygYmOQaq+PtDtNcSSFcyb5xWyq1U2tAuaOWPr8dAeoI1Z2BcUHss+Snbgjk96ejeVIdvWgGIMk41/AF0hjBsBbW4G7/kbYsJf+7ppJuY4r6+q5+ZVewnUarvI1yMiAbi2UPJXXZgTONUvCNFypWMnEAiW9cS8nToRpWB/GiHugmMI0HCiKBkLQUG5lC+ka2Ehz3Wnryq55zzV7mPvb+vnht37IP5f+mbSUpkKrIBgM4lnvoX9LP4+FH0NpV2iINkybZ3ymFGVVW19B8O3/hVTxLIf/z1OkBgUEmpDLXBzqaCCZ01kbOIfsciNJJgFnls21HZzqb+ahZ36fHQ3H0UsCnyOHkK3dMcMAtWCdExMZxeVC08P8bMRNf1HmfMHHRneSVNqBJAskRaGoFREGhNwZhs5tIJVcg1oIMHzBhdsZx+lIISQDCUEu7UWTqhHC2u1TUyq5kRwAnnIPrpBVLSMbHs3d61YZbI+RPKsQnrqj44rQVWih/cLNNNQmEM4AhLZaRjCjWckaBScGbqIrtoNm6Shdw7tpP1tDQ2QQSRshFHRjltXhVMvZqN3C2XAv3d2NPDW8gVdXHaWjb9usrvGRnulyNC4uczJ0n3jiCT796U/zmc98hj/90z+lrMwKH4jH4zzwwAN88pOf5JZbbuFVr3rVgjR2tkyNsDZN85LHxvjUpz7FvffeO/5/KpWisbFxAVtnYO3hXfl1vxr8FaduOUW/t4//9p9R3EV4udaFu2jgyQpcZVWcYIh10QLnnoLkG2W2uQQxJJBLlBetYHhnyPraMcmaWcDKFyqDCILrHQZqf55i1IFLduGoq7M8W5/8pKVPG5shTYOUp5GzPSF6BjciSzpuVxZZ1jF1mWS6nIO5XRiRY7i1IANDYX589P3EMhVWmiVhTRZ+d5pt9e0c7t5Gb9sH2PGWAAd/cZTmbc8TDkdxevtwKilMBCUBzbv/gwuHR8hl/ozGkAROByZQuKDjcCvIfg2PVqCYc5BOl5EqbkMfiROpixPceoflLdKy4Kq09LsAwnkxSEXPYeRifOPfP8Dps7Cj4QBup0ZRC+Jza6yVznNuqJEHn/g9djbei+T0gl66uJ2o+ODswwg9Z6UfAvBXQaHautEWYmComGQZ6G3kpV+1cMPZw4jSMENGBAUH6FBQZfJmhMpEjPLf/Dsda34XxePk4PmD/PzMz2kfaifeG+Hss39GRYWg2rOGfGkHuYFuIloPmvBSqWR4+ewOXu5tpknrwJEHyQ1KlUkpaBCVTdJ9GkqyDE9Ip7qxD3f1D5AvZAidq2XttrWc184znBnG6czjFAaa7sJhOpF0CVMzcQUKuFw5VNWN5ChiCgWHkkXT3RgaGKaCnO8DT+0lN3vTMMmPqJw6fhtbI72oiWZ+8Ms/YyRTQXVZlLA7Targ59DpXWi9zYRe93d464s4uwxKOAlW5MkNJhgZKEPUaCiKSu9wHTnVS1O4E8VZQtckEAomCrIs0RAcYbj/Rnz9b6Qu3EXD2jrKpF6EMwjGEOzeBlkd1BQwDL7waH8Jw8j5S/OaKj5rkeRfZ20vCwkitzKQcpBI5amqCOL1uhGmhlnKoWoKuikjCx2nYoIZwjAFesmBYVjnxuF1ICsaulyFYTqRRrWFM81bl6DlQR20JDnS6I4MxqhBPhpIJnkm7zKaWFkVZA94ai41ME3TWhyWUtbnCLDE325rEaN40FSNtCuN4tRxuxNggiSXkDAm7cKOvdWU3Jgo1jawtw5TchCNRukfSrJGVxHTyS9g5mDS8S+YpviDM2zlfs10gdIEzX8Cg09Z2mor5yFgGbn9h6KEg2dwe4tIDge5XDlDvTKukRK1xnMY0VMc+dGriHZVj+c6LmQDPPefGi07X2Rtaxa317QWE5GbF1xmMMZFD3MOrzs67oVu62pi/0MS7SdMCtk8bleJli06ez8SpvUmaTR48KLRfl6tpr/nNip2u0jE1xL0nsDhUAGBYUp4HAUKJTfxTDkjaYmyigrE8Iuw9r1Xbcz3t/XzxH1P8JPyn5CL5FhnrLPSWA2p6GmdTTdt4tzGc0R3RLlnwz14w95p84xPl6JsTOrzy3tfJtpZOy5t6Ev46MuU0VBxDLMgoas6kqxgGAqyVKI+3M/J6Ga6LmwkJExcdQGcxeOYgGQouB15ChmBWqwkmW2h58KrSWv/wQXXaX45WMMHa3OsCxYYMSVU4cDlUtmEjBEt48TBXfSf9dN/poyGpgGG9I14QxrCKJFP6GSTMlUNw6TVLaTT1eRHMhTTRdxlbso3lV8yF4wFqqo596XBsUAy66VQ8uDzxgCXlbZuAl4vRPUgieqPkRcPMNibI58p4S1PgauSWKmFjpfKSCRA08LoeMgXs/zk3Gu4seYUz5x53ayuc9vg0stc52TofvOb3+QjH/kIn/3sZyc9Xl5ezn333cfAwADf+MY3lszQjUQiyLJ8ifd2cHDwEi/vGC6XC5dr8cTSP/nUt3jH/VfS6MJNdZv4lzuG0RWdLSMSm2M6fQGFklSi5NLQSxohESYgB4n6i1SfMPhaowet1sCh5BgxYOsF+OwZ2HgbCL8l0SQ7IS5SB1JAAMw3gP5/S5iqhnbsZZRIJTzzzGQ3gJDQN/8+z7bnMU0JjyuFUyrh0K1tHdNRIJ4qw5HfhLcmweC5Co73bKUu1Iuhj+4eMvpxEqzx9qIO3UqFGeB0NI7u+wi1VQfZ0PAopim4oAboFsMYSpzyhiM4w3H6tDzVmgeHYSXgFnEfkidNQXbhceQJOUdwyHl85RmSsTKE8jqCia9bXlx5irdrTMerZeg85+PIizp+UyOrNeEwu3AoOXTdjXBLVGuDvHy2ic7C29l8y+uh4paL24mmMX0pUXcEnOWQaCNXauSJ799BzzEPzqEeyrULpOUwhm4FHI35v2S3QlauIKIN4hw4z/GaEv/y8r+ghlQagg24HS106z6SRhcvDcTYuu7/z955x8dR3vn/PWV7U1n14iYbyza25YohiQkJOAkHJEcIvjhg4oOQXiCXH5DEBlK4QAJJ7nIpl4BNKgkXOFKBg2CaAdsIUyxjy0WWrLpaSdvL7Mzvj5FkdUu2mu3n7ZdesmZnZ5/Z2Z3n+3zL57uATIcPrasJw2oqP7XHXBw6mk3pQgtGoYScNjCsGYI2Ny9FwGUEWZBVhIFENO7G5j7A5cVd3P9GCcYRg/POO4+uZBfS3gMoqUMUGnba9BTRcAxb2oqRTpofHkPGMBTiyTyslgiylMBqyyDLDvN9HVBA1Du57m2j7a1sDgVW8oSyhkgki8riGnQkIhkLDUkDw3WUdGImkTc+RMnyCHPyGqgL2ij31OBzpMz8OGzEIxIt4ULslgQFvlZiIReRTjd5pW0oVtPUcliTtIT86Kk83IlmPLqE5MyDuZ+ClmdMY1VOmPrRvndCznKo/e/jnv8BHZTM7VHTu5kJQ7qLTCZDZ9JBfnEhuS7NTG1AwrA4sabSGEa6W4FERjcU9IwFXZIxdAPFomBxykgG4HIP43k9EXaw28zQfyYBpM0vmeLp9kJ3mMaqbDHX2kYG6M6/dRSA6hj6sA4HGPmmQWxkzHPu6cMKGDaDTFeGdCyFxWlDVZLohh1VMRUXeu1JSUKSLd3pHwlQ3eA0FQXy8vJobIiiqTlYBkzWPcWpeqITVVawKN7BGYG9rksNfBtNHeDQvuP5rXnvxJh5DcH2GWTiLnxaLdauvUiuMgzZQVdtPW7nMZzuOBndSjKdiyG5sGVJJDoStNZ5cdmPUpr/D1KWTyNJpqPC5rVheJbzwlNltCYk3nHzuf1THU5GPWIMNFU3sWdrNba6x5kx5yXUvA46smzsj6/mO//7eQLRQkpz6nF5W4kmLOx+roC6vQ187roorf9bRywQ6zXaw00y+tsxDr/chc3wQvFMsrMOmnnlkk4k7cKmpjBSflqP2lG8ThzpPVi6DiBlnTPmsRu6wZ5tezgSO0JgfoA8Pc9sS28FxaqQ6EgQPBCkdFkph+KHiM+JU5Y7vANqoEQZmDJlbTVteEu9vUZiLKWSTFtx2lJouoGW0jF0s4OYZAnhcoRp6sqnM+KloDiCxa6B7wKk2dehOIowEh28/uMaGvfE0awz6TjQxTnKOdQtreMJexsdndl8qCTMTF8MjyWMpqkEa2dR9+xaOjpmkklEeOOlKnKLnsXlPYqWLALViz0nicvTSCLmZv++1QSbOjEyBvYsO/75fpx+56Bz7ilUVf3zzY5/A+YfnzuO3ZomGtXxZmcPKhqMxUBKJXj9V6283byGznSCSNDDEd2DvbiEvYccvdrnii1OS2eYdMLOgVc+yi9yvUSS7kFjGooufaj838llTIbuK6+8wi9/+cthH7/mmmu49tprT3lQJ4vVamX58uU8+eSTfOhDH+rd/uSTT3LFFVOt5GZy+bc3wV0jqS4AaBz4aAco4I668YfT2LQ4ndY0oGBIOiFLmngsTkbNYJChIApyKsrrmmR61STYnwMuK3zXCX4LkDyeLafLZgthKQOSZkZg1VzItBmEnTI58+cjvfoqHD3arxd9Sr+C2sgeXK42UkkvHlsCJNA1iVRCwkKUWMrPe+KvUejtJBJzUOSJgSGZ93jD7LRKUsFrT+DBTVI6XmXr972BRIaGWB61lkOkpRRWzYbb3kpl4T5eqVuGFD1KjiULQzfQE1aSjV4aKGLFjJ1UznydjOqiKzKXt3YuY807cvEaGXNy7nFp90VSQU8T7HITCcsUeiVSaQ/NkWKynMdwqBFUZDxuK02NxRxTP8s5s1YMOMYQ3qQ+PeUNRxnVz76HliNOilf6cRzoxPaKQcSwIkm6WYwggeqyoKgKGUNCRcMqxXm18nUCLQGqPFWoCZWMO4HNpmOlgJjWxNFMPUtWLUZ/tgk13EG7bMdQ47TtkTkYL8TmgvyuEPaL0tQp2ViTMeL2OPF0DJfhAiTiiVzmOtoo8kdp7bCQCqXI9mUTn7GQY4F2Zjs6aE3KSElzQtHSCpJk4PKGARmHtQUkhWRcRZNLcfhLTaMqd1XvW9RTmR8LRCg+J0Z+SYxdL53LzsAyrDlNpMJeMsiEk6YhoKgG+I5B20J8qdf4xHu/zw8ev5a3myrItTbjssXQJIVjXWWoqQyudJwjtXMwYuZ76cmN4PbFyWAlnrJhs6RwW8JIioSFFvCtMeWcSi8fbIyEa+HwL7uN3B5jt09BVu/2TG8OcjptFno5Pdlgt2NkEqS0OOm0jiYpGF0JHM5OVFUjo9vMdFXDQJIlFJuCpKdMI7Cv18UwhjYwh9uuOkEpG/oxxWE2K4lHTK+vgdkUxrCbAaaRbkeSNKzxLUkSDr+DTGOGeNSJy60hyRm0jA1FTvW2g5Z6xpJJmEV8ttzeCdlqtYJsIeNZiCX4TO9kHQ3EuotT43i9xwgGZ3P0/w6yZKP3uN70UB0eK+fD+k/B3BKw+GiqdbHnG2/QVvNWd8rBeSxauZvCOU0oUgpVb8XmTqCqURQ9RY53H2nNRSRegu52EW2LkbK48Re10JpsJhovwuVoQlVjaJqTVGkOR6qTLOiYc9zYOln1iFHSVN3Enpu2UhF5lNL37kN2pckErEQb3fxi51paO9MsLH0cSXaANQuv3UKlp4W9h/w8tK2Odb59OCuX9RqAM0rSzClNsvewE78eIqnlkEq3mTnH6BxurWBBQS2eZBeJeIrGPWly8ts5uOPvzPqwd9jOfcMRrA3SVtOGXCyTltLYjf6fL4vLQqIjQU4sh0QmQVdiGE/+CPTIlFlcx+/5TquGIiuEorlku5rIpKxkkhlAJWV4iWvgsMTwOsP4Sp1Iucv6eeclYNaHl3DgxSdo3lGPJEvM8Mzg/W++nx1lO6jObqW60cWsZjtlES+lry9EfnMeFrsNSY6DAeFYBbtf8jD3nBfJKwvg9Hai61Y6I/PZv2818z/+L1TlOLB5bOz88U6aXm0aFJXuV6g612+2tR4w/1QUHKSy+C12H1xEZXn+gOfDoX1JcsNHQKnFUebF7cyi6JjO/mNe4g1JUjYruXkKYNAe6SKTVvH4Q5B2sGvHe1CkOINy/oegyL0XmHvC/SaSMRm6LS0tzJw5c9jHZ82aNWwu7GRx0003cc0117BixQrWrFnDz372M44ePconP/nJKR1XXwzDMoLEmMbs/zefQEbCkXKgyAoRRSetKLjSGmFbBhkZQzJIG2kyho5Hg4QKIZuEhobU4/OQ4JUcaHZBNqZKEBawZswvrC5h6g9224GZCujKtnLA4eTcwmyybDPMCaRPL/pwSCbLXUFE2YO830YwnoVFiSEZGQxDIZ1xoaLzPvVvFNiDuPQEXZ0e3M6QOa/pErJmQZVlYpIdT7ZE+UIPtqok6cYd+DwHiCdzOabWk5ZSuHQ3mVSGtNfCFVV/4GhwBkdaZ5HKBMmWFGIZB82d5eQbzbyv+A3eqv8EWsZNsCWHeDSJxeeHdPbxEGxPFXbvxdBAT+NwZyNpEkEphebcT569g5RiKgrIyISTWWSSDiy2/KEv6gjV0l3K5Rza3YC31OzQo+TnoGa78ckq0aRKLBDrHot5A1IySVIZhbasFC05LdiP2qlvrUe1qdiyArjy3kFnwxxcxSE6Ex1oeRredy0j8/IuOjv9zHHupLI4gNKh4jkQJVrhIJOrkNAVZF1Gl3Q0Setd9Vg1H16s6I4OMu2eXokrR66L3cZCPJFnmW+VsHbLzDrcCWyOBLJiEA050DQbisXAZk/idrcjxWUouLA3N7fHe2OnhpX/VI3HVY8ip9GzFjPj4ffQKSdoSOk4JAdWu4LkkAhFQtgMO56UH4/zDZbP3MWnL3Lz8CvvYV99CW2RAqxqkqoZr/Puspf46d8/SX2ikFylFQydrmABNkcDFkeEllApi0prKXfvI7c4guqb2z+lYmAuZE++Z/uu7ur9tuPye2CGCK25Zq5uTw5y0qzmlySJWDpOa6iVWDKGrutIhoSqqGTHHPicMWQ5aaZ3qAqKTUaRUoOMP7RYH++s6Qk25fG6lQgGbrf5TUN3OKM0BbTpYKhgtZtGsAakUpBohOJiM5Z5ElidVtzFbuIBhVhMwmaNoKhpDFRkWTcnWLn7Xqe6zPNUj7+W1NOso/RDEH0TumqIJXNp3tMFWoxsf4h0JofGwHto3NtMZ912U42EZrjzzv4dHqNR2P0q1JkL9CY8bP/G9m7vpZssfxgpbWHX0ytwVDtYtC6JmvwVVruGYVhIaW5kScdqCeFTEqDPJtGpkspY8Fki+Dz7mVn0V9zdn+GMbiFcWMabryw7rnV8KuoRo8DQDQ7d8z/Mf+P3FFxZh+QxSLZnI+s6TcFCDjWUUFx4tLsgw9abriUpVor9Md5uLOGfFz9NKlFFTy6LLMFF8xpobJtNS3sO1q4IXo9KJO6lsbOAbEcX75/5FzKJFJIi4cwGQ7bRuCfK0b3bR2xTPRSJrgSpRIq4M06aNB1yBzl6Tu/cJasy6ViacCKM3WHHZ/ed4IiD6StT1iM/VuSLUpYV5UigAq+jHYcnhY6DTFpHyxg0dJRSNettytZsxL7ykiG98IVLCnEXuVH3q0iShBbXKGop4l9S/0K4LEzDoQYcmoMirYhYo9n8Q0toKBYFxa5gdVlpbymntaEIt6eF8lVeZEe22YShqZOqHAclK8083KXXLaXraFe/YruBRXmSLA05/8iKnY0fPkrdby6h5lBWv54n9fUGSqiDld595C/w9xrBFy9q4lgki2MtDtxSEl13EE+liIUtWGwZskpakNUM4bYcLEq39OgJWJz7Bkxxy4gxGbqJRMJcfQ+DxWIhlUqd8qBOhauvvpr29nbuvPNOmpqaWLRoEX/961+ZMWPGlI5rIIZh6dMZzcynu6Hy6+y84gnAS0AJIKUlkOFwlkKNH5Y2w14/GBgY3WFB2YDSEOwqhn1+rTd/ySx9MahNQ30EFvpM1SRdNw1ca8aUIKN7bjSyIfUBcyTFHVH0UCtkfOYE0qdDlM8Hfp8Hl9WPbKnmkDGHsJ4Fhoo9o5Ejhci1RFiVU0uF9yCLcmrY1boCv+sQyIrZTc8CaEmOhcpZsSLM3PB3mLGmmljDEZz2NgylEzUTx5q2dxc/Sdiy7GRXHeX/qd/m/v/ZyOvhSkJkY08mWGF5lQ/5nsI2cxldkTndq90AJStKyFq4AqoXmPqCWvJ4FXa3J5dkG9jyKV95OZ7cBg6mVFY6AjhkSOgWwgaARkvEw+J5z7Nw9gxg6DSY4aqlo7ua0BJHej0LUV8RkewyfG21pB1FJC0yesb07GYyGll6B22OGTS47KTlNL6MD4vTgqzKxANRfDmPEg1cT7SxnIznKPFUCsmWT0P+O8i1vs2Vyu8paOpAt9k4MjefA+8tZK2jBruWoVPWMQyDuJRAlVSchhOLksKj5aEnrTR7mskhh0QsQSgV4qVwC4ePlfFFVw4FxRFUNYzT0UE6ZSeTkZEVAzQNSXWgep2oRtDspDXzY70TRLA2iNayk5Xv+Bt2R4RE0k88Y8dthxx3jBKbh8Naig6vjGbNoMgK2fFsXC1F2C0GBTkHSST9LCo5ROXlh3nzTQ/huAuPPcLc0iO4XBEO1SzlD4fWEcj48UghpJCFWGo2aa+NfF8LVy//JW5fHGv5+UjnfmpkQ6Ovhz4aNT8rqU5TWiyTNI022WIWNnYbzLqhk86k6Yh30JXuQktqKLqCRbJgyAZpOU1AziAlXWR5M1iUNJKsm9O6MsD402KmHJ6ugWLFQMbIaJAMIyU7QFGRFEfvfQMtBnqj2aRDHcJYNQzTGNS0bjlByVzkKIBdMT2h7e1mmsJoc4IHYHVasZRZyCRd6Bk/spRCsUhIvUaCPijtYRBZC+DczRiHthF95Tmc9giK3UkoOo+G1ncTZw7+SsNUI9n2GoXG40iBQG+LXsAsnq2shJoajG0Psse4mFggxuyVIcoLHj1uoC6y0Fqfi9ScQrVohMPF2KwRJElHN1R0zY1FjeC0NxJSZ2CxpMBIU1bwNIqc6v0Mq0oCr+sAVauO4bKsBaPo1NQjRkFwf4CcF/6ENz8EpTLpsCmppssy7UYhKcOKx9JhRiH0VHeRojlv2y0pYgkvhiWKS2oiGi/pPe4cf4gNqw/yyP95aOvII6HMw23vZHHZAd4/88/M9e1DN2SOxWbSGswgZXJRixYQ2hc8YZvqgezP7Of3839Pk7OJgBLgmHqMHD2HUq0Ur+5F13QkRaIl3cKaGWuoyBm7ekVORQ55lXn95MdMg76e3+2eR/WB5VSU1+EvjBKNKjQECiko0vnE15aT++7K4d//2iCx9hjl7yw3I5Tdmu9Wr5VjLx2jPFCOYlPwz/fTEmnB4rQgqRLJriRaUiOTzqBaVWRFpaPZj7O1BFe+i3QsaWpme629Wu9Fc3ys/fo72fPgG/2K7QYW5ZknPHj+qfJUsHmBPKjnybkVCYozu6icqSFJx6NIc/whLppXz9EON1rKoDOogwqqu5O8sk7s3iixZIpQSkbRR5A87EMyPb46yyfDmFUXfv7zn+N2D+2uDoeH6X0+yXz605/m05/+9FQP44Rc/u1NBK5r56+f+yuOHAdHcwt4UTING1VV0RUdNMgoGX65RKI8JLMgYNDklgnbM7jSUNIl0eY0+OUSMGTTuAV6V8YG8ItWuMgKDhfE42ZqblI1U/okpVsWsRNa2kF2ZPDlGbgL9kNDNmhZ5reju0NURQXklrfy7JMpVtGBM/t1oroHewgcRoJjcgkr7PuoSLUiByxsXPNr6v42g/3Ncyj1t+O0xIhFLTQkZuAvyHDt6v9C7tyF3V+KLrkh+CJ2S4j5lhQH0xaiDit2n81cmdt0ipYc4eOt99Gy04fPqMARjOK1p2hd/F46s2aRDiX7r3YV5bjRAmY6QTraHd7VwJ4Pi7+Br+xC7O+8mdJd76WppRKPtwWbNUYy5STQWYTT2crla7eRpS8BYy2GIQ0qfpBkachq6UGeBUmmft5FOCKteCONpLCRVq14siXcqQ6Sdj8H7OdhS+lYDStpaxpZNYuTTPHzfZQv3Uqg5QO0H82nsc5NjgdWXOjhYxuW8vfXynmmroOC4nkEirNAgnnJJoqlJt62hUGXqLMcQTYU3IaTcy0qWuhcFlUvoX3pc+zu2k24zfwuu3BxOFTKi6EridpceFxHmF3yv8STfoxMCrejEas9gt2XRlUlUIvMvGSLp/f8E50xZs14Fps9QiRWRo8XqTS7g5n+VvY2lrPA3UwqZxlqlopVsaJkWdh9NEqJ8wCzc2uJp4rRtQypSJpzZibQtWYSXUm0hIziTVPhO8hF1hd4VVpEu6WAYBzkWIpyW5iLC+rxuC5COX8Z7tXnj87A6OshaX/ZlFPSoqa31FkG/vN6Q5rVTdU88uYjXJR1EXpER5d1FBQURUHq/mfFSkpJ0WEkscby8RbZkRic84phmEaSroFiJ5PRySTS6JqOqmrIioaRkcACikUCulvYZhKmzJkyhLGaTJrGrNU6tKKB1WreGJJJcxY8SSRJQrX3TCl9Uz36pFroyZGN3Zwqgm2lvPCPB/Dk6kj2LKLxInrUanraIsd3vUGa17GWDaPSUFpKetceEhRRvlDinJn/g1UN9TNQi8sP47C30RWeTbTdgtfnwmYJkdbMlB4tY0eVQ/gKwWYJoycTKBa132c4nXESDuSTX96OT3sMQkXDN+8YjXrEKNDe3Ic3dIx0uQen2oGRPl7c7LWFsFlTxNJOPLqGpBjdWpImCc2GVdXIcgRJxWODjl3mDHDNuQfpkHOQrK2cd96TzCvcS7DByuv1C/nrwQ9wNDKDeNpFJpNDkSfDO0sOYdnbdMI21T1UN1XzgyM/oCGvAXfAzVxlLrWWWgJKgJgUoyJdgZEwiPqjzM2dy7WLrzXzd8eIJEtDyo+VWttYl93BTqWSkH0VXSEduy3NqndnuPZfzWK9kehJibC6zaLR3u2dCRKdCWweG1pcM6N3dqX33i35JCKtEZKhJIpfMY15VUKxKr2pCPPfFScn/C04djzlpchbSeHXryXYvnLwfDP4pAd9robqeeLoCPJ/X2nD4hpsrM7L76I8K4yeSJI134nmjnMw+iaKzUVC0wl0xdEyLhwWjWh60NMHYGDPHoXbd4IZk6FbXl7Of//3f59wH8Ho6bvqdGQ7sBgWZGTckpsuRxe2iA1DNnitSOLb71DZ8KZGZQAKYpC0SLxWqrBtic6eAh1VVtF0zfT4dgsayZLMn+06z+00eNcKsHVLSmZ0MLodO0YEki2gKyrplI7RIZFbrEH+AWhc0NtHGwBJhyXb4IUVHAkswK+1kKXEUXWJBrmEHDnAP1m3kk7FsL7moeqfj7D5n/6dbS98lJqORTQafuzOJCvObeDaK16lqnRXr+fDWeDBUEqQw4040ilm5KY4avXTo0uUrUc55C5g6xWV2JYeY0vVh3FEC3n1HyHa9rWj1QaHXu32C+vsNQtzJMWUGZr3OchdzsH2/RSv3MH7ra387ZUP09xRgoyB1ZqgongPa1f9Ht+ct4i3p4m+/CKv/i7SW7Gs2lXyKvOOdzIb4Rr3eBZC/jnsX7ae0refxhF6G7cRRtXdBLNmc7DgAhrqHBTaJPICeTSVNJFvPZ4yYXFZkJJvkfW+3axxXsanzl1GdlZP3aCKXPJF7tx+J/tiTZSmFZwWJ48kPHwg+Tbn2HU6Y24ycRtWu0aOPcD+tI19rxdgz3JiK7eRL+dT6a/Ea/OiRTX2tu7lt9JDSPGPsiyZDyhkMg7ARUfIg5SJUFyai+pzm97JyMF+1fFOeyNSbjOxWHa/yV+WDa5c8RTHnvwI9aEiSjUrWTY/sRgcbYNZi2Uum9lKJiWjx0JougtXnpOceblgGNQ9W4eRCpFKKsTCVuaVRFlVcYBOtYNjb0comu3ksq9U4sq9bPiJYcQvZx8PSU9nNIv3eAqM6qK6cTd3PvtN5IzMe7LNKmTZkNFlnSRJbIatW3YKVFTSSpp4MoFLc6MOZVTqye4JzkpG09GiSTAMZAUkxejOmcygxZMg2VBUpTtdwWo2rdCTg1MXMhkzlCMPPYG3BoN8/Z57+NuLL9LS2kp2djZLlizh9ttvZ82aNcycOZO6ujp++9vfsn79+t7nGYbBooWL2Fuzl5//7Odsun4TkiRx4YUXsn379n6vcfU/f4DfPfA9+qZaGIqTZNIMpabT5hABEqEUHa15SL4c5PjgMVucFuRYBMOImekKQ+F0YkRjKFKYWbP2YFVD/QxULeMkkfbjcjbiy4sQCecSbPGTXxhHVaNoaRtaCuyODLn+dnTFT/homq5WD5JNR1ZldE0nFUljsVuwF1cghfZC15vDN++AE6tHjAIbCUAjlfRgaDKSJYORMqfyOVlHOCfnAHuCC6n0HDLf7x4NYAMaO3JZULaHYkc9B0L9CxB7jK3yNaVc+rFzef2Xr9NVt4SWVAdHQ24eeHMjHXE/+Z4wTtVCOK5S2+amNbSA9/mjI7ep7kY3dLbt2UZ7rJ2qOVU0dzWjtWvM8c6hyd5Eu9LO29LblLnKOP+c8/nU2k9RVXTyaR7DyY+df2E+n/iYl6jHPqz82nAMlRIBpmfX0AywgqRK2HPs2LPsxNpi2C12ZIuMaldRLArxjjhGxsBd4AYJAjUBSipaqVq9HSkYGZTyIkXryD13M8w7ufdiYM+T9v1DnwOY6R2erHreDNoIsAcjbhBLR4ikQiiSSqpjJoa3nuy4m45YHv2lXAZisGres8CXTmrc48WYDN0jR45M0DDOXvquOvU3dIqXFXPYeZjCeCFRS5SkK4nD6SCeiVM9Q+fNGTbODTugq4uoU+VwrkJST4Ohm9JgioVEOoFOt1dJUlBtKt/OknD/b5z5VUBBBsliFj6nu8yoZyohYbgMFElGQiYVs2JzBc1JfsE7zbsAUBuspd33fyza2I7zpwtpbS0lIBeQpYdYYN3FFbZfMpNqwkGFFF4cRxdTVd7Ckn/eTK1tNV1KGb4Zs6hYsRD54Ktg6+P5kCQk7zws6TBWI4Y7E8dpJNCRydajRGQHL6kVHO1oZMWSlZS995+RJZl1lxtDe1f7cgIR9pd2Jnn1kU9zuLmUrrgTyYDcrCbeufRPrKl6Cke2hTgyiVAXrz20ncYDRb0Vy+loenAns2GucT9hc2spB7MuxzWvCa2lnUhMIaTlY4QkUuEYFqeF1XWr2T5zO/VqPf6MH5thI2FJ0EILsy2z+cIH3k9VUf+7c1VRFZvXbmbbnm3UtNVwLHyMus5jHJCz+Fyel5nWGCQSJFJwqCOH34QVpPI2cufrRDNRlvmPF6kYDoPZttkcjB3kH85/sCi9rreXfDrjJBXRcOXlYPWX0NsKd0CTiKwiCcODKdeU1f+2uLDkIJ8870EeP3whh5JzCNSa66oVK+Daax0sXXw5iX88jhyqxnCVYsuyHy+geWc5kf07aa4vw1a8gJwCD1pcw9ZQx7mzXbxr86oxF8kM8QU97iEZUGBkKDa6OtrIjoO/4GLz/TIMZElGQkJHJy2lUQzT0JWR0SSNjJFBzwzdLcjIaARru4h36lhVjZwyB7LSnY6k6uiG0l3UaZBJZJBdMhkjY76uoSHrGtJA9UJFMWc6XTf/P4ArP/Up0uk0237+c2bPn09LSwtPPfUUwWCwd5+ysjIeeOCBXkM3FUvx7BPP0tTUhNPpJN4eJ1QfwuE3jacbbriBOzffAokW0DUcLq8pS9adahGLtROIWUgkLWgaBIPw7/8OH/oQlA9lSBh6t1B+jFhKJeFwIUlOM7XEO0RVdyyG5HJi9yVw2etIJP0MnJAzaZVMxorNEqZ4qZv2gzYCbTIeTxM2ewyrSzcNk+KVUPheJOM/Seg+4h1pjEwaSZF7F17OHKt5b4EhpZ6Ov2jslNvm+haVE/C6SB3JkGpzYSsKkQ6YXmhZMrh69kM07P0iNY1zKMvvxGm3EYvaaGjNJi8rzL9e9hixcDl1r1rwliaHzPssqiqiqKqIYO1Kmqo/xI9viXIsUUR5boR0KgeQcFo1yiwRjrY7eSkwl894ThwNqA3WUtNWQ6m3FJfNRdHyItr3tyN3yMwKzyLHkUPCm+CWC29h/SXrT8qTO5Dh5MfGvPDtZijHBZhqEZIikQwl8RR6sPvs5M7LJRVJkehMoNgUFJtC9qxsOg51oOs6is1UmChZUcQFl+zAoUROLuVljAofw50DwGHLQdoW/YbMnutJByrw+EMoViutHWFiXUXIrjaUcx/GGv682RJ5BLlUi5zG4goO+/hkMebUBV3X2bp1K3/84x/7dUa78sorueaaa0av+yjope+q87yj59FU1ESnvZOZykzCOWG6jC70uI6OToG3lHR+Nnta9qAbaSRdQ+8OTaX1NFbFanp2DQ3DMMgYGWRDprpI4euSm/UvJzk3reMvllDP02kLSoSdCoWaTnYCNIeVFAZ6QgfCkF8B117bu9TtSnSR0BLMnR+g/LP/y+JtQfQAFOqNFFhrUWQJRxzSdoX9OZDcf5iVjfPIsWQz77YbYM5i80sY3D2058PmR8pdjtL+GrZYPZ5UGwnVw2HFzz8o5fmONvwuf79w1lDSMkMyjAj7b5/Yx9e2JOlom0dRXh2urBixpJf2zjK2v/EvzKrsZKbldZwaxAM6oVap383B5rXhr/QP7mQ2zDXu61nImpFDqFEloeaRjqWRIym0hIau6WSSGc7NOpfSZClPK09Tr9YTlIIoaYXZ8dn8v6X/b1hvR1VRFUsKl1AbrOX1ltf5/o7vk+Mt5S82L3lGF3ZPiq4INDmcyPlxWvVW2rQ2ynxl/b7DEhL+eX5C1SFqk7Xs7Xw3syJleF0HCAfysdgt5MzLNZ/T3Ut+YFtQyZaFsygXW0eaREeiu/PdcY/Ysjn7WHfpIRpmvIOuTNYA74qCY9mN3cU9h0E7rmjhsjYgV8yhNnApugYdBzuGz187VYYoMApHm8mNH+FTdhfP651mkoJkpg9JhhlN0bv/yZj/lwwJGYWUJpPu7k9h647km3JRu2l7owEtpqFaZfxzPSz+cDmF5/qQDMx0B0NGkiXSmTTJZJIMOjI6ChCKtuFzyjitfXJ1bTZz9RCLmb/7XN/Ori6e37WLZ37/e9ZecglIEjNmzGDVqlX9Tn/Dhg3cd9991NfXU5BbQKQxwoO/eZAPX/5hHnrkIZBNuaNMYwZDN3A6HBRmq6Blm4Zd72sqxNJeGgMeNCOD1ab22uFvvQVvvAFf/1r/SdjXfoiy/U/j7qxH1lIkEqDNmItlQSHU1/fP0QXzc9jQgGXFClzOEgwtQZqCQRLC0U6VrOwsZDpxemUca0pJduWRSc5DVaJYjcNIOVWw+ucQOYTN56N0RTbJmK03L9Pms5mf/Z4Fnm/R0FKDPeMa4vsxVqR5c3FcsAzj8ecIvuAn/wNxVH8UrcuGFoNVJbv4+px7+dUbH6WmcRGNoWzstgwrzjnAtWsfpmpRhDbLFynu1EfM++y5rwb0HJr1AE4tRCbTv+WrJBl4CdFGPkFyyDvB2HvmD5fFvO87c5041jhIdiXJpDKUqWUczRxl7qK542Lk9o5ztHPEKI81lOMCyVzookP23GyQwOl3UrTMNOZDDSGsLisWh4WFVy1k5oUz8ZSYBnFOfgDp1aP9HT99sfogsAMaHwf3LLMBSo9B27FnzAofw51DMpbkL86/wIx63rHgaepffTed9UVk0tm46aKz5EWMxQ+iFO/Ft+9DSHWrMYwhX8IctiXOs3tWcN24vPMnz5gMXcMwuOyyy/jb3/7GkiVLOPfcczEMg5qaGq677jr++Mc/8uijj07QUM9seladK2tXsuroKh5pe4RD2iGcmpM8Iw+31U1HvINkJklDqIEeMVzd0JElGVkyPTvxdBxZknFb3HhsHjoTnThUB167l8a5Kt8qj+I92soHujLcnFHIVRRywubkqwCZRAarZKBaE6Zw/ie+2CstBuCz+7CrdqLpKMfm5iJ9XGfm/26n7LVOsuIGEatE0C0TKs9FzvaQiHfQUfsm2RdfhbTkn4/Hhga27OyLzY/Tv5JIp4cXMiU8H+riUELGphqsKFnBtYuvHVs4a4TV7u5j1Xztvno6g+XIhbVoapQs2SBj76SgMERryyIe3345H71qB4usEl0NpeCpGLSg68kd7OlkNtRNdaBnoUc+pvNoJ8UriwF6b/itb7YSaY4QbQlzbq6NqvS7aHREacxykjyYpmpBFReuunDE05YlmXm58+hKdKHICm6rG0OSaJWyui8mOAGrbudw82EkQ+qdgPrizHUyY+kMQgdDdBzr4s1XllG16hj55e3YiytMb1Y6ZE7idv/gjlCeCuwlSynSd9Ba5yXekezjEXOQPyOOrXwV86pmDB0FG0HRwjHrWs7/p6XMHydvzZAY+pAFRgnJymHDxnxJY7F2BFmSUWTFVD7Rpe6aL6M3b15DQ0l6iKazCbcovdkEdjtkGpp4+Z7txNpieP1WLIVWUlGdpje66Gx4m3d9cT5Fy9xIsqn7qQEpOQU6KLKCVZJIotClJYlGGil2Fx83diUJ/H4z174nV7fbw+uWZdwuF49u3855l18+rKZ4QUEB69atY+vWrXx+4+eJhCM8+vdH+cvv/sJDjzyELJthWS1hFtv8+je/4Ve/epCC/Dzef8mFbLn1C3g8brMursuNpqvYrQkkWUXrfh/mzIEdO+CXv5L48jXdUa6du6lo+xs2LULMlk3c8GB3ZSiSmpCanGbb5poa+pWUNzSA34+08VoqklEyL9rIhLqQbN5BKQeWvNlI2lsQq0dS7di9TrOdZLQd7LPhnC+YxYfdShxScDf2kQxY77wRpQaH/H6MFVnG/W+fRmlqQN1/lM6/FeJY3o69MIrdlUa2OlixuIRlN3iorf4HXS3N+BxBKsrakbMrYdbnyMupYt3qUUTCgFBYwuL34mzvItGZwOKy9r6P6WgKp9NK3O8hFD7xd67v/OG1mfd9CQm7z/QGh5IhHHHHSaksTCbDOS5mXTiLcGOYWFsM1aaajWC6F0QlhSUs3riY0lWlg9/r9kNDO34SgT7d/brgpY+bRbFWv/lZsuVCrMmsNxlJ4WOIOXCoc2jLaiM4J8j8GfMpKAxQWvUwXU15pGIOkkorL8V+RTjdxQpvDkvmPsfO6qs4LlrafympSBk03cYeacz+1HFnTCPYunUrzz33HE899RTvfve7+z329NNP88EPfpAHH3xwSrV0T2d6Vp3r5q3jYuNiagP7Sex7E18CysoXUe0Kc/2fP0Eyk8QiWUjLaRSpu3tSt9HrtDrJc+axpmwNqUyKJw4+Ye7T/c+i2vBoMue/nMZwKyizJKIhG0rGwJbQSJGhszyPnBkFUPJOWH55vzFW5FRQmVfJ7sbdVPoreavUyn9f6uADcyx8fHsIWzxNU4GTPNVCbkuYklCK5iwV9fILmSH3N35G9HzEjuEuejfXVd3DOzoO0ZXowmf3UZFTMbaV/gh6lnr2En74t78SPHoxeUUpdGsORxJpXFKSLBkiho4vq45DR8uxtZfhnaHyUs0aLDlDGwM9nWpGylXr61lo399OYF+gn6C5Pcu84RcsLiC76wjzD/yFkpYQVkXnHEklIOdzbN57WHzt0lEbc0NNLn2JpWOmgWsw7D6Gx6DonCLe98H3UWqU4rKsxaf9L1KoxryBdhueQ3aE6lYxsEXrKHW1kcrko2k2VDWJVWlFshefePIfIfVEgnHz1gxJuHbIAiOrYkWRLLQZMvl6iAg6VsWKgUGGDJJx3NhNkYKkk0y0ACwWbKrUm00QjRjs+dkeIq0x8udnI8UioOjYPDJWt5v2A2Fe/+NRCpdU9nrOdZIYkoFVVlAlHR2JqGTHrqoktATt8XYcFsfxBZnTaUqIBQKmsdttZas+H1t/9jNu+Oxn+ckvfsGyZctYu3Yt69evZ/Hixf3ehk2bNnHzTTfzqY98ij8/9Wdmlc/i3IXnHt9BAtkqc+WlV7Jg6WxK/BJv7qvj1tvvZs8bNTz5p1+RTKkkUhaslkyfctnj9Ii8RD1FrP3aO0le/zvUaBfttkIkXcGZZydnXi62XIdp4JaXm0b8vn3HS8rNvBeoqiLf0Il0rMZW9yKBJidGxjiecjA3B7ulDlwXm4ZDeF+/RVS/z/IJtLL7GbAjLMzGrWNaVRWOe7+Nfes23Ltfx3jFgVQsoS6dhXTx1bD6cnOhO2v4Rf5ovZw+H/j8Nhx5xaSOtZPojJOOGsiqhNPvwlqSi9Ww9ZZxjMTA+WOgNmxDqIEVJStOSmVhshkuJaJ5T/MgA7h0ZenIUaahHD+JgNnFT090615rIKW6m70EzM9cy3bz8fy1x583MN3B0E1d8CHmwKKqqn7nsFfby5/3/Rl/TnerYNkgq6QVMK9P7pFsQp2deGSdWVmtSFLGLPY53oYKCQObJY5uyBiGRHnpCC7fSWJMhu5vf/tbbrvttkFGLsBFF13ELbfcwq9//Wth6I4D8mt7mDdACH3WrELOK7FRMucCYukY+9v3o+kaNsUMn6UzaWLpGDOyZ/Ch+R/ix7t+zMrilRyLHKMz3knUiGIxFD7xlp3ChM4rhw1WFcs4slLEoyqdkkGWBjPVJFJWmXljH2B8yJLMxiUbqeusoyZQg9PiJIXGE+c6qfWk+ex2ifOPpnHFGwGIOy0c8qtEUpH+JzjKiUOWVeblnmTP9xPoWdaXb+TtY81YDA+qPYAs20nYC3g71U6ZEccrZ7DZwjSGSpHd67BVXEQo2oDDNjiBH453qunxTpyIoQTNeyikidnKs0hGkJiRSwQHFtIU08QctuNgHTC60PyoJpfiFRiGwatNr444Aa1cvrJ7oVECxtrR54V1T/7SoW3YQjXY1PbuUO8Y2qUOk3pyInrbpJ6sxzfdNaS3xWfzku3Ioj3aRo41g4SBKpv6uIlUglQmhWRI6LqOVbdiJAvRLVYcTrnXXlYUSDUH6axtw+n3mt3RdEBXAc0MDRfbCRwI0b4/QXZpFrIlhWzPYJdlJMkghUpEspGWLEiAVbYS1+IkM0nsap/PotMJZWWmukIm05s3ceVHP8ql//zPPPfcc+zYsYO///3v3H333fz85z/nuuuu6336pZdeyo2fuJEXXn6B3zz8GzZ8ZMOgt0qWZa758DX4Sm1YdFPecW7FLFa88zJefe1NzjlnGbohIUs9Ocr9r4PTeVzkZZ4vipEXI1WyELfVaXrGvLbjn83SUtNw//rXTZfwUFVFkox79acxnG14iptJU4Bs82BzaUixOvM+U/nlEfP3exmLAXuCmoBxoaoKackSrH3L6btrKThQO/T7cRJUVJjZIbt3O5l/noNUOHlcUstjY98+iRUrjr/0SAycP0q9pTgtTmLpGA2hhkFpadOdoRYLJ5UTPNDxA6YnV0+A6oN4vfnZsXcXJac7IXKk27aUzc+Zzd+v3gVXKQRegs7uAslhPL5G9hLac9vpcpkpkvbaAR53wyDP6MJhpHhndgGN4QYaE1Ga2mch9aihkEGWDCQgY0ikNDsWJYVVTTE3fwKdEKNkTIbu66+/zt133z3s4+9///v54Q9/eMqDOuuprh5SCN1SvYePvtLA09cU0lgxl2x7NvuD++mMd6LpGgoKLquLjYuuYXZAY+aBNvyFc5hRch5d6TCpTIoZLUlWde2hvchFKNjJ3l02ZsxL4s1J43QpOHQX1mNOOP+6YY2PvsVOuxp3kcwkkZDIceRQJEeIedO0ldqIO60kjQyF7WHKf7gN8hf2S4OYUM/HMOHmvqtd29Hfo1vBYsugJWxYnQnTMFBLaNCS2IwE8ZhMYe4sZl94B765EnmVjw+ZwN+vU03F6PQFh6vexdAp2/80di1KR94MCpYUmEUxVgWbx4q0b1+/Jh4nYjSTy8YlGwE42nV09BPQWA3PyZj8B9DbdniUChlDMkyajSRJzMudx95kB2EtSabbcSEjoyoqVtVKliULh+RAMhw0phRsqjQoBU+LJDBSGpLVQsYARZJMsWvDgqFnUBSJdDRFrFnGl6OQ0VVacwwsTjvIChoKxw1GA6tmoKQ1dGsM3AOkvCRpSAkxu93OxRdfzMUXX8zmzZu5/vrr2bJlSz9DV1VVNnx0A3f/6G5e3fMqP//Rb0hp/a+drutIsoSk2iFjBy3GsiULsVgsHKg9zILKpciS0V0Xp5rqJ31U53vSiH0+oKsLKZnEVl6ObYgiul6rOByGlSuHv345VUjnbsFyaBuWUA1kOiE1xH1mNJ/lsXyGT3JhNiYGltP36xQXh3wd5pXCZeth9eUn9V2TZdi4EerqYN8+idJSO85s81od2mc61PuUcZyQgcWyjeFG7Kr95NLSpiljzgke6Pix+sx0BdkKqXZzPutryKou09g1dLB6TFWYdFf/hkiyw5RFtPnNLpVDzIEtb36Xf4/62RvYR0JLYFNstMXaaIu2sbJ4JeV6O+el91Okd2IxNDpJcNnMAu4PauxpWIgsa1gk856m6woG3UKAkqn7lOXs4LJzPUw1YzJ0g8EgBQXDiOVj5nF1dHSc8qDOanTdvFENIYSeOeccsl6uY+VTNTw2Ox+/00+uM5dQMkQqkyKVSVF2MMAHfvoUtv0H+UzjYQxbE20z/Lx00Tzq5+SRp7ViSWdI5zjJ1rOZa12MrcGGrSuFx2lFSirwRit8sGTEYfYUO+1v38/tz9zOwbYD3PBskpxYmKMVx7+QHYlOpNkluLviQxtnE2X8DBNuBnpXu57IURYWS3QVH6Xr8FwsZU29u1pVG0lNorOrgLUXWamYKyPJDJnAP2SnmlEwXOWrq6sJd0c9Ibw4chz9UhuAQU08RsNoJ5cJn4AmY/Lv5njb4dioFTKGZIQ0G78jlypfHtWZQnTDIJlJIksyVtVKtj2bLHsWkiQRjQ6v8GXxdC94YmkMj830tGoakqICCulIBsWiYnWqyBmNtM1G0q6jy2qvdBmAJZnGHUqipjRThSXSCo6IaYmMsevZggULhqy3+OjH/pV7v38v77vkKjS1iEAUDCTSGdlMn0rpWFwWFJsKGT/ojbz15huk02mKCvKwWZLYLXFiSQd2qzoo172hgePewVqfafWOoKzQT/pwJMbzPjOJn+Ex0ddBssAFs4JgbwftDXjxaej4Paz+t5NyIFRVmZ3gBzYe6JMlMrbjFVWxpOBc6hqeIh5txuEqZEbpe5DlMZkkZxb9tLtf6i44c3crdBjQt35CUjGbsMjdGqGa2RikL8kW05PrHHoODMouGhuepCVZTo5nLi6Li2g6SlusjZZoC6Hm7azzRPFJGm2GjWDawKe6eK8vm9LEIq7vnEmhr5mWrkIkScdiSXe3qZJIZxR0XWVx+R4U6eAEv3EnZkyfqkwmg6oO/xRFUdC0qRcHPq2prT1eXDHgw+mz+zhYlI//cCv+xk7aSrORkPDZfBiGgbZ7J596MkS2rEJpKVFLB5HOVmbUtpHbGuEv65cRd1pJWxT0SIjs3EJKvaXmZKMDESAUArtjVJOHLMnM98/n/13w//j5776C7+AuWrO96ICWSRNNR7Grdub5z0HKsg5vnE3ExDFMuLkXxYlTllmUW8xrKx4m2f45OuuLcPk7UG1JtKSNtmYf+X6Dz92Q1WugDFeEcDKV/sNVvhodnWTCMcjOPq5o0Je+8d0x0FeJYbic59HsczrQ03Y4FoiNWSFjECdIs/F4ZrJi7teoaQOLZCEjZUhlUrTF2ginwvgdfhTFOazCl3dmDt45eQTeaCS70N9t3MUgo4EkE2mLU7wwm4JZLiSbBbWkGIfWTiwdwy7bzdz7ZJqsYAw5Y5BSDGTFgqxYTGOwcfgWv+3t7Vx11VVs2rSJxYsX4/F42LVrF3fffTdXXHFFv31jMfD5FvDiC604FAsqGbqTkIkmVaIxg+amOh575jEuu+Iy/H4/e994nZu//BWqFi/ggtWLkAwNf3aKxqCXRFKlp9GmrsPBgwO8g8dj5sMqK4w6Zt5zHaejgToe9HWQrMyDmdWgxiHpArwQCsLR7eCMwblbTtrYHdh44KSzIoLVyIe2Matv3mjr30ZUCjhT0fW+72kVFVVLkFuehDe2mMVmihsCL5o5unJ3mpuhmY1XFKfpzVWOt3o2Hzcgesx8X+2DnZOGYfB2Zz2OTJKFWWUcVc2FpNfmZWXxSnY1vsJl1mPYMxr7DBuKpJPrymNe7jw8jlw4ZGBLu1g8o5rdh1bTFfOh68c/CIqk47BF+dDq39PROnRNy2QyZtWF6667btjK3GQyOS6DOqvp6jJzcocQQpckiRnFlbS0tNPSuJ9IXmVvePlYZz1f3hliVsaLtGgBSBJzLfPZnYlRY48zrzXCqqffZttHF/KW32BRvU7+3Ln9jaiTmTwwjaPPz9+IIu/lgCVDOtmFIqvkOf3My52H3+k324+ehHF20oyk6gCQiSEpDt5fuZ7nI9uA/yC268NEGstJBzykpTD5FXV844vzWD6gU8546jIOZTgbGRlLlpui+V6c/iE8cWPxZA2gR4nhVPeZ7gRrg7TVtA32hjM6hYxBnCDNZl/EIJIK4zAc2GU7siyj6zqxdIzGTCNF7mLsdudQCl8gSZRftoRYYycdbwfwlnmx2OykOyOEjoVwZdlY8sGZKFkeyM0FpxN/SqIx00hCS2CVLWSHEkgZnYRqtt21qXbTI6yM3OLX7XazevVq7rvvPg4ePEg6naasrIwbbriB2267rXe/vl2Ei4rz0LUMmeRxPWDdkIjjJKs0i2eefYb//K//JBKJUFZWxqUf+ABbvn4LiscHkoJTtlHskHrr4jTNnOwXLYIPfrCPd7BvzHwYZYUxxczPZHodJCVQ8JZp5May6E1psfmgMQFFDafUgnhgpgScRA78CWonepUCzgL6ZZqYpThUVspsvPZiqnL/Zr4n3mIzJSEZMH8bhvl+2fLBNQcCz5rbkExjuLfOJQ9Uh/m33GcONAzCbQ2ogRbsditJ+teISJLE2twSzknWk+tfQoEtB6tixWc7fi/1+V04LDFkNcHKOTs42HwOgbAfTVdRZQ2vo4ssd5BZM3dy6ED/BfNUMCZDd+PGjSfcRxSinSK+kcN1fsOBtWAuM2fM49l4c294+X1SBRfGMnhmz+ydzPxOP8uLlrG/fT9NWQGyDh3DdjSLox+8kEv+3EhWXRuU2sZl8jhnziqMooXku60knNZBX4xTMc76r3hH6UXoDTfvAqPEbL1ktYKv+z3tlgNaMPtyNjtnsC1rG3tn/5COxlyUVA7zS4v43Pvez/KS+UMefjx1GQcZzh4rOT9uRHp1Nxj5p+7JOgsZqdAPRqeQMYhhwt868Oju23l31ruxKTYU2XTZKrKCXbaT0BIE4+3k5jpIpaSBCl+kUpC3uIjCLWt5+/fdC56EhmpTKVkzk8X/UknRsuLjgruA0+qk2F1MIB5Aj8dQUmnSipkb3NM4BuBELX5tNht33XUXd91117CnfeTIERIJOHr0eBdhxWK2NjUyBq9Vt6MbErohUV4+Z1BXtKHoWxcXi5nG7v/7f0M4ncc7Zn6m0uMg8WfA1dntye1z31BVswCR3FNuQdyXMefAj6J24lQM8dOJYUpx2L0b6upkNn/hk1TZboXQPnCUQCpkKjEAqE5wFkMqAFmLwV5k5vLGm44vwGd+zFRb6JtyFQjA/v3YAi1UujpItDl4V+1eXrroHOrn+HvHlqMoqIaGavWR7xqsjlwxI8zsgv28Wn8OK0pqyJu9g8auEmIpJw5LjFDcy/KZO4mqtbydGLo5zmQyJkP3gQcemKhxCHoYRbjOu+I8bv34PVzV2Ud262AHsvGVQZ5gv9NPriOXrpwO5NpatlR90ewodv6e8Z08KiqQFizAu3s33vEIM3Yz9IrXdPSMOExJhvRq2P8nSL8FIRUMG+S4oMwJuTN75YCmQ7h+kOF83UY4KjxZJ8uwhX7djFUho5chwt+17fs5FDzEe3PeO3h3pF4VBMWVpLjYPlDhC5er21FbUcTM80YfKXBanZRZykhJHagdzRg208gelOrSY1FnMmM71z4M1UVYkiQk1Xwt2TDPaSwv0bcuzmIZ4eM8rjHzM5QeB0m6C2QNMgNWDJoGigo2L2RaT6kFcQ8nlQM/itqJ8TTEpysjlOJQWWne9h/83/ks+epm5CPdUSS731wggCmHZxjHCyqHyz+X5OMpV0kX7KkBLYqakyYSVmnd62BGXRu5rVH+sn5Zr7EbzGTQJAt2hv5Cy0aUdSt/x4G6z7L7yEpiKSfBSC4pzYqOTIG3hZWzXkF63eCIcmQS3tGROYszv6cpowzXycoA2a32/cN6giVJIiujgi8f74zF5od/vCePCQgzjrziNR09wxq71dVw9+8BLyxXIScCpMwD7MmFdR/pFx6bduH6UXiydEM/7XNpJ4qRWlyejELGSHQluswiNIZ+72XZFNfP6BlcQyt8HVcFGmOkQJIkbFanacQgDd1VqcdCHUq5YJScoIvweLzEyAwVMxccp8dBUvs8LFJA0SDTJ2czEoU8P7gUU3HiFFoQwynkwI+idoJM47gY4tOZEUpxkKQ+9cbBKuYt72PEqt0KBn07o/Xc84daGPSmXG2FVx4FSzsgIe83sL4ok9sQIu1xYktqrP7HARpm5aJLsDvcxQezyvBonWAUD9kgpcjRwMeWPcSWJ79PIOLHMKRu1QWDxo4ifvDkTXzn4rcpa4yP+/s3VoShOx0ZTbhuYDx/9uyxF26M9+QxjmHGUa14h1PY6vfklVAPBLpATUHaAq82QtcrsPrq6e0VGmExUt1U3auOkNBMWbTKvEo2Ltl4RsjznCrDFfqdrELGQPrmJeqS2ShCZ+gQna7rvV3TYFiFr5NnhBa/GIaZG+FymftN35cQnAo9joY7j0B9E5SGQMsBLWMauXY7zJ0LsWOn3IIYTiEHfhS1EyinbohPd0YoxQEG1BufahFlThW0OeBP26EjDlEdKe5FRSdjacPeGUVSVWbta8ZRd4xd7hB+Vx4Fiz6D1PT7YXXum1oTPLL/WoLRbCR0rJYUipzBMCRSmo3X65dwz45v8k/nfu/kxz5OCEN3ujKSx3W4eP7q1VNfuDFOnuJRr3iHUtga6snxrOOPlypjlueaMoZYjFQ3VXPn9jsJxAKUekt7ZWF2N+6mrrOOzWs3C2OX8VXI6MvAvETZLmNfa0ebOVhxxsAgpadwWVzYlAmyAkdo8UsqZeZn5uYO7e2dPi8hOFWqqmDzFvjDPRD9P7A0mykMeTkwpwwsbePTgphTyIE/UUfMnlbKp2iIT3dOUIpzKiUtQ9PZBW8EQJMhKwcsEg4Abz5d1k6soRje1k4y7QFWnHM+1y6+lvlFVeCfP2wBbli5ixdrLwDAZY9iGDIGErJk4LTFiCWdvFD7Dq5817ZxOomTRxi605mhPK4D4vmG00m4owVpxzNw4C1cG65DfmXn1BZujIOneEwr3nF98vRGN3S27dlGIBbo18HMa/NS6a+kJlDDg68/yJLCJSKNgfFVyIDh8xLn75sPayGRSuBQHb2qCyk9hSqr5DqGkIkbT4Zp8Xs8AXhsOrpT9BKCU6WqCpb8Cl5/DBofAr0ebDIoBvjGoRFPNyedAz+WVspnMOOtnHdCOjuPz4l9Xsyh2rG7C0kbIaRohH9b9AlKLvn48bljiAJc3T2b2o5DvNK8mkTKgSqnSaQdZHQFw5CQJANFzqDKGomUgzdbLhynkzh5hKF7OjEgnh+It7O/6U06Ep1k7Glm1dbR/ocAvh/+jKq477Qu3DilFe+kL5cnj9pgLTVtNcf1j/sgSRKl3lL2tu6lNlg7vXKOp5DxUsgYKS9xoW8hDs2BqqlohoaumekKLouLXEcuTuskWIHDtPgdTzfrJLyE4FSRZVj6QVhy+YR1ITylHPiJ7Ih5mjDpynlZWeYXNZkctCKVAKuWAZeHsvJFgz8jfVInqpuq2fbil6lpq6E9+k50QyaVsWIYx59jGBK6LiNJZsfGUHjk5lOTgTB0Tyf6hOQD8XZ2N71KQkvgsriwWFyE/HGc+4/w84dv4/r1d1M1b4S2mNOcU1rxTvpyeZSclE5af7oSXb3XfCicFieN4Ua6Eqeft3q6M2JeIhJWyYo37sWT50GySCiygk2xTawndyDjngA8JS8hGA8msEHGKefAT0E78OnGpCrnZWdDeTnU15veXZfLzDfSNNMhpKrmCjY7e9hDDEyZO5h7zOyGiILZH/E4BmAYCrKkk/JP/VwkDN3Tie6QvOF0sr/pTRJagmx7Vu/DutNOVmeKVLDttA9fn9KKdzoKzZ+0Tlp/fHYfdtVONB3FaxvsrY6lY9hVOz57H2/1OBjYghPnJSIDBlixYu1p+SUQnKGccg78mdypbpRMmnJeRYVZw5NImJryXV3HDdzcXFPf77zzhnX+DJUyNyO7gSOSDoZZZGsApn/Y6H6WhITOjJy6cT6ZsSMM3dOJ7pB8uKOFjkTnIK+eLamRtqq480rOiPD1Ka14p5PQ/CnppPWnIqeCyrxKdjfu7pejC2bIsCHUwIqSFVTkVBx/7XEwsKeS6SKjdqK8RHRAAlkRiwjB2cF458CfjUyKcl5f509bG8ycaeYdZTKmhzcvb0Tnz1Apc7nHZqMqaTJat7RhLz3/N1CVNLaGwgk8sdEhDN3Tie6QvLTjGTL2NJa+hq5hkB2IcmRuPuGyAhKdB8+I8PUprXing9D8KemkDUaWZDYu2UhdZx01AfPG09MGuiHUgN/l59rF15qG4Dga2FPFdJJRGzEvEQM9o6PaVRTbRInJCgTTj/HsEimYQAY6f8Jh0/GxcuUJnT9DpcxlGQq6oXLcgwv9PboGuqGSo079/VC4Hk4nelZl/jxmNSdRI3GkjI49lqKovpOI18HL755LNBMfHL4+jelZ8a5caf4ek516Sk8eB8aikzZKqoqq2Lx2M8uLlxOMB6kN1hKMB1lRsoLN7+qWFhtoYHu95gq+x8AOBEwDWx++PaNu6Oxv38/OYzvZ374f3ZjcVo49OWG7G3eT48hhbs5cchw57G7czZ3b76S6qXpSx9OTl+j0OwnUBEiGkuiaTjKUpONgB5IsYcua5JzccaC1tZUbb7yR8vJybDYbhYWFrFu3jh07dgAwc+ZMJEnid7/73aDnLly4EEmS2Lp1a++2G2+8kTlz5uBwOMjLy+OKK65g3759k3U6AoFgOKqq4N574T/+A777XfP39753QodH35S5HuQ8GV0351NVTqPKGoqkocoaqpwGQNdlCucJj65grFRV4frGv9N+5/U4DxwhqzNF2qpyZG4+L797Lkdn59IQqOkfvhZMHRMkdXbCtsWnJEQ89Z7U6SqjNlxeYtF5Rdiz7Fgdp5abOxVpGldeeSXpdJpt27Yxe/ZsWlpaeOqppwgGg737lJWV8cADD7B+/frebS+99BLNzc24Bny2ly9fzoYNGygvLycYDHL77bdzySWXcPjwYZQJa50mEAhGxUnkSgyVMpfwZCHLOnpGwkBGlnRk2cAwQDdkJAxkWccoLZigExk9wtA9DZGXLcf3o5/z89/fQirYhjuvhHBZAdFMnIZATf/wtWBqmUCpsxHbFp+CgT0dGlJMZxm1ofISnaVOjtQdOaXjTsXiorOzk+eff55nnnmGtWvXAjBjxgxWrVrVb78NGzZw3333UV9fT1lZGQD3338/GzZs4MEHH+y37yc+8Yne/8+cOZNvfvObLFmyhCNHjjBnzpwJOY+zBVFXKpgKhkqZc0kpbJYEsmwhk7GgG3Jv1oIEWC0prEoamcSIx54MzqivSE+Ire/PLbfcMtXDmhCqSpZz/fq7cV1wIXuzNQ50HhwcvhZMPT1SZw0NprRZX3qkzhYsGH+ps74G9lAMY2D3eFLbom0UuYtIaAnCqTAeq4dKfyWBWIAHX39wwtMYRiOjltASU5aH3pOXWLKyhNx5uadcfDNVaRputxu3282jjz5KMpkcdr+CggLWrVvHtm1ml6NYLMZDDz3Epk2bRjx+NBrlgQceYNasWb0GsuDkqK6Gm26Cz30Ovvxl8/dNN5nbBYKJZmDKnCXnFbKdHTgsCdy2EFYlhSprWJUUbnsIhyVBtrODcyoCUz30M8+je+edd3LDDTf0/u12u6dwNBPLCcPXgqlnqqTOTlJLuDZYy8sNLxOMB6nrqkMzNFRJJcuexbzceZPmST0pGbXTlKlM01BVla1bt3LDDTfwk5/8hGXLlrF27VrWr1/P4sWL++27adMmbr75Zr761a/y8MMPM2fOHJYuXTrkcf/rv/6Lr3zlK0SjUebPn8+TTz4pJNdOgTOgrlRwBlBVuIQlzk9S3/4mNen/pHPu8zzx5vuwqGk8znBvKVoqbSOdsXDBvOcIBP4PuGJKx33GWUQej4fCwsLenzPZ0IXj4euVJSuZlztPGLnTkZ5q1+XLIRg0Y4/BoGloTtQM1Vu46DcN7FDIFAcPhcy/hzGwX2l4hQPBA3Qlu7CqVrw2L1bVSlusjVebXiWejk+KJ7UnJ6wh1IAxwBPeI6O2IH/BGZGHPpY0jYngyiuvpLGxkccee4x169bxzDPPsGzZsn4FZgCXXnopkUiEZ599lvvvv39Eb+6GDRuorq5m+/btzJ07l4985CMkElMfwjwdGYe6UoHg1AlWw+6bkHd/gRkH/4MVxuv82/u/x7nlryPLGVKajWTaRkqzIcsZFpfv4eaL7iV9pH6qR37mGbrf+c53yM3NZenSpXzrW98ilUpN9ZAEgpOudj3l1xyDga0bOk8efpKMnsFlcWFVrMiSjFWxkmXPIq7FqQnUYFNsE+5J7ckJ8zv91ARqCCVDaLpGKBmi5gzLQ58OaRp2u52LL76YzZs38+KLL3LdddexZcuWfvuoqso111zDli1bePnll9mwYcOwx/P5fMydO5d3vetdPPzww+zbt49HHnlkwsZ/JjMBwi0CwdgIVsMbd0JwN9hywDsXw3BRNes17v3ozXx45R8ozjqGz9FFcdYxrlr5e7730S9TVfYaLqt/qkd/ZqUufOELX2DZsmVkZ2fzyiuvcOutt3L48GF+/vOfD/ucZDLZLzctFApNxlAFpwPjXfkxKcrgAxiDlnBtsJamcBP57nxCiRBWxdqr/S1JEi6Li9ZoK2vK1kyKJ7UnJ6ynQKsx3IhdtbOiZAXXLr72jMlDn45pGgsWLODRRx8dtH3Tpk1897vf5eqrryZ7hHahAzEMY8QcYMHwTJBwi0AwOgwd49BW4tF6IvYyrBkDnyrjVYuABsDsgea0xjEMGac1Dj2FaSos8Cyb0uHDaWDo3n777dxxxx0j7rNz505WrFjBl770pd5tixcvJjs7mw9/+MO9Xt6huOuuu054fMFZyBnQUayXURrYXYkuklqSytxK9rTsoTPRicvqQpVVNF0jmoqiyArvnfXeSfOkng156GPudjeOtLe3c9VVV7Fp0yYWL16Mx+Nh165d3H333VxxxeC8usrKSgKBAE6nc8jjHTp0iIceeohLLrmEvLw8jh07xne+8x0cDgcf+MAHxn38ZwMTKNwiEJyQvYceQz70KI2pFBHjGIqkku3IotJI8daRpdz5v5sJhP34HJ3kuNvJZBR21y2n7pEZfP2yO5kzq2OqT2H6G7qf/exn+2k3DsXMmTOH3H7eeecBUFtbO6yhe+utt3LTTTf1/h0KhUR18NnOWVr50eNZdFgcLCtaxv7gfjrjnUSNKKqk4nP4yHHksKp01YkPNo6MKKN2BjCmbnfjjNvtZvXq1dx3330cPHiQdDpNWVkZN9xwA7fddtuQzxnuXgpmCsRzzz3H97//fTo6OigoKOBd73oXL774Ivn5+eM+/rOBk6wrFQhOmeqman7zyvfZoHViqH58ioW0rtEWDeBMxtj2wu3UBWaQ0lQOtFSQyagoiobf3UY04eKXL17DZ86pJ2uKz2PaG7p+vx+//+RyPKq7dVeKioqG3cdms2GzDdG3XnB2Ms4te08nBnoW15SuIZQMkcqksMgWjoWPsbJk5fh5FoUoaC9TlaZhs9m46667uOuuu4bd58iRIyMeo7Ozs/f/xcXF/PWvfx2n0Qlg6oRbzhamoknL6UCPGkxrIoLF6cEjQUKSsCoWrPYsXj7q55WDqznWUUwk6UbXjzeDCcc9uO0RXjp0HjmtETZP4XnAaWDojpYdO3bw0ksv8e53vxufz8fOnTv50pe+xOWXX055eflUD09wunCKHcVOZ4YUBbe4kJBoCDWQ58obP8/imZQaMk6cDWkagpOjp6605yvT2Gh+ZVasMI3cs/Qrc8pMdQfI6UyPGkyuu4ImkszItNEkW8x5UAKjK5uDLXPojGf1Nosw6C7rkFQ6YxYOtc4mWRef4jM5gwxdm83GQw89xB133EEymWTGjBnccMMNfOUrX5nqoQlOJ87yyo+RPIsfO/djuKwudh7beWpG2FmaGjIazvQ0DcHJM4a60pPibAuwTIcOkNOZHjUYp9XNS8Y8co0IRXonHbKLJCqWRDZdcR+ariKh99i/gJlSoxkqXfEsijOeKT0POIMM3WXLlvHSSy9N9TAEpzui8mNIz2I4GeaXr//y1D0fZ3FqiGByOJND0RMl3HK2BVimsknL6UJfNZh6m5+/WJdxXno/RXonWUaMfSkXmq5iGGCggNE3AmoABpqukq3kTNUp9HLGGLoCwbggKj+A/p7F6qZqvvnsN8fH83EWp4YIJh4Rih47Z2OAZSxNWs7WCMvAmo16xU+9nIMz2YiqRek4WorZyqdnIdC3sY8ESBhkCASHL16dLIShKzh9mIzYmqj86Me4ez7O8tQQwcQhQtFj52wNsIymSUtjuHHCO0BOFaOJegys2XBZXNSH6wnGgsTSMS4zijGMvs8Z6NGVMAyJPM/U62cLQ1dwejCZsTVR+dHLuHs+RGqIYAIQoeiT42wKsPQ17oLxIDbFNq2atEwWY4l69NRs3PPiPTxe+zjJTBKHxUGZr4z26Hn0N277ItHj4Y2QN6HnMxqEoSuY/kxFbG2iKz9OE8bd8yFSQwQTgAhFnxxnS4BloHFnU220xdpoi7WxsnjlpDZpmUpOJuqhGzp7W/eSzqSxKTYUScHQJQ42r6SPzsIQSMhkkN1DODQmGWHoCqY3Uxlbm4qWvdOMcW9PK1JDBBPA2R6KPlnOhgDLcMZdW7SNlmgLOxt3Mt8/f9KatEwVo416nJu/hEMHZbq64FhyL/9Zeyt1XXVkO7JxWBxoukZrvZdMxIGEjsHA9IXjubqKrGPJCU7uiQ6BMHQF05uzKbY2DZmQ9rQiNUQwzoz7guws4UwPsIxk3K0sXsnOxp0AtMfaacxMTpOWqWI0UY+XXknyr4900nw4h3jcoC4qE/Ndi7LEwD7nKJIkYVEsuPRiwmSQpQy6YRq3Rj8j1wBkVDmN31c/yWc6GGHoCqY3Z0tsbZoyYe1pRWqIYByZkAXZWcCZHmA5kXE33z+f9ng7N6+5mRxHzhknR9eXE0U94vXzOfDIRcQtFipng6Z0ceBgI5ljS4m3+bFbfoRnRi0AiiOCXddJWxLE0k4MQ0aWdaRug1fXZSR0Cl3NyA2ZyTzNITnzrqZg/NF12L8fdu40f+v65L1239jaUJwJsbVpTk9BwvLi5QTjQWqDtQTjQVaUrGDzu06hkr0nNWTlSvP36Tqbnua0trZy4403Ul5ejs1mo7CwkHXr1rFjxw4AZs6ciSRJ/O53vxv03IULFyJJElu3bu3d9rOf/YwLL7wQr9eLJEn9WgRPFD0LMr/TT02ghlAyhKZrhJIhagI1Z2QoerzoCbAsXw7BoLn2DAZNT+7pLi02mpSWpJYkx5HDypKVzMudd8Z+RvpGPQZi6BI1/7eSTDSLc87J4PVChhTYIuTNCCDH8uh46Z/Qu21WI+cAftsBFCNDjr0di5zC0CV0XUHXJRQpQ76rhTmOg8w0nJN8poMRHl3ByEy1kviZHls7TRDtaSeJKWhPdeWVV5JOp9m2bRuzZ8+mpaWFp556imDweG5dWVkZDzzwAOvXr+/d9tJLL9Hc3IxrQLQlFovxvve9j/e9733ceuutEzr2vozU1e9MDEWPJ2dqgEWktBxnpKhHZ6Of1iN+8otSve+FVbGiygoZQyO7MEZ7ayWt9V70nH1oukbF/PsIN60ioPkp9jSQSltJZWykDQtee4hsW5AFsbeoWFQyVafcizB0BcMzHZTEz/TY2mmEaE87wUzBorKzs5Pnn3+eZ555hrVr1wIwY8YMVq1a1W+/DRs2cN9991FfX09ZWRkA999/Pxs2bODBBx/st+8Xv/hFAJ555pkJGfNIiAXZyXMm1t6KlJbjjJSGtr9RR9FdVBYX9Mlj9pFlzyYQa8PrtBEN+EjFHGjeBLIk0zjvVb7+1Nf4pvRNgrFcVDWN1ZIm29KJw4gyM1LH1elfUlf2DeZM9blP8esLpisD1Q68XlCU42oHgYCpdjAZaQxncmxNIIDji8rduyEnB+bONX/v3m1ur66ekJd1u9243W4effRRksnhhd0LCgpYt24d27ZtA0yv7UMPPcSmTZsmZFynQs+C7EwPRQtOjEhp6c9waWhLZ85ibkEZDsPfu68kSczLnYddtdMeSpCSQ9idSfJd+TgtTpw2F+scD/HrzEf4p/T/Mit9iKJUI2WROtZ2bue2xDeYbX+NAx21U3jGJsKjKxia6aZ2cKbG1gSCKZTQU1WVrVu3csMNN/CTn/yEZcuWsXbtWtavX8/ixYv77btp0yZuvvlmvvrVr/Lwww8zZ84cli5dOq7jEQjGG5HS0p+hoh6zsyr48hvyoAxBv9NPVeFyXmhsR/c/jew/BFgp8ZawIJShybOXcqr5UeJfOaxXEMr48EldzFRqidgNmjwSlmhiSs8XhKErGI7pqHZwJsbWBIIpXlReeeWVXHrppTz33HPs2LGDv//979x99938/Oc/57rrruvd79JLL+XGG2/k2Wef5f7775+W3lzB6YFu6OwP1PLmvgQkfCwqL2PeXHnC/BYTmtIyBXn1p8pQaWjDZQi2NfipLJdpXf48RYWLkCWZbHs2nkQXbY4aXlUrcEV8lCe7OMfYja4Y1DnhmAdUJGaUnTtFZ3kcYegKhuZsUBIXCKYD02BRabfbufjii7n44ovZvHkz119/PVu2bOln6KqqyjXXXMOWLVt4+eWXeeSRRyZsPIIzl+qmau75n//jhT/NIXSsFDTwuuJcsCyHf/t0/oRlok1IjcFUF2uPIyPJm5e9cw8/qHuevW0pkECVVDi6hNdj9xLrrKRTteOQE8yw7OWC7AfJ8b1GZTu8XqjiVrKZO8XnJgxdwdAItQOBYHKYhovKBQsW8Oijjw7avmnTJr773e9y9dVXk52dPWnjEZwZVDdVc9PWX/L6Hz6IHM8j2x9CsrYRiug8/pxOU4OVe7+ddXrYiNOhWHucGSpDMOyq5hvP/QBN19B0jRxHDtH6ebQ8cSMd+FhqrWdeJkqH6mJfejlNgZl8KnYn7Vl7eLTSw8xQx1SfljB0BcMg1A4EgslhCheV7e3tXHXVVWzatInFixfj8XjYtWsXd999N1dcccWg/SsrKwkEAjidw2tjNjc309zcTG2tWYTyxhtv4PF4KC8vJycnZ9zPQXB6oBs6W6sfZP/Ta7AkCskqb+7+qFvwZ0OH/QD7621se9DHkiXS9J5aprI1/QTTN0NQN3Ruenwb7bF2Vpesprq5mq54mMQr/4wczyNavId9cYN5QciOh8llH0dSlfzKuZHEO27jQB7kZuVO7QkhDF3BSIhWrQLBxDOFi0q3283q1au57777OHjwIOl0mrKyMm644QZuu+22IZ+TmzvyxPWTn/yEO+64o/fvd73rXQA88MAD/VIhBGcXtcFadr/Zhd56Di5/56B0dLfVRdRTx649hdTWuqZ3OcZ0K9aeIPp2lvPavCwrWsYbNUk6m2aDtwEkaHdKvOqw4k2CJaOTyLRwILMURTkHt6UR34ypT28Uhq5gZITagUAw8UzRotJms3HXXXdx1113DbvPkSNHRjzGwM5nt99+O7fffvupD05wRtGV6CIWsYBmR7WHBj2uyiqGJUI0lpn+Hd2nQV79ZDCws5zf6Weht5wOJQ/VF6E9rqLpGinStNslwMDQwxDMx5XKJj9bI5KOTO1JIAxdwWgQagcCwcQjFpWCMxif3YfTnQY1gZawYXX2l53SdA0p7cTlVKZ/jfM0zKufCIbqLGdxxlEsaYy0A0mWwJAACRJejIwVMhZQk6jZUdxe97ToOifuoAKBQDBd6FlUrlxp/hZGruAMoSKnguWLfMj5bxMNZGEY/R+PpKLI4RmsWOKc/jXOPXn1DQ0MOpGevPoFC077Yu2eznINoQYMwyAQC7A38xgR306CzU5SWhojloPSeAHq0XdgOboGuf4CLMlikikrSS3J7OzZU30awtAVCM56dB3274edO83fk9HtTiAQnFXIksx1Vdcy76KXSNubaT+aRzJqJZnSCHQkSbfMZV5ZLhuvneaFaHA8r97vN1ONQiHQNPN3Tc0ZU6zdt7PczsadvHzsZQKxVjwr/wjOdmhciaVuFfZAFlmJNO6kQXYmQkFHGvffb0U7di6HOg5N9WmI1AWB4KzmDNKBFAgE05uqoiruvQ7u8Zg6uh3HSkHz43VZece7svnyp8ZRWmyiGzmcJcXaVUVVfO1dX+P6x64nmopiV+2oJW+Q//6f0bntTki4sRJHk2WctjZKrQcp0ts51LwQ7clL6LihC6ZYeEEYugLB2coZqAMpEAimN1VFVfzqM0vYf/UEdkabrAX8WZJX77F5yHPmUewpxqpYsSpWIlIhh9Nt5NgaSNozyFKSLGsSi6KgSW6Ku47ReKCUzmM5UDa14xeGrkBwNnIG60AKBILpjSzJzM+bx/y8CTj4ZC/gz4Ji7a5EF8lMknJfOYqsAOBqcXIsZcduP4rdKqEbOors6G2rrNtiWBJ2shqUqRw6IHJ0BYKzk7HoQAoEAsHpwMAFvNcLinJ8AR8ImAt4UYcwJvqqL/SQJYVwSSnisoeMngFAwmwykcykSEpevLJONoOl5Cab08bQ/da3vsX555+P0+kkKytryH2OHj3KZZddhsvlwu/38/nPf55UKjW5AxUITgdGowOZSJz2OpACgeAsQizgJ4SB6gsAzrJ2ZjsPEUqWE9N8hNJ5hNJOND2DXbETz8xmcVYTFYvsUzz60yh1IZVKcdVVV7FmzRp+8YtfDHo8k8lw6aWXkpeXx/PPP097ezsbN27EMAz+4z/+YwpGLBBMY84SHUiBQHAWcZY0cphsetQX6jrrqAmYndIyRU6KSt7imbcu4nDiHGyygVXRcakJ3BaNWRzh2nccQp73wake/ulj6Pa0lNy6deuQjz/xxBPs3buX+vp6iouLAfje977Hddddx7e+9S28Q03mAsHZSo8O5O7d/XN04bgO5IoVp70OpEAgOIsQC/gJo6qois1rN7NtzzZq2mrYf7CMYPKDuKxx7JkO4pKXpG6hPWHDSHfykYW7qPrye6ZFjcfUj2Cc2LFjB4sWLeo1cgHWrVtHMplk9+7dwz4vmUwSCoX6/QgEZzxniQ6k4MS0trZy4403Ul5ejs1mo7CwkHXr1rFjxw4AZs6ciSRJ/O53vxv03IULFyJJ0pAOCMMweP/7348kSTz66KMTfBYCAWdNI4epoqqoinvX3csP3vcfzGv4Jrm+lbxzXT7vntvEO3xv8E73a1ySvYuinCSvnPMx9CXTQ7XntPHonojm5mYKCgr6bcvOzsZqtdLc3Dzs8+66665eb7FAcFZxluhAnlYYOoRrId0FFh94KkCa2MXGlVdeSTqdZtu2bcyePZuWlhaeeuopgsFg7z5lZWU88MADrF+/vnfbSy+9RHNzM65hwsTf//73kQbmSQoEE0nPAr6u7niurtNpenIbGsQCfhyQJRm5Yx7Bepg7C2SvEyPXD8fCEM8gORRKPR72BiRqa6eHIMWUGrq33377CY3MnTt3smLFilEdb6ibqmEYI95sb731Vm666abev0OhEGVlUyz6JhBMFmeJDuRpQbAaDm2DUA1kEqDYwVsJszdCzsQsOjo7O3n++ed55plnWLt2LQAzZsxg1apV/fbbsGED9913H/X19b33x/vvv58NGzbw4IMPDjrunj17uPfee9m5cydFRUUTMnaBYEjEAn7C6ZsKHQjA/v0SbW1eNA1UFXJzzbd8uqRCT6mh+9nPfrafh2AoZs6cOapjFRYW8vLLL/fb1tHRQTqdHuTp7YvNZsNms43qNQSCM5KzQAdy2hOshjfuhGQAXKWgukCLQnA3ROvg3M0TYuy63W7cbjePPvoo55133rD3woKCAtatW8e2bdv42te+RiwW46GHHmL79u2DDN1YLMa//Mu/8J//+Z8UFhaO+5gFghMiFvATSk8qdEMDvP66+Rb3zRTp6gKHA44dg5Urp26cPUzpVff7/cyfP3/EH7t9dNIUa9as4c0336Spqal32xNPPIHNZmP58uUTdQoCgUBwahi66clNBsBXCRYvSIr521dpbj/8oLnfOKOqKlu3bmXbtm1kZWVxwQUXcNttt/H6668P2nfTpk1s3boVwzB4+OGHmTNnDkuXLh2035e+9CXOP/98rrjiinEfr0AwanoW8CtXmr+FkTtuVFTA/PlmLXN7u2nkqipYraZscSZjZov8/vfTQ7L4tLnyR48e5bXXXuPo0aNkMhlee+01XnvtNSKRCACXXHIJCxYs4JprrqG6upqnnnqKL3/5y9xwww1CcUEgEExfwrVmuoJrGO1PVyl07TX3mwCuvPJKGhsbeeyxx1i3bh3PPPMMy5YtG1RgdumllxKJRHj22We5//772bRp06BjPfbYYzz99NN8//vfn5CxCgSCqUeWYe1aU9xC100jV5bN/2cyYLOZHt0XXoD9+6d6tKeRobt582aqqqrYsmULkUiEqqoqqqqq2LVrFwCKovCXv/wFu93OBRdcwEc+8hE++MEP8t3vfneKRy4QCAQjkO4yc3LVYbQ/Faf5eHriEt7sdjsXX3wxmzdv5sUXX+S6665jy5Yt/fZRVZVrrrmGLVu28PLLL7Nhw4ZBx3n66ac5ePAgWVlZqKqKqprZcVdeeSUXXnjhhI1fIBBMLrpuem+dTtO4TaXM33a7WfOXnW2K+Lz55lSP9DRSXdi6deuwGro9lJeX8+c//3lyBiQQCATjgcVnFp5pUTNdYSCZmPm4ZfK0PxcsWDCkJNimTZv47ne/y9VXX012dvagx2+55Rauv/76ftvOPfdc7rvvPi677LKJGq5AIJgCVNU0aCXJNHIVBSwW8+9kcqpHd5zTxtAVCASCMxJPhamuENxt5uQObN4RbYDcFeZ+40x7eztXXXUVmzZtYvHixXg8Hnbt2sXdd989ZI5tZWUlgUAAp9M55PEKCwuHLEArLy9n1qxZ4z5+gUAwNSxaZPbkCIfB7zdIZVLohk5al7EqVsJhCa/X3G+qEYauQCAQTCWSbEqIReugqztXV3GantxoA9j9MOvaCdHTdbvdrF69mvvuu4+DBw+STqcpKyvjhhtu4LbbbhvyObm5ueM+DoFAcHoxbx5ccAH89W9p6ppiYIuArIGuQtKNVXLyjndYpoWgjzB0BQKBYKrJqTIlxHp1dBvNdIXcFaaRO0E6ujabjbvuuou77rpr2H2OHDky4jE6OztHfNwY2KFKIBCc9sgyXHbdPp7YkyZ2rBA56URCwsBAl1I4i4/yTxstyPL8qR6qMHQFAoFgWpBTBdlLJr0zmkAgEIwV3dB5Wf8JZR8OkX71owQOzkBLWlFtKfIqjqBW/ZZXDB9XG99DnuJ7mDB0BQKBYLogyeCdBrE+gUAgGIHaYC01bTXMPzcHz7KH6WrKIxVzYHXG8RW1EU7H2dt6jNpgLfNyp/aeJgxdgUAgEAgEAkE/dEOnNlhLV6ILn91HRU5Fr3e2K9FFQkvgsriQZIOsktZ+z3VanDSGG+lKTH0fYGHoCgQCgUAgEAh6qW6qZtuebdS01ZDQEthVO5V5lWxcspGqoip8dh921U40HcVrGyyLGEvHsKt2fPbJk0UcDmHoCgQCgUAgEAgA08i9c/udBGIBSr2luCwuoukouxt3U9dZx+a1m1lSuITKvEp2N+5mfs4CQs35vakL3sJWGkINrChZQUXO+MsijhVh6AoEAoFAIBAI0A2dbXu2EYgFqPRXInXrenttXir9ldQEanjw9Qf5XuH32LhkI3uqZf762/PQW8/B0OxIagI5/23mvcfFte+/ZsoL0UAYugKBQCAQCAQCjheZlXpLe43cHiRJotRbyt7WvdQGa6G5Cp6dBY3t4K0DSwzSTmhaDtsvgXVZUDQ159EXYegKBAKBQCAQCPoVmQ1FT5FZR6yL324DLZLF+8/30hi2EtdiOFQnxZ4S3t4n8+CDsGSJqbk7lQhDVyAQCAQCgUAw6iKzzkY/NTXgyg3y8rF9dCY60PQMqqxQH6qnJHc+e/fmUFvLlHdHm/rkCYFAIBAIBALBlFORU0FlXiUNoYZBXQ0Nw6Ah1MCC/AVkSTMIdIXZF9pFINaGTbHhs/mwKTYCsTZqunYT6ArTNfXqYsLQFQgEgrOZ1tZWbrzxRsrLy7HZbBQWFrJu3Tp27NgBwMyZM5Ekid/97neDnrtw4UIkSWLr1q0ABINBPve5z3HOOefgdDopLy/n85//PF3TYbYTCAQnRJZkNi7ZiN/ppyZQQygZQtM1QskQNYEa/C4/1y6+Fp8PAuljRKMSWfZsLIoVSZKwKFay7NnEYubjHq8+1ackUhcEAoFguqDrUFsLXV3g80FFxcTnt1155ZWk02m2bdvG7NmzaWlp4amnniIYDPbuU1ZWxgMPPMD69et7t7300ks0Nzfjch3P5WtsbKSxsZHvfve7LFiwgLq6Oj75yU/S2NjIww8/PLEnIhAIxoWqoio2r93cq6PbGG7ErtpZUbKCaxdfS1VRFfvU/eDfC0crMbLa6Fu3ZhhAqBRm7IUcGRCd0QQCgeCsp7oatm2DmhpIJMBuh8pK2LgRqqom5jU7Ozt5/vnneeaZZ1i7di0AM2bMYNWqVf3227BhA/fddx/19fWUlZUBcP/997NhwwYefPDB3v0WLVrE//zP//T+PWfOHL71rW/xsY99DE3TUFUx5QgEpwNVRVUsKVwybGe0cKoL/5q/EuiaSWd9ES5/B6otiZa0EQ1k4/SF8Z/3V8Kpsik+E5G6IBAIBFNOdTXceSfs3g05OTB3rvl7925ze3X1xLyu2+3G7Xbz6KOPkkwmh92voKCAdevWsW3bNgBisRgPPfQQmzZtOuFrdHV14fV6hZErEJxmyAbMa4eVjeZvuU/Krs/uwz+nnsor/0BeRR2psItQUwGpsIv8uUeovPIP+OfUi85oAoFAcLaj66YnNxAwPbg9IUCv1/y7poYJk+lRVZWtW7dyww038JOf/IRly5axdu1a1q9fz+LFi/vtu2nTJm6++Wa++tWv8vDDDzNnzhyWLl064vHb29v5xje+wY033ji+AxcIBBPLCUJMPUVru9PPc96m4KDOaPuCe1mRPz06owmPrkAgEEwhtbXmXFJaCgP02ZEkc/veveZ+E8GVV15JY2Mjjz32GOvWreOZZ55h2bJlvQVmPVx66aVEIhGeffZZ7r///hN6c0OhEJdeeikLFixgy5YtEzN4gUAw/owixNS3aG1fcC+yv5acOQeR/bXsC+7tLVqbDp3Rpn4EAoFAcBbT1WU6TFxD67PjdJqPT6Rwgd1u5+KLL2bz5s28+OKLXHfddYOMU1VVueaaa9iyZQsvv/wyGzZsGPZ44XCY973vfbjdbh555BEsFsvEDV4gEIwfA0NMXi8oyvEQUyBghph0vbdobXnxcoLxILXBWoLxICtKVrD5XZupKpqg4oIxIlIXBAKBYArx+cyoYDRqziUDicXMx32TmOq2YMECHn300UHbN23axHe/+12uvvpqsrOzh3xuKBRi3bp12Gw2HnvsMex2+wSPViAQjBtjCTHNm3fCorXpgDB0BQKBYAqpqDAdJbt398/RBVOmp6EBVqww9xtv2tvbueqqq9i0aROLFy/G4/Gwa9cu7r77bq644opB+1dWVhIIBHA6nUMeLxwOc8kllxCLxfjVr35FKBQiFAoBkJeXh6Io438SAoFg/BhNiKmxsV+ISZZk5uVOcfuzERCG7jRFN3T2t+/nzdY3AViUv4iKnAoOdRwaftXUR4RT9/iopYKusIzPB7Nnw6FDQ+tzjqTdORW6nqfEaTdgwdmOLJv1HXV1xx0pTqfpyW1oAL8frr12Yj7Gbreb1atXc99993Hw4EHS6TRlZWXccMMN3HbbbUM+Jzc3d9jj7d69m5dffhmAigGW+eHDh5k5c+a4jf1sR9zqBBPCSYSYWptSXLSmg+aAnUJ/gqd3ZJNfZJ3EQY+MZAzs8XaWEwqF8Pl8vZI4U0F1UzX3vHgPLxx9gVDK9IbYFTtem5ccRw5WxYpdtVOZV8nGJRvNPJg+FZLVgTK2BT5ADQtI+EtIWT29RZNWa//iSRi+sHKkxyZK1/OUmAohUoEASCQSHD58mFmzZp10qH6oj++CBaaReyZ/fMfjvTvbELc6wYSh63DTTcOHmGpqzBDT974HskxRdgfNnVmDDlOY1UlTx9DpTePFaO2108aj+61vfYu//OUvvPbaa1itVjo7OwftIw3MJwF+/OMf88lPfnISRjg+VDdVc9MTN/F68+vIkkyOPYdEJkEgGiAQC9CR6OD80vNxWBzsbtxNXWcdd+V8hPk//j0EAlS73sGdgasIxByUUk+8qYNdmeWE4la8XvPz6XCYn+E9e8zX1DTTi+RymYu4Ez1WVwebN0+zG2pPlWggcJoMWCDoT1WVKSEmvHSCkRC3OsGEMoYQ03BGLkBzZxZF2R0TbuyOhtPmFppKpbjqqqv41Kc+NeJ+DzzwAE1NTb0/G3tck6cBuqGzdc9W9gf2Y5Et+J1+rKqVeDqOLMmoiko0FeVgx0E8Vg+V/kraI220/PhujLY29PkL2HbsPQSSHipz2/Dk2jjYlY8WSVBcbJDJwMGD4PHA/Pmwf7/5M39+/8LKkR4bUHQ5PRhDlahAMJ2RZZg3D1auNH8LI1fQF3GrE0wKVVXmimn5cggGzdV3MGh6yrpXUq1NqWGN3B6aO7NobUpNzphH4LTx6N5xxx0Ag7QdB5KVlUVhYeEkjGj8qQ3WsrtxN7qh47a5QYJUJkUqk8KqWDEw0HSNtlgbXckusuxZLI/5cNXuIzz3PJpD+dR0FlHq6kCSoDPloNPIwkUYKW3D5bLR2QmhkBmB6LkZhsP9K7rD4eOPhUKQlXX8sSGKLqeeMVaJCgQCwemIuNUJJo0ThJguWtMB5J/wMBet6eDNIwUTPNiROeP8BZ/97Gfx+/2sXLmSn/zkJ+gnWNomk8neyuC+FcJTQVeii2g6ioGBKptrEN3Q0Q0dSZJ6C880XSOVMVdJOSkFNZUmYVPoSjlIaBZcqtnKM5VR0FBQjTToOqpqpiKkUuaPYZg/qQELrp7Hev4/kMnQ9RwT00GIVCAQCCYYcasTTCojhJiaA6PLpx/tfhPJGWXofuMb3+APf/gD//d//8f69eu5+eab+fa3vz3ic+666y58Pl/vT1lZ2SSNdjA+uw+XxYWEhKZrgCnbIUsyhmGgG6bRrsoqVsWsaAxaM2hWC/ZkBp81jl1NE9VsAFiVDCoZNMkCsoymgaqaBWlWq+kBkCTz/33peazn/wOZCl3PEelbJToU027AgjMVUds7dsR7NnrErU4wXSj0J8Z1v4lkSg3d22+/HUmSRvzZtWvXqI/3ta99jTVr1rB06VJuvvlm7rzzTu65554Rn3PrrbfS1dXV+1NfX3+qp3XSVORUsLx4ObIkE0lGwACrYsWqWEllUqT1NBISec48fDYfhmGw29lFtKIMT2snFd5WKrOaaIhmYxjgs8TJkjqJSh4Mi5Vo1ExD8HrNH1k2fzye/uPweI4/NrCQsUfXc8GCidH1PCl6hEgbGo67onuYlgMWnGn0dP6KxWJTPJLTj1R32Eho7J4YcasTTBee3jG6IrPR7jeRTGmO7mc/+1nWr18/4j6nort43nnnEQqFaGlpoaBg6BwRm82GzWY76dcYT2RJ5rol1/F6y+u83vw6gVgAj82Dw+Igmoqi6zrZjmzmZM8hnArTEGrA78mj4FOfQfrx75H27WVjyVPUha6ipj2PUhqY422jQy+jsVHC64U5c8wc3IaG4zlc+/YNLqwc6bGJ1PU8KaZSiFQgwDTSsrKyaG1tBcDpdA6pAiPoj67rtLW14XQ6UdXTpmRkyhC3OsF0Ib/ISmHW8KoLYEqM5Red5Yau3+/H7/dP2PGrq6ux2+1k9a2mmuZUFVVx7yX39urodiQ6AMhx5PTq6HYkOohrcVaUrODaxdcyv6gK8ubDtm1U1bzKZn9bPx3dMqu1V2uxowPicbN48tprzdfs0WNsbDT3Gc1j006+pqdK9LQZsOBMo6cItsfYFYwOWZYpLy8XC4NRIm51gulCU0f2lOrojpbTpmHE0aNHCQaDPPbYY9xzzz0899xzgNl9x+1286c//Ynm5mbWrFmDw+HgH//4BzfffDPXXXcdP/jBD0b9OtOhYQSIzmgnzWk3YMGZRiaTIZ1OT/UwThusViuy+I6OGXGrE0wXpqoz2mjttdPG0L3uuuvYtm3boO3/+Mc/uPDCC/n73//OrbfeSm1tLbquM3v2bK6//no+85nPjCkkNl0MXYFAIBAIBALB0Jxxhu5kIQxdgUAgEAgEgunNaO01EegQCAQCgUAgEJyRCENXIBAIBAKBQHBGIvRcBtCTyTGVHdIEAoFAIBAIBMPTY6edKANXGLoDCIfDAFPaIU0gEAgEAoFAcGLC4TC+EdoBimK0Aei6TmNjIx6PZ1J0HUOhEGVlZdTX14vit9MUcQ1Pb8T1O/0R1/D0R1zD05upuH6GYRAOhykuLh5RolB4dAcgyzKlpaWT/rper1d8uU9zxDU8vRHX7/RHXMPTH3ENT28m+/qN5MntQRSjCQQCgUAgEAjOSIShKxAIBAKBQCA4IxGG7hRjs9nYsmULNpttqociOEnENTy9Edfv9Edcw9MfcQ1Pb6bz9RPFaAKBQCAQCASCMxLh0RUIBAKBQCAQnJEIQ1cgEAgEAoFAcEYiDF2BQCAQCAQCwRmJMHQFAoFAIBAIBGckwtCdBP7rv/6LWbNmYbfbWb58Oc8999yI+2/fvp3ly5djt9uZPXs2P/nJTyZppIKhGMv1++Mf/8jFF19MXl4eXq+XNWvW8Pjjj0/iaAVDMdbvYA8vvPACqqqydOnSiR2g4ISM9Romk0m++tWvMmPGDGw2G3PmzOH++++fpNEKhmKs1/DXv/41S5Yswel0UlRUxMc//nHa29snabSCvjz77LNcdtllFBcXI0kSjz766AmfM21sGUMwofzud78zLBaL8d///d/G3r17jS984QuGy+Uy6urqhtz/0KFDhtPpNL7whS8Ye/fuNf77v//bsFgsxsMPPzzJIxcYxtiv3xe+8AXjO9/5jvHKK68Y+/fvN2699VbDYrEYr7766iSPXNDDWK9hD52dncbs2bONSy65xFiyZMnkDFYwJCdzDS+//HJj9erVxpNPPmkcPnzYePnll40XXnhhEkct6MtYr+Fzzz1nyLJs/OAHPzAOHTpkPPfcc8bChQuND37wg5M8coFhGMZf//pX46tf/arxP//zPwZgPPLIIyPuP51sGWHoTjCrVq0yPvnJT/bbNn/+fOOWW24Zcv+vfOUrxvz58/ttu/HGG43zzjtvwsYoGJ6xXr+hWLBggXHHHXeM99AEo+Rkr+HVV19tfO1rXzO2bNkiDN0pZqzX8G9/+5vh8/mM9vb2yRieYBSM9Rrec889xuzZs/tt++EPf2iUlpZO2BgFo2M0hu50smVE6sIEkkql2L17N5dcckm/7ZdccgkvvvjikM/ZsWPHoP3XrVvHrl27SKfTEzZWwWBO5voNRNd1wuEwOTk5EzFEwQk42Wv4wAMPcPDgQbZs2TLRQxScgJO5ho899hgrVqzg7rvvpqSkhHnz5vHlL3+ZeDw+GUMWDOBkruH5559PQ0MDf/3rXzEMg5aWFh5++GEuvfTSyRiy4BSZTraMOqmvdpYRCATIZDIUFBT0215QUEBzc/OQz2lubh5yf03TCAQCFBUVTdh4Bf05mes3kO9973tEo1E+8pGPTMQQBSfgZK7hgQMHuOWWW3juuedQVXGLnGpO5hoeOnSI559/HrvdziOPPEIgEODTn/40wWBQ5OlOASdzDc8//3x+/etfc/XVV5NIJNA0jcsvv5z/+I//mIwhC06R6WTLCI/uJCBJUr+/DcMYtO1E+w+1XTA5jPX69fDb3/6W22+/nYceeoj8/PyJGp5gFIz2GmYyGT760Y9yxx13MG/evMkanmAUjOV7qOs6kiTx61//mlWrVvGBD3yAe++9l61btwqv7hQylmu4d+9ePv/5z7N582Z2797N3//+dw4fPswnP/nJyRiqYByYLraMcFdMIH6/H0VRBq1YW1tbB610eigsLBxyf1VVyc3NnbCxCgZzMtevh4ceeoh//dd/5Q9/+APvfe97J3KYghEY6zUMh8Ps2rWL6upqPvvZzwKm0WQYBqqq8sQTT3DRRRdNytgFJifzPSwqKqKkpASfz9e7rbKyEsMwaGhoYO7cuRM6ZkF/TuYa3nXXXVxwwQX827/9GwCLFy/G5XLxzne+k29+85siujnNmU62jPDoTiBWq5Xly5fz5JNP9tv+5JNPcv755w/5nDVr1gza/4knnmDFihVYLJYJG6tgMCdz/cD05F533XX85je/EflkU8xYr6HX6+WNN97gtdde6/355Cc/yTnnnMNrr73G6tWrJ2vogm5O5nt4wQUX0NjYSCQS6d22f/9+ZFmmtLR0QscrGMzJXMNYLIYs9zdRFEUBjnsGBdOXaWXLTHr521lGj6TKL37xC2Pv3r3GF7/4RcPlchlHjhwxDMMwbrnlFuOaa67p3b9HkuNLX/qSsXfvXuMXv/iFkBebQsZ6/X7zm98YqqoaP/rRj4ympqben87Ozqk6hbOesV7DgQjVhalnrNcwHA4bpaWlxoc//GHjrbfeMrZv327MnTvXuP7666fqFM56xnoNH3jgAUNVVeO//uu/jIMHDxrPP/+8sWLFCmPVqlVTdQpnNeFw2Kiurjaqq6sNwLj33nuN6urqXnm46WzLCEN3EvjRj35kzJgxw7BarcayZcuM7du39z62ceNGY+3atf32f+aZZ4yqqirDarUaM2fONH784x9P8ogFfRnL9Vu7dq0BDPrZuHHj5A9c0MtYv4N9EYbu9GCs17CmpsZ473vfazgcDqO0tNS46aabjFgsNsmjFvRlrNfwhz/8obFgwQLD4XAYRUVFxoYNG4yGhoZJHrXAMAzjH//4x4hz23S2ZSTDEDEAgUAgEAgEAsGZh8jRFQgEAoFAIBCckQhDVyAQCAQCgUBwRiIMXYFAIBAIBALBGYkwdAUCgUAgEAgEZyTC0BUIBAKBQCAQnJEIQ1cgEAgEAoFAcEYiDF2BQCAQCAQCwRmJMHQFAoFAMGqOHDmCJEm89tprUz0UgUAgOCHC0BUIBIIJoLm5mc997nPMnj0bm81GWVkZl112GU899dRUD+2UKCsro6mpiUWLFk31UAQCgeCEiM5oAoFAMM4cOXKECy64gKysLO644w4WL15MOp3m8ccf52c/+xn79u2b6iEOSzqdxmKxTPUwBAKBYFwQHl2BQCAYZz796U8jSRKvvPIKH/7wh5k3bx4LFy7kpptu4qWXXgLg6NGjXHHFFbjdbrxeLx/5yEdoaWnpPcbtt9/O0qVL+eUvf8nMmTPx+XysX7+ecDgMwE9/+lNKSkrQdb3fa19++eVs3Lix9+8//elPLF++HLvdzuzZs7njjjvQNK33cUmS+MlPfsIVV1yBy+Xim9/8Jh0dHWzYsIG8vDwcDgdz587lgQceAIZOXdi+fTurVq3CZrNRVFTELbfc0u81LrzwQj7/+c/zla98hZycHAoLC7n99tvH7f0WCASC4RCGrkAgEIwjwWCQv//973zmM5/B5XINejwrKwvDMPjgBz9IMBhk+/btPPnkkxw8eJCrr766374HDx7k0Ucf5c9//jN//vOf2b59O//+7/8OwFVXXUUgEOAf//hH7/4dHR08/vjjbNiwAYDHH3+cj33sY3z+859n7969/PSnP2Xr1q1861vf6vc6W7Zs4YorruCNN95g06ZNfP3rX2fv3r387W9/o6amhh//+Mf4/f4hz/fYsWN84AMfYOXKlezZs4cf//jH/OIXv+Cb3/xmv/22bduGy+Xi5Zdf5u677+bOO+/kySefHPsbLBAIBGPBEAgEAsG48fLLLxuA8cc//nHYfZ544glDURTj6NGjvdveeustAzBeeeUVwzAMY8uWLYbT6TRCoVDvPv/2b/9mrF69uvfvyy+/3Ni0aVPv3z/96U+NwsJCQ9M0wzAM453vfKfx7W9/u99r//KXvzSKiop6/waML37xi/32ueyyy4yPf/zjQ4798OHDBmBUV1cbhmEYt912m3HOOecYuq737vOjH/3IcLvdRiaTMQzDMNauXWu84x3v6HeclStX/v/27uUVvj+O4/hrzC99FYWykCaXUIYOueVS5Nak2CglY6GkmCghUiLzB2g2KGvCQllgM1mpWSgSocnKJcqKQqlp/Da/To37t0a/Oj0f9Vmcz+dzLu9ZnF6dPp/mdXx8/JNfCACigy+6ABBFr/9te7DZbJ/OOTs7k8PhkMPhMPucTqcSExN1dnZm9mVkZCghIcE8Tk1N1d3dnXnsdru1vr6ul5cXSdLy8rI6Ojpkt9slSfv7+/J6vYqPjzdbb2+vbm9v9fz8bF6ntLQ04vn6+/u1urqqoqIijY2NKRAIfFlLZWVlRL3V1dV6fHzU9fW12WcYRsR5b2sBgN9A0AWAKMrJyZHNZosIrG+9vr5+GITf9r/dFGaz2SLW5La2tiocDmtra0tXV1fa3d1VV1eXOR4OhzUzM6PDw0OzHR8f6/z8XH/+/DHnvV1i0dzcrIuLCw0NDenm5kYNDQ0aHR39cS0fhf3vagGA30DQBYAoSk5Olsvl0tzcnJ6ent6N39/fy+l06vLyUldXV2b/6empHh4elJeX9+N7xcXFqa2tTcvLy1pZWVFubq5KSkrM8eLiYgWDQWVnZ79rMTFfv/5TUlLU3d2tpaUl+Xw+LS4ufjjP6XQqEAiY4VaSAoGAEhISlJaW9uNaAOA3/PN/PwAAWM38/LyqqqpUXl4ur9crwzAUCoXk9/u1sLCg09NTGYYht9stn8+nUCgkj8ej2trad8sIvuN2u9Xa2qqTk5OIr7mSNDU1pZaWFjkcDrW3tysmJkZHR0c6Pj5+t1ns7XklJSXKz8/Xy8uLNjc3Pw3gHo9HPp9Pg4ODGhgYUDAY1PT0tIaHh78N0wDw23gLAUCUZWZm6uDgQHV1dRoZGVFBQYGampq0s7OjhYUF2Ww2bWxsKCkpSTU1NWpsbFRWVpbW1tb++l719fVKTk5WMBhUZ2dnxJjL5dLm5qb8fr/KyspUUVGh2dlZpaenf3nN2NhYTUxMyDAM1dTUyG63a3V19cO5aWlp2t7e1t7engoLC9XX16eenh5NTk7+dS0AEG38YQQAAAAsiS+6AAAAsCSCLgAAACyJoAsAAABLIugCAADAkgi6AAAAsCSCLgAAACyJoAsAAABLIugCAADAkgi6AAAAsCSCLgAAACyJoAsAAABLIugCAADAkv4FSd441xNqe68AAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"colors = [colors_mapping.get(cat, \"black\") for cat in category_values]\n",
"colors_mapping = {'SM1': 'red', 'SM2': 'blue', 'SM3': 'green', 'SM4': 'orange', 'SM5': 'purple'}\n",
"plt.figure(figsize=(8, 3))\n",
"for selected_subs in list(data['Starting material'].unique()):\n",
" plt.scatter(data['Conversion [-]'].values[data['Starting material']==selected_subs], \n",
" data['ΔΔG‡ [kJ/mol] with sign'].values[data['Starting material']==selected_subs],\n",
" c = colors_mapping[selected_subs],\n",
" alpha = 0.6)\n",
"plt.xlabel('Conversion')\n",
"plt.ylabel('DDG')\n",
"plt.legend(list(data['Starting material'].unique()))\n",
"#plt.savefig('ddg_conv.svg')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "8219b413",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAHqCAYAAADLbQ06AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABj6ElEQVR4nO3deXxU9f398dfNJJnsYQlkgbCHNYIKiEARUEHRIkprtaAFq/2quEARQdSWaBUU+0NqUXBhsa0IbQW0riDFCOLCIhYhIksgARJCSMhC9pn7+2OSkRC2GZLMDTnPx+M6M/feufc91zBn7ucuH8M0TRMRERGxJD9fFyAiIiJnpqAWERGxMAW1iIiIhSmoRURELExBLSIiYmEKahEREQtTUIuIiFiYglpERMTC/H1dQF1zOp0cPnyY8PBwDMPwdTkiIiKYpklBQQFxcXH4+Z19n/miD+rDhw8THx/v6zJERERqSE9Pp3Xr1med56IP6vDwcMC1MSIiInxcjYiICOTn5xMfH+/OqLO56IO6qrk7IiJCQS0iIpZyPodkdTKZiIiIhSmoRURELExBLSIiYmEKahEREQtTUIuIiFjYRX/Wt4iISJW0tDSys7O9fn9UVBRt2rSpxYrOTUEtIiKNQlpaGl27daO4qMjrZQSHhPBDSkq9hrWCWkREGoXs7GyKi4oYO+0Fott09Pj9R9L28tbzj5Kdna2gFhERqSvRbTrSOqGHr8s4bzqZTERExMIU1CIiIhamoBYREbEwBbWIiIiFKahFREQsTEEtIiJiYQpqERERC1NQi4iIWJiCWkRExMIU1CIiIhamoBYREbEwBbWIiIiFKahFREQsTEEtIiJiYQpqERERC1NQi4iIWJiCWkRExMIU1CIiIhamoBYREbEwywT1rFmzMAyDSZMmuceZpklSUhJxcXEEBwczZMgQduzY4bsiRURE6pklgnrTpk289tpr9OzZs9r42bNnM2fOHObNm8emTZuIiYlh2LBhFBQU+KhSERGR+uXzoC4sLGTs2LG8/vrrNG3a1D3eNE3mzp3LE088wejRo0lMTOTNN9+kqKiIpUuX+rBiERGR+uPzoH7ggQe48cYbufbaa6uNT01NJTMzk+HDh7vH2e12Bg8ezMaNG+u7TBEREZ/w9+XKly1bxtatW9m0aVONaZmZmQBER0dXGx8dHc2BAwfOuMzS0lJKS0vdr/Pz82upWhERkfrnsz3q9PR0Jk6cyD/+8Q+CgoLOOJ9hGNVem6ZZY9zJZs2aRWRkpHuIj4+vtZpFRETqm8+CesuWLWRlZdG7d2/8/f3x9/cnOTmZl156CX9/f/eedNWedZWsrKwae9knmz59Onl5ee4hPT29Tj+HiIhIXfJZ0/c111zD9u3bq42766676Nq1K9OmTaNDhw7ExMSwZs0aLrvsMgDKyspITk7m+eefP+Ny7XY7dru9TmsXERGpLz4L6vDwcBITE6uNCw0NpXnz5u7xkyZNYubMmSQkJJCQkMDMmTMJCQlhzJgxvihZRESk3vn0ZLJzmTp1KsXFxUyYMIHc3Fz69evH6tWrCQ8P93VpIiIi9cJSQf3ZZ59Ve20YBklJSSQlJfmkHhEREV/z+XXUIiIicmYKahEREQtTUIuIiFiYglpERMTCFNQiIiIWpqAWERGxMAW1iIiIhSmoRURELExBLSIiYmEKahEREQtTUIuIiFiYglpERMTCFNQiIiIWpqAWERGxMAW1iIiIhSmoRURELExBLSIiYmEKahEREQtTUIuIiFiYglpERMTCFNQiIiIWpqAWERGxMAW1iIiIhSmoRURELExBLSIiYmEKahEREQvzaVDPnz+fnj17EhERQUREBP379+ejjz5yTzdNk6SkJOLi4ggODmbIkCHs2LHDhxWLiIjUL6+C2mazkZWVVWP8sWPHsNls572c1q1b89xzz7F582Y2b97M1VdfzahRo9xhPHv2bObMmcO8efPYtGkTMTExDBs2jIKCAm/KFhERaXC8CmrTNE87vrS0lMDAwPNezsiRI7nhhhvo3LkznTt35tlnnyUsLIyvvvoK0zSZO3cuTzzxBKNHjyYxMZE333yToqIili5d6k3ZIiIiDY6/JzO/9NJLABiGwRtvvEFYWJh7msPh4PPPP6dr165eFeJwOPjXv/7FiRMn6N+/P6mpqWRmZjJ8+HD3PHa7ncGDB7Nx40buvfder9YjIiLSkHgU1C+++CLg2qNesGBBtWbuwMBA2rVrx4IFCzwqYPv27fTv35+SkhLCwsJYuXIl3bt3Z+PGjQBER0dXmz86OpoDBw6ccXmlpaWUlpa6X+fn53tUj4iIiJV4FNSpqakADB06lBUrVtC0adMLLqBLly5s27aN48eP88477zBu3DiSk5Pd0w3DqDa/aZo1xp1s1qxZPPXUUxdcl4iIiBV4dYx63bp1tRLS4NoT79SpE3369GHWrFn06tWLv/zlL8TExACQmZlZbf6srKwae9knmz59Onl5ee4hPT29VuoUERHxBY/2qKs4HA6WLFnC2rVrycrKwul0Vpv+3//+1+uCTNOktLSU9u3bExMTw5o1a7jssssAKCsrIzk5meeff/6M77fb7djtdq/XLyIiYiVeBfXEiRNZsmQJN954I4mJiWdtij6bxx9/nBEjRhAfH09BQQHLli3js88+4+OPP8YwDCZNmsTMmTNJSEggISGBmTNnEhISwpgxY7xan4iISEPjVVAvW7aMf/7zn9xwww0XtPIjR45w5513kpGRQWRkJD179uTjjz9m2LBhAEydOpXi4mImTJhAbm4u/fr1Y/Xq1YSHh1/QekVERBoKr4K66rjyhVq4cOFZpxuGQVJSEklJSRe8LhERkYbIq5PJHnnkEf7yl7+c8cYnIiIiUju82qPesGED69at46OPPqJHjx4EBARUm75ixYpaKU5ERKSx8yqomzRpwi233FLbtYiIiMgpvArqxYsX13YdIiIichped3NZUVHBp59+yquvvuruzerw4cMUFhbWWnEiIiKNnVd71AcOHOD6668nLS2N0tJShg0bRnh4OLNnz6akpMTj+32LiIjI6Xm1Rz1x4kT69OlDbm4uwcHB7vG33HILa9eurbXiREREGjuvz/r+4osvavQ93bZtWw4dOlQrhYmIiIiXe9ROpxOHw1Fj/MGDB3XXMBERkVrkVVAPGzaMuXPnul8bhkFhYSEzZsy44NuKioiIyE+8avp+8cUXGTp0KN27d6ekpIQxY8awe/duoqKiePvtt2u7RhERkUbLq6COi4tj27ZtLFu2jC1btuB0Orn77rsZO3ZstZPLRERE5MJ4FdQAwcHB3HXXXdx11121WY+IiIicxKtj1LNmzWLRokU1xi9atIjnn3/+gosSERERF6+C+tVXX6Vr1641xvfo0UM3OxEREalFXgV1ZmYmsbGxNca3aNGCjIyMCy5KREREXLwK6vj4eL744osa47/44gvi4uIuuCgRERFx8epksnvuuYdJkyZRXl7O1VdfDcDatWuZOnUqjzzySK0WKCIi0ph5FdRTp04lJyeHCRMmUFZWBkBQUBDTpk1j+vTptVqgiIhIY+ZxUDscDjZs2MC0adP4wx/+QEpKCsHBwSQkJGC32+uiRhERkUbL46C22Wxcd911pKSk0L59e/r27VsXdYmIiAhenkx2ySWXsG/fvtquRURERE7hVVA/++yzTJkyhffff5+MjAzy8/OrDSIiIlI7vDqZ7PrrrwfgpptuwjAM93jTNDEM47RdYIqIiIjnvArqdevW1XYdIiIichpeBfXgwYNruw4RERE5Da+OUQOsX7+eO+64gwEDBnDo0CEA/v73v7Nhw4ZaK05ERKSx8yqo33nnHa677jqCg4PZunUrpaWlABQUFDBz5szzXs6sWbPo27cv4eHhtGzZkptvvpldu3ZVm8c0TZKSkoiLiyM4OJghQ4awY8cOb8oWERFpcLwK6meeeYYFCxbw+uuvExAQ4B4/YMAAtm7det7LSU5O5oEHHuCrr75izZo1VFRUMHz4cE6cOOGeZ/bs2cyZM4d58+axadMmYmJiGDZsGAUFBd6ULiIi0qB4dYx6165dXHXVVTXGR0REcPz48fNezscff1zt9eLFi2nZsiVbtmzhqquuwjRN5s6dyxNPPMHo0aMBePPNN4mOjmbp0qXce++93pQvIiLSYHi1Rx0bG8uePXtqjN+wYQMdOnTwupi8vDwAmjVrBkBqaiqZmZkMHz7cPY/dbmfw4MFs3LjxtMsoLS3Vdd0iInLR8Cqo7733XiZOnMjXX3+NYRgcPnyYt956iylTpjBhwgSvCjFNk8mTJ/Ozn/2MxMREwNXvNUB0dHS1eaOjo93TTjVr1iwiIyPdQ3x8vFf1iIiIWIHXvWfl5+czdOhQSkpKuOqqq7Db7UyZMoUHH3zQq0IefPBB/ve//532rPGTb6oCP91Y5XSmT5/O5MmT3a/z8/MV1iIi0mB5FNRFRUU8+uijrFq1ivLyckaOHOnuf7p79+6EhYV5VcRDDz3Ee++9x+eff07r1q3d42NiYgDXnnVsbKx7fFZWVo297Cp2u129eImIyEXDo6CeMWMGS5YsYezYsQQHB7N06VKcTif/+te/vFq5aZo89NBDrFy5ks8++4z27dtXm96+fXtiYmJYs2YNl112GQBlZWUkJyfz/PPPe7VOERGRhsSjoF6xYgULFy7k9ttvB2Ds2LEMHDgQh8OBzWbzeOUPPPAAS5cu5d133yU8PNx93DkyMpLg4GAMw2DSpEnMnDmThIQEEhISmDlzJiEhIYwZM8bj9YmIiDQ0HgV1eno6gwYNcr++4oor8Pf35/Dhw14dB54/fz4AQ4YMqTZ+8eLFjB8/HnAdDy8uLmbChAnk5ubSr18/Vq9eTXh4uMfrExERaWg8CmqHw0FgYGD1Bfj7U1FR4dXKTdM85zyGYZCUlERSUpJX6xAREWnIPApq0zQZP358tZO1SkpKuO+++wgNDXWPW7FiRe1VKCIi0oh5FNTjxo2rMe6OO+6otWJERESkOo+CevHixXVVh4iIiJyG191cioiISN1TUIuIiFiYglpERMTCFNQiIiIWpqAWERGxMAW1iIiIhSmoRURELExBLSIiYmEKahEREQtTUIuIiFiYglpERMTCFNQiIiIWpqAWERGxMAW1iIiIhSmoRURELExBLSIiYmEKahEREQtTUIuIiFiYglpERMTC/H1dQEOTlpZGdna21++PioqiTZs2tViRiIhczBTUHkhLS6Nrt24UFxV5vYzgkBB+SElRWIuIyHlRUHsgOzub4qIixk57geg2HT1+/5G0vbz1/KNkZ2crqEVE5LwoqL0Q3aYjrRN6+LoMERFpBHx6Mtnnn3/OyJEjiYuLwzAMVq1aVW26aZokJSURFxdHcHAwQ4YMYceOHb4pVkRExAd8GtQnTpygV69ezJs377TTZ8+ezZw5c5g3bx6bNm0iJiaGYcOGUVBQUM+VioiI+IZPm75HjBjBiBEjTjvNNE3mzp3LE088wejRowF48803iY6OZunSpdx77731WaqIiIhPWPY66tTUVDIzMxk+fLh7nN1uZ/DgwWzcuPGM7ystLSU/P7/aICIi0lBZNqgzMzMBiI6OrjY+OjraPe10Zs2aRWRkpHuIj4+v0zpFRETqkmWDuophGNVem6ZZY9zJpk+fTl5enntIT0+v6xJFRETqjGUvz4qJiQFce9axsbHu8VlZWTX2sk9mt9ux2+11Xp+IiEh9sOwedfv27YmJiWHNmjXucWVlZSQnJzNgwAAfViYiIlJ/fLpHXVhYyJ49e9yvU1NT2bZtG82aNaNNmzZMmjSJmTNnkpCQQEJCAjNnziQkJIQxY8b4sGoREZH649Og3rx5M0OHDnW/njx5MgDjxo1jyZIlTJ06leLiYiZMmEBubi79+vVj9erVhIeH+6pkERG5SJmmicNpUlrhxGGaGLjOkzIAf5uBafqmLp8G9ZAhQzDP8skNwyApKYmkpKT6K0pERC5afsERHCk2OJqWS35JBfnF5eSXlHOi1EFZZUCfWQAxv3mx3mqtYtmTyURERC5ESbmD/x3M45vUY2w5kMt3aceIf3gpG44CR8/cXbEB+PkZYIKJidM8aYoPdqsV1CIiclEwTZOUjALW7coi+cejbEs/TlmF85R5nIQHGMQ0DScyOIDwYH8igwIItfsTFOCH3d9GgM2odhlwVZP4/t0pvPrKszBpcL1+LgW1iIg0WOUOJ1/uPcZH32ew7oejZOaXVJseFWanX4dm9G3bFPuJI4z9+VB+P3cprRNiz7DEmgzDwN9mEGQDR8Gx2v4I56SgFhGRBqXC4eSrfTl8sP0wH3+fSW5RuXtacICNgZ2aM7hLSwZ2bE77qFD33vHWrbmY5SVnWqxlKahFRMTyTNPku4N5/HtLOh9tz+TYiTL3tOahgVyfGMPwHjH0a9+MoACbDyutfQpqERGxrKz8ElZ+e4h/bznI7qxC9/imIQFcnxjLz3vG0q99M/xtlr1/1wVTUIuIiKWUVjhYm5LFv7ccJPnHozgqT7sOCvBjRGIst1zWiv4dmxNwEYfzyRTUIiJiCSkZ+SzflM6qbYc4ftJx595tm3Jr79bc0DOWiKAAH1boGwpqERHxmYKSct777jD/3JTOdwfz3ONjIoIYfXkrftG7NR1bhPmwQt9TUIuISL0yTZPNB3JZ9k06H27PoLjcAUCAzWBY92h+1SeeQQktsPmduUvjxkRBLSIi9eJoQSkrth5k+eZ09h094R7fqWUYt/eN55bLWtE8TN0Un0pBLSIidabC4eTz3UdZvimdtSlZVFSeGBYSaOPnPWO5rW8bLm/TpNqdwKQ6BbWIiNQq0zTZfiiPld8e4j/fHSa78Kdrni+Nb8LtfeP5ea84wuyKoPOhrSQiIrUi7VgRq7YdYtW2Q9WatpuFBnLzpa24rW88XWLUTbGnFNQiIuK1rPwSPtmRyapth9lyINc9PijAj2HdY7jlsjgGJbRoNNc81wUFtQ+kpKR49b6oqCjatGlTy9WIiHjmwLETfLIjk4+/z+Tb9OPunh/9DBjYKYqbL23FdYkxatquJdqK9Sg/5ygAd9xxh1fvDw4J4YeUFIW1iNSrCoeT7w7mkfzjUdbsPEJKRn616Ze1acKNl8Qyslcc0RFBPqry4qWgvgAVDidFZQ6Kyh0UlVVQVOagtNxJWYVrKHU4XM8dThwOk4LCZsSMm0tEizgC7ME4TTABpwmG4eqs3OCk54aJX+VrZ1kxR/amMPW93cS1zCEk0EZIoD/BATbCg/yJCA4g8qSh6nVooE1nU4qIxzLyivn8x6Mk/3iUDbuzyS+pcE+z+Rlc2aEZ1/eIYVj3GGIiFc51SUHtgde35hE99nk+PhxA+aG9lDmc535TNcHYYzpRCpRWnHNmXHFdJZTgjn346mAJHDx03mu0GRAa6EdEkD9RESE0DQmgaUggkZWPTUMCiKx8bBoSSJOQAJqEBCrgRRoR0zRJyynim9QcNu3PYfP+XPZln6g2T2RwAD/rFMWQLi24tls0TUMDfVRt46Og9sDe3HKCWvfgRAWAK6RthkFwoK1yD9dGUICNQH8/Am1+BPr7Ya98brMZpG7fxGf/fJ1hdz5M5x6XYvMz8PMDP8PANMFpmjUfAYfTZP+u7fz3nb9hBAThFxCEEWivfB6Mnz0Yv6Aw/Oxh+AWFup4HhWHYAnCYkF/qJL+0jIN5ZWf7eNUE2AyahATSJPinAD85yJuGBJz0vCrwA7D7X1zdy4lcjPKKy9lxOI/vD+Xx3cE8NqXmkFVQWm0ePwN6xTfhqoQWDO7Sgl6tm+hOYT6ioPbArd3DmPTIVH75f1No26ETIYGuUD7fPc98CilJ3UpTWxmtmgZ7tO6c77I48f1abrz3Cbr07H3O+U3TxGGWUe6EjMMH+eitV3nxlddoHhNPblEZuUXlHC8q43hRObmnPJY5nJQ7TI4WlHL0lH+85xISaDsp0E8K9eCaYd8kJIAwuz8hgTZCA/3xq4MvgbS0NLKzs716r07ek4auwuEkLaeIPVmF7M4qZOfhfLYfyiMtp6jGvAE2g56tm9C3XTP6tmtKn7bNiAxpfB1gWJGC2gO9Y4Mo2vUFUUGP+KzZp3lcW1on9PDoPcH+UHpwBxH5qXRqFQThuAbA1bxurxxcAV/qMCkoNSksc1JQOZgBIfgFhZF7UqCfHPR5xeU4TVzH7MuKOXS82OPPVnXcPcxe9ehPiN1GqN2f0MCqR3+CK1suggL8CPI/6Xnlo71yXM7RTIYOHkRx/nHMijIwPTtUoZP3pCEoq3CSkVfMwdxi0nOKSM8tYt/RE+w9Wsj+7KIzHqKLbxZMYlwkia0i6dO2Kb3imxAUUH8tYvoRff4U1I3AhZ5tDmAPCuKdf/+bAXGxlWNsQHDl4GqmLyo3KSh1Bbs75EtNjheVUez0c09zTXf9ECipMKm8o2BlyDvILjxdBd5pcc8b7ucGJjYD9+BngM0wKx9dr/1wPS8rLiD1f9/w7Cd7aRVT6DqcUXkow175PNDmhz3Aj0Cbrdp09zR/14+GqmlV0/39DB3/l7MyTZOScie5RWXulq2jhaXu51kFJRwtKCUjr4TM/BL35VGnExTgR8cWYXRqGUb32AgSW0XSIy6CJiEXtrNxIUGbkZHBL2+9lZJiz3/Qw0/fR7Gxseee+STeXhrrawrqRqC40HUpxfk2m59q3/ebWTV/Jj//+c+9rMDAdX77Gab6B2IEBlceew/BLzDI9TowuHJ8MEZg0Emv7a73+Fc9BmIE2Gu89qt8XsXEoMKEimqlnCkwIwnrOYxP9hbB3lQvP/cZPi8QYIMAP4MAm4G/n0GAHwRWPbdBiD2QyLCQyoC3uc95CLQZBNj8CPD3I8Dmeu1v++l5gM2P/OO5lBQV4u8H/n5G5eA6U7dqXMAp005+jG4RRdu2bWv1M1udt6FjmiYVTmjSrDkxsa0odzopKXdQUu5w//AsLndQXO15BcVlTorKKyguc3A4+zg5BSWcKHf9wD1R7voRW+FBA1BQgB+tm4bQumkwrZsG0655KJ1ahtGxRRitmgTX+mGltLQ0unbrRnFRzSZ0T9zy8NO075Lo0Xsu/PsICgtrcW+gHiioGxFvms0BjqTtBbwL+pRvkvnozb94/SPhQt7veu9LjE16je59B1LhcFLhNKlwmDicrqHC6XQ/d5hV40wOp+7m69WrXKFvC8DwD8Cw+buC3xbgGucef/LjSdP9T5rP9tM/NRMoc0CZw4TyM/2AKQdOnGFaXcvE328Hgf5+2PyMyoA38DMM92ubn4HtpNd+hoG/zaCivAxHRUXluKpWi+rPqxoTDPd/fro00W63Exoa6r5EEcAwjJ9+ThlgUH0ZVc+dp5yI+dNrE6fzp3GmaVabXlxcwsYvv8RZdZ2knx+Gn7/r/1nlo+Fnc/1/9bNVH+/+/5oJ7Kj1/xOmowLHidzK4fhPzwtzcJzIxVZWyGtzZtG5TcuTWmnKgeNw4jhHT8DRsyzf2ybk7OxsiouKGDvtBaLbdPT4/VX/rsObx3j8nVQb30clJSUevc/XFNRy3rwJ+qp/VBf6I8H7dZvYDJPgAJtrN/Y8VezKIP/rf9faDwzTLMNhuq4VcJq4npvgNA33c0fltJyjR1j/3tvce/8DtIiOodzpCnVH5d5bhfPkx5+elzvheF4B3373HTEduuFfea2+073eqqsLfqrD9bzm3laF06SizOHx575wJUBeva81MP6SWltWgB/Y/Q2C/A3sNgO7+9GPoGqvDQpyj7Fi+VtccfUIoqJaEOjnen+An0mgH/gbYBiRQGSN9VTtWY4Z7f2e5YU2IUe36XhB/64vxIV8HzU0DSKoX3nlFV544QUyMjLo0aMHc+fOZdCgQb4uSxoBX/zA2Pl1FkUpybz4cLLH661y8/N/o+tll57XvGblXqjDNEnfk8Ir0+7iry+/QrsOndx7nQ6Tyr3Sk16f8vzAgTT+PGcOV/3it0RGRWOaBiZgVt7Yp+rmPu71nlJHQW42mz99jzvuvJPoli3d81TNV3Uc9tTXAPkFBbz1j79TUV6GaZquEwdNE0wT0/3cWfn65OlO12tMrv31BFq174RhuC6bdLUEGPhVth64x1W9rhy3e+sX/O1PD2E6KsDp3Y+bjr+8ha69unv0ngvZs4TG2YTcUFk+qJcvX86kSZN45ZVXGDhwIK+++iojRoxg586djeqsP2k8LuScAm+a9ozK5mg/DEqOH8VZlMcDd431aL0na9vsQY9DB2Dn15+xbst7zN/yntfr9uaYZ9U2a2LeQUK05z07VZzIwywv9VlTrC8PaTW0JuSGyvJBPWfOHO6++27uueceAObOncsnn3zC/PnzmTVrlo+rE6k7vmjaq+8fCbW97gs55nmhGmpTbEOtuzGxdFCXlZWxZcsWHnvssWrjhw8fzsaNG0/7ntLSUkpLf7pJR16e63hXfn7+aef3RFUzz8HdOygt9vxsx6o/7sz9P7I3NKRBvLexrrux111eVurx33h5WWmDXHdj/3/dmNZ9oXUfPei6AqSwsPCCM6Xq/ebZrq2rYlrYoUOHTMD84osvqo1/9tlnzc6dO5/2PTNmzKg6rKVBgwYNGjRYekhPTz9nFlp6j7rKqTeHME3zjDeMmD59OpMnT3a/djqd5OTk0Lx58wu+yUR+fj7x8fGkp6cTERFxQctqLLTNPKdt5jltM89pm3muNreZaZoUFBQQFxd3znktHdRRUVHYbDYyMzOrjc/KyiI6Ovq077Hb7djt9mrjmjRpUqt1RURE6A/bQ9pmntM285y2mee0zTxXW9ssMjLyvObzu+A11aHAwEB69+7NmjVrqo1fs2YNAwYM8FFVIiIi9cfSe9QAkydP5s4776RPnz7079+f1157jbS0NO677z5flyYiIlLnLB/Ut912G8eOHePpp58mIyODxMREPvzwQ5/ci9hutzNjxowaTetyZtpmntM285y2mee0zTznq21mmOb5nBsuIiIivmDpY9QiIiKNnYJaRETEwhTUIiIiFqagFhERsTAF9SleeeUV2rdvT1BQEL1792b9+vVnnT85OZnevXsTFBREhw4dWLBgQT1Vah2ebLMVK1YwbNgwWrRoQUREBP379+eTTz6px2qtwdO/sypffPEF/v7+XHrppXVboAV5us1KS0t54oknaNu2LXa7nY4dO7Jo0aJ6qtYaPN1mb731Fr169SIkJITY2Fjuuusujh07Vk/V+tbnn3/OyJEjiYuLwzAMVq1adc731Nv3/wXfkPsismzZMjMgIMB8/fXXzZ07d5oTJ040Q0NDzQMHDpx2/n379pkhISHmxIkTzZ07d5qvv/66GRAQYP773/+u58p9x9NtNnHiRPP55583v/nmG/PHH380p0+fbgYEBJhbt26t58p9x9NtVuX48eNmhw4dzOHDh5u9evWqn2ItwpttdtNNN5n9+vUz16xZY6ampppff/11jX4DLmaebrP169ebfn5+5l/+8hdz37595vr1680ePXqYN998cz1X7hsffvih+cQTT5jvvPOOCZgrV6486/z1+f2voD7JFVdcYd53333VxnXt2tV87LHHTjv/1KlTza5du1Ybd++995pXXnllndVoNZ5us9Pp3r27+dRTT9V2aZbl7Ta77bbbzCeffNKcMWNGowtqT7fZRx99ZEZGRprHjh2rj/IsydNt9sILL5gdOnSoNu6ll14yW7duXWc1WtX5BHV9fv+r6btSVZeaw4cPrzb+bF1qfvnllzXmv+6669i8eTPl5eV1VqtVeLPNTuV0OikoKKBZs2Z1UaLleLvNFi9ezN69e5kxY0Zdl2g53myz9957jz59+jB79mxatWpF586dmTJlCsXFxfVRss95s80GDBjAwYMH+fDDDzFNkyNHjvDvf/+bG2+8sT5KbnDq8/vf8ncmqy/Z2dk4HI4anX1ER0fX6BSkSmZm5mnnr6ioIDs7m9jY2Dqr1wq82Wan+n//7/9x4sQJfvWrX9VFiZbjzTbbvXs3jz32GOvXr8ffv/H9k/Vmm+3bt48NGzYQFBTEypUryc7OZsKECeTk5DSK49TebLMBAwbw1ltvcdttt1FSUkJFRQU33XQTf/3rX+uj5AanPr//tUd9Ck+61DzT/KcbfzHzdJtVefvtt0lKSmL58uW0bNmyrsqzpPPdZg6HgzFjxvDUU0/RuXPn+irPkjz5O3M6nRiGwVtvvcUVV1zBDTfcwJw5c1iyZEmj2asGz7bZzp07efjhh/njH//Ili1b+Pjjj0lNTVW/CmdRX9//je/n+Rl406VmTEzMaef39/enefPmdVarVXizzaosX76cu+++m3/9619ce+21dVmmpXi6zQoKCti8eTPffvstDz74IOAKIdM08ff3Z/Xq1Vx99dX1UruvePN3FhsbS6tWrap1I9itWzdM0+TgwYMkJCTUac2+5s02mzVrFgMHDuTRRx8FoGfPnoSGhjJo0CCeeeaZi76F0FP1+f2vPepK3nSp2b9//xrzr169mj59+hAQEFBntVqFt92Qvv3224wfP56lS5c2uuNfnm6ziIgItm/fzrZt29zDfffdR5cuXdi2bRv9+vWrr9J9xpu/s4EDB3L48GEKCwvd43788Uf8/Pxo3bp1ndZrBd5ss6KiIvz8qkeCzWYDftpTlJ/U6/d/rZ+e1oBVXc6wcOFCc+fOneakSZPM0NBQc//+/aZpmuZjjz1m3nnnne75q07P//3vf2/u3LnTXLhwYaO9POt8t9nSpUtNf39/8+WXXzYzMjLcw/Hjx331Eeqdp9vsVI3xrG9Pt1lBQYHZunVr85e//KW5Y8cOMzk52UxISDDvueceX32EeufpNlu8eLHp7+9vvvLKK+bevXvNDRs2mH369DGvuOIKX32EelVQUGB+++235rfffmsC5pw5c8xvv/3WfTmbL7//FdSnePnll822bduagYGB5uWXX24mJye7p40bN84cPHhwtfk/++wz87LLLjMDAwPNdu3amfPnz6/nin3Pk202ePBgE6gxjBs3rv4L9yFP/85O1hiD2jQ932YpKSnmtddeawYHB5utW7c2J0+ebBYVFdVz1b7l6TZ76aWXzO7du5vBwcFmbGysOXbsWPPgwYP1XLVvrFu37qzfTb78/lc3lyIiIhamY9QiIiIWpqAWERGxMAW1iIiIhSmoRURELExBLSIiYmEKahEREQtTUIuIiFiYglpERMTCFNQiUqv279+PYRhs27atTtczfvx4DMPAMAxWrVp1znoMw+DSSy+t05pE6oKCWsQHMjMzeeihh+jQoQN2u534+HhGjhzJ2rVrfV3aBYuPjycjI4PExMQ6X9f1119PRkYGI0aMOGc9jzzySJ3XI1IX1M2lSD3bv38/AwcOpEmTJsyePZuePXtSXl7OJ598wgMPPMAPP/zg6xLPqry8/Ky9A9lsNmJiYuqlFrvdfs51VdUTFhZWLzWJ1DbtUYvUswkTJmAYBt988w2//OUv6dy5Mz169GDy5Ml89dVX7vnS0tIYNWoUYWFhRERE8Ktf/YojR464pyclJXHppZfy97//nXbt2hEZGcntt99OQUEBAK+++iqtWrXC6XRWW/9NN93EuHHj3K//85//0Lt3b4KCgujQoQNPPfUUFRUV7umGYbBgwQJGjRpFaGgozzzzDLm5uYwdO5YWLVoQHBxMQkICixcvBk7f9J2cnMwVV1yB3W4nNjaWxx57rNo6hgwZwsMPP8zUqVNp1qwZMTExJCUl1cr2FmnoFNQi9SgnJ4ePP/6YBx54gNDQ0BrTmzRpArj6/7355pvJyckhOTmZNWvWsHfvXm677bZq8+/du5dVq1bx/vvv8/7775OcnMxzzz0HwK233kp2djbr1q1zz5+bm8snn3zC2LFjAfjkk0+44447ePjhh9m5cyevvvoqS5Ys4dlnn622nhkzZjBq1Ci2b9/Ob3/7W/7whz+wc+dOPvroI1JSUpg/fz5RUVGn/cyHDh3ihhtuoG/fvnz33XfMnz+fhQsX8swzz1Sb78033yQ0NJSvv/6a2bNn8/TTT9fo71ekUaqTPrlE5LS+/vprEzBXrFhx1vlWr15t2mw2My0tzT1ux44dJmB+8803pmm6ursMCQkx8/Pz3fM8+uijZr9+/dyvb7rpJvO3v/2t+/Wrr75qxsTEmBUVFaZpmuagQYPMmTNnVlv33//+dzM2Ntb9GjAnTZpUbZ6RI0ead91112lrT01NNQHz22+/NU3TNB9//HGzS5cuptPpdM/z8ssvm2FhYabD4TBN09X96c9+9rNqy+nbt685bdq0M2whV7eDo0aNOuP0UzXW7kGl4dMetUg9Mit7lTUM46zzpaSkEB8fT3x8vHtc9+7dadKkCSkpKe5x7dq1Izw83P06NjaWrKws9+uxY8fyzjvvUFpaCsBbb73F7bffjs1mA2DLli08/fTThIWFuYff/e53ZGRkUFRU5F5Onz59qtV3//33s2zZMi699FKmTp3Kxo0bz/pZ+vfvX+0zDxw4kMLCQg4ePOge17Nnz2rvO/WznI8RI0a4P0ePHj08eq+IVelkMpF6lJCQgGEYpKSkcPPNN59xPtM0Txvmp44/9aQuwzCqHZMeOXIkTqeTDz74gL59+7J+/XrmzJnjnu50OnnqqacYPXp0jXUFBQW5n5/aTD9ixAgOHDjABx98wKeffso111zDAw88wJ///Ofz+iyn+8Fyrs9yPt544w2Ki4tPuzyRhkpBLVKPmjVrxnXXXcfLL7/Mww8/XCMAjx8/TpMmTejevTtpaWmkp6e796p37txJXl4e3bp1O+/1BQcHM3r0aN566y327NlD586d6d27t3v65Zdfzq5du+jUqZPHn6VFixaMHz+e8ePHM2jQIB599NHTBnX37t155513qgX2xo0bCQ8Pp1WrVh6v92xqe3kiVqCmb5F69sorr+BwOLjiiit455132L17NykpKbz00kv0798fgGuvvZaePXsyduxYtm7dyjfffMNvfvMbBg8eXKMZ+lzGjh3LBx98wKJFi7jjjjuqTfvjH//I3/72N5KSktixYwcpKSksX76cJ5988qzL/OMf/8i7777Lnj172LFjB++///4Zf0BMmDCB9PR0HnroIX744QfeffddZsyYweTJk/Hz01eQyLnoX4lIPWvfvj1bt25l6NChPPLIIyQmJjJs2DDWrl3L/PnzAdx322ratClXXXUV1157LR06dGD58uUer+/qq6+mWbNm7Nq1izFjxlSbdt111/H++++zZs0a+vbty5VXXsmcOXNo27btWZcZGBjI9OnT6dmzJ1dddRU2m41ly5addt5WrVrx4Ycf8s0339CrVy/uu+8+7r777nP+GBARF8OsOlgkItKAjB8/nuPHj5/19qEnS0pKYtWqVXV+a1OR2qY9ahFpsN5//33CwsJ4//33zzhPWloaYWFhzJw5sx4rE6k92qMWkQYpKyuL/Px8wHUp1+luIANQUVHB/v37Adz3VRdpSBTUIiIiFqambxEREQtTUIuIiFiYglpERMTCFNQiIiIWpqAWERGxMAW1iIiIhSmoRURELExBLSIiYmEKahEREQtTUIuIiFiYglpERMTCFNQiIiIW5u/rAuqa0+nk8OHDhIeHYxiGr8sRERHBNE0KCgqIi4vDz+/s+8wXfVAfPnxY3dqJiIglpaen07p167POc9EHdXh4OODaGBERET6uRkREBPLz84mPj3dn1Nn4NKjnz5/P/Pnz3Z269+jRgz/+8Y+MGDECcDUNPPXUU7z22mvk5ubSr18/Xn75ZXr06HHe66hq7o6IiFBQi4iIpZzPIVmfnkzWunVrnnvuOTZv3szmzZu5+uqrGTVqFDt27ABg9uzZzJkzh3nz5rFp0yZiYmIYNmwYBQUFvixbRESk3himaZq+LuJkzZo144UXXuC3v/0tcXFxTJo0iWnTpgFQWlpKdHQ0zz//PPfee+95LS8/P5/IyEjy8vK0Ry0iIpbgSTZZ5vIsh8PBsmXLOHHiBP379yc1NZXMzEyGDx/unsdutzN48GA2btzow0pFRETqj89PJtu+fTv9+/enpKSEsLAwVq5cSffu3d1hHB0dXW3+6OhoDhw4cMbllZaWUlpa6n6dn59fN4WLiIjUA5/vUXfp0oVt27bx1Vdfcf/99zNu3Dh27tzpnn7qgXbTNM968H3WrFlERka6B12aJSIiDZnljlFfe+21dOzYkWnTptGxY0e2bt3KZZdd5p4+atQomjRpwptvvnna959ujzo+Pl7HqEXOU1paGtnZ2V69NyoqijZt2tRyRSIXH0+OUfu86ftUpmlSWlpK+/btiYmJYc2aNe6gLisrIzk5meeff/6M77fb7djt9voqV+SikpaWRrduXSkqKvbq/SEhwaSk/KCwFqlFPg3qxx9/nBEjRhAfH09BQQHLli3js88+4+OPP8YwDCZNmsTMmTNJSEggISGBmTNnEhISwpgxY3xZtshFKzs7m6KiYv4x8xa6dWjh0XtT9h3ljsdXkp2draAWqUU+DeojR45w5513kpGRQWRkJD179uTjjz9m2LBhAEydOpXi4mImTJjgvuHJ6tWrz+tOLiLivW4dWnB5t1hflyEi+DioFy5ceNbphmGQlJREUlJS/RQkIiJiMT4/61tERETOTEEtIiJiYQpqERERC1NQi4iIWJiCWkRExMIU1CIiIhamoBYREbEwBbWIiIiFKahFREQsTEEtIiJiYQpqERERC1NQi4iIWJiCWkRExMIU1CIiIhamoBYREbEwBbWIiIiFKahFREQsTEEtIiJiYQpqERERC1NQi4iIWJiCWkRExMIU1CIiIhamoBYREbEwBbWIiIiFKahFREQsTEEtIiJiYQpqERERC1NQi4iIWJiCWkRExMIU1CIiIhamoBYREbEwBbWIiIiFKahFREQsTEEtIiJiYQpqERERC1NQi4iIWJiCWkRExMIU1CIiIhamoBYREbEwBbWIiIiFKahFREQsTEEtIiJiYQpqERERC1NQi4iIWJiCWkRExMIU1CIiIhamoBYREbEwBbWIiIiFKahFREQszKdBPWvWLPr27Ut4eDgtW7bk5ptvZteuXdXmMU2TpKQk4uLiCA4OZsiQIezYscNHFYuIiNQvnwZ1cnIyDzzwAF999RVr1qyhoqKC4cOHc+LECfc8s2fPZs6cOcybN49NmzYRExPDsGHDKCgo8GHlIiIi9cPflyv/+OOPq71evHgxLVu2ZMuWLVx11VWYpsncuXN54oknGD16NABvvvkm0dHRLF26lHvvvdcXZYuIiNQbSx2jzsvLA6BZs2YApKamkpmZyfDhw93z2O12Bg8ezMaNG0+7jNLSUvLz86sNIiIiDZVlgto0TSZPnszPfvYzEhMTAcjMzAQgOjq62rzR0dHuaaeaNWsWkZGR7iE+Pr5uCxdpTEwHlBeAafq6EpFGw6dN3yd78MEH+d///seGDRtqTDMMo9pr0zRrjKsyffp0Jk+e7H6dn5+vsBa5UAW7ISsZSjJdYR0QCRHdoMUg8A/xdXUiFzVLBPVDDz3Ee++9x+eff07r1q3d42NiYgDXnnVsbKx7fFZWVo297Cp2ux273V63BYs0Fs5yyPgYcrdWH1+eB8e+gvwUaHM7BMf4pj6RRsCnTd+mafLggw+yYsUK/vvf/9K+fftq09u3b09MTAxr1qxxjysrKyM5OZkBAwbUd7kijYtpwsGVP4V08ysh4SHoPh3a/AoCm7kCe99COHHAt7WKXMS8CmqbzUZWVlaN8ceOHcNms533ch544AH+8Y9/sHTpUsLDw8nMzCQzM5Pi4mLA1eQ9adIkZs6cycqVK/n+++8ZP348ISEhjBkzxpvSReR8Hfmva4/Z8IO2YyH2OrA3A79AV7N3x3sgrCOYFZD2TwLMQl9XLHJR8qrp2zzDiSSlpaUEBgae93Lmz58PwJAhQ6qNX7x4MePHjwdg6tSpFBcXM2HCBHJzc+nXrx+rV68mPDzcm9JF5DxEmvshu/J8kbibILxTzZlswdDmNtcedckROrAGe0C9linSKHgU1C+99BLg2tN94403CAsLc09zOBx8/vnndO3a9byXd6bAP5lhGCQlJZGUlORJqSLipVA7xDu/cL1o3h+a9jrzzH4BrrDe+zqhjqNM/Xn91CjSmHgU1C+++CLgCtgFCxZUa+YODAykXbt2LFiwoHYrFJF6NWM0BHICAppA9NBzvyGwKcTdAOnvMP0m2Ft2ELi8rssUaTQ8CurU1FQAhg4dyooVK2jatGmdFCUivhFUmsrvR1S+iBvh2mM+HxE9yOdLIgIP0zrr/wE31VWJIo2OVyeTrVu3TiEtchGKOfYG/jY4ThsI73z+bzQMDvoNpLwCmhR+Dhlrzv0eETkvXp1M5nA4WLJkCWvXriUrKwun01lt+n//+99aKU5E6lH+LprmrwYgw68PTTx8e4nRlPlr4eHrgO+fgphr4Qw3JhKR8+dVUE+cOJElS5Zw4403kpiYeMa7hIlIA7JjJgZO3t0C8VdEebWI596DB68PxO/oF67Lu2KuqeUiRRofr4J62bJl/POf/+SGG26o7XpExBcKU2H/WwD8aSW8doV3i8k4DtmRt9Dy+HLY/hREX629apEL5NUx6sDAQDp1Os11lSLSMO2eD6aD/JB+bEm9sEUdaT7edVOUo+vh6Be1Up5IY+ZVUD/yyCP85S9/Oa/roEXE4iqKYO8bABxtevsFL648oCW0/43rxa6/XPDyRBo7r5q+N2zYwLp16/joo4/o0aMHAQHVL+FYsWJFrRQnIvXgwDIoy4XQduSFDaydZXaZ6Ar/gytc9wEPbVs7yxVphLwK6iZNmnDLLbfUdi0iUt9ME36c53qecD+UnP+9+s+qSSJEXwNH1sKPL8Nls2tnuSKNkFdBvXjx4tquQ0R8IWcz5H4LfnboeDfsqMVesLpOcgX1ntfhkhngH1p7yxZpRLzu5rKiooJPP/2UV199lYKCAgAOHz5MYaF60BFpMPZV/uiO/wXYm9fusuNugLAOUH4c0v5du8sWaUS8CuoDBw5wySWXMGrUKB544AGOHj0KwOzZs5kyZUqtFigidcRRAvvfdj3vML72l2/4ufbSAfYurP3lizQSXgX1xIkT6dOnD7m5uQQHB7vH33LLLaxdu7bWihOROnTwPdfebki863rnutB+nCuwj66H/F11sw6Ri5xXQb1hwwaefPLJGn1Pt23blkOHDtVKYSJSx6qavdv/Bvxq6SSyU4W0gtjKXj72LqqbdYhc5LwKaqfTicPhqDH+4MGDhIeHX3BRIlLHijMh03Vfb9qPq9t1dbzH9Zi6BJzldbsukYuQV0E9bNgw5s6d635tGAaFhYXMmDFDtxUVaQjS3wHTCc2vgIiEul1XqxshKBpKsuDQB3W7LpGLkFdB/eKLL5KcnEz37t0pKSlhzJgxtGvXjkOHDvH888/Xdo0iUtvS/ul6bHNb3a/LL+CnO5XppDIRj3l1HXVcXBzbtm1j2bJlbNmyBafTyd13383YsWOrnVwmIhZUdBiy1ruet/ll/ayz492Q8gJkfAhFh1zHrkXkvHgV1ADBwcHcdddd3HXXXbVZj4jUtfR3ABOi+kNom/pZZ0QXaPEzOLoBUt+EHo/Xz3pFLgJeNX3PmjWLRYtqnsG5aNEiNX2LWF3actdjm1/V73rd11Qvct26VETOi1dB/eqrr9K1a9ca43v06MGCBQsuuCgRqSNFB3/qerK+mr2rtLkV/MOgcK9rz1pEzotXQZ2ZmUlsbGyN8S1atCAjI+OCixKROlJ1K88WAyGkdf2u2z/UFdYAqX+r33WLNGBeBXV8fDxffFGzQ/gvvviCuLi4Cy5KROqI+2zvem72rlJ1zXbaP6Gi2Dc1iDQwXp1Mds899zBp0iTKy8u5+mrXrQfXrl3L1KlTeeSRR2q1QBGpJSfSIPtLwID4em72rtJykKtv6hMH4OAqaPdr39Qh0oB4FdRTp04lJyeHCRMmUFZWBkBQUBDTpk1j+vTptVqgiNSSqmbvloMgpO5avlJSUs46PTZoGLEn3iDvu7+yN6dLtWlRUVG0aVNPZ6KLNBAeB7XD4WDDhg1MmzaNP/zhD6SkpBAcHExCQgJ2u70uahSR2lDHzd4Z2YUYwB133HHW+TpGw545EFbwJT+/pjcZx3+aFhISTErKDwprkZN4HNQ2m43rrruOlJQU2rdvT9++feuiLhGpTYX74djXuJq9f1EnqzheUIIJzJs6lP6Xn/22pIWOdwnzO8I3r/Qjy68XACn7jnLH4yvJzs5WUIucxKum70suuYR9+/bRvn372q5HROpCelWz92AIjqnTVXWKb8rl3WpeFVJNTl84/D6tA/fRutN1YBh1WpNIQ+ZVUD/77LNMmTKFP/3pT/Tu3ZvQ0NBq0yMiImqlOBHxXFpaGtnZ2dXGddm/hFAgzbiS7K1bz/jecx1frjWRPSDjIyg9CiWZEHyOYBdpxLwK6uuvvx6Am266CeOkX8KmaWIYxmm7wBSRupeWlka3bl0pKvrp0qd2LSB1Ljic0Hf0c2TlP3fO5RQUFNZhlYAtCCK6Qt4OOL5NQS1yFl4F9bp162q7DhGpBdnZ2RQVFfOPmbfQrUMLAKKd28D8hhN+cXz02s/P+v4P1+/mDy+vo6SkpO6LbdKrMqi/h+jhdb8+kQbKq6AePHhwbdchIrWoW4cWPx0n3vMfKIGIuMu4vNnZ91xTUrPPOr1WhXV03VK0ohAK9wA6ZCZyOl7dmQxg/fr13HHHHQwYMIBDhw4B8Pe//50NG3QPXxHLKM2BkgzAgIhuvq6mOsMPIi9xPT/+nW9rEbEwr4L6nXfe4brrriM4OJitW7dSWloKQEFBATNnzqzVAkXkAuTvdD2Gtnfda9tqmrouzaJgFzazHprbRRogr4L6mWeeYcGCBbz++usEBAS4xw8YMICtZzmjVETqWd4O12Nkd9/WcSZB0RAUA6aTpuZeX1cjYkleBfWuXbu46qqraoyPiIjg+PHjF1qTiNSG0mOuS5+s2Ox9siauverm5o8+LkTEmrwK6tjYWPbs2VNj/IYNG+jQocMFFyUitSCvstk7rAP4h/i2lrNpcglgEMpRuugqLZEavArqe++9l4kTJ/L1119jGAaHDx/mrbfeYsqUKUyYMKG2axQRb+RXNntHWLTZu4p/KIS7bjk6rmZDnUij53XvWfn5+QwdOpSSkhKuuuoq7HY7U6ZM4cEHH6ztGkXEQ3bzOJQcAfxcNxaxuia9oOBH7hgIR03dMEnkZB4FdVFREY8++iirVq2ivLyckSNHuvuf7t69O2FhYXVSpIh4pqm5z/XE6s3eVcI7U0Eg8c3LKCnaDKizH5EqHgX1jBkzWLJkCWPHjiU4OJilS5fidDr517/+VVf1iYgX3EFt1bO9T+XnT67RkRZmCs3z/gPc7+uKRCzDo6BesWIFCxcu5Pbbbwdg7NixDBw4EIfDgc1mq5MCRcQzXeMgmBzXDUUaQrN3pWNGF1qYKTQp+BRKsiEoytcliViCRyeTpaenM2jQIPfrK664An9/fw4fPlzrhYmId27tV/kktCPYgn1aiyeKaMGWVPAzyyF1ia/LEbEMj4La4XAQGBhYbZy/vz8VFRW1WpSIeMk0+XX/yucNpdm7imEw/9PK57sXgOn0aTkiVuFR07dpmowfPx673e4eV1JSwn333VetT+oVK1bUXoUict6CS3+gWytwYsPPyjc5OYO3v4QF94bhX7gXMj+FWPWqJeJRUI8bN67GuDvuuKPWihGRC9M87wMAjhttaWazn2Nu6ykqhZzIG2mZuxx2z1dQi+BhUC9evLiu6hCRC+WsoGn+JwDkGAk083E53spu8gtXUB/6DxQdhJDWvi5JxKe87uayNnz++eeMHDmSuLg4DMNg1apV1aabpklSUhJxcXEEBwczZMgQduzY4ZtiRawu81MCHDkczYd84n1djddK7B2h5VVgOmDPG74uR8TnfBrUJ06coFevXsybN++002fPns2cOXOYN28emzZtIiYmhmHDhlFQUFDPlYo0APv/AcCyL3FdmtWQdaq8jnrv6+As920tIj7m03/NI0aM4JlnnmH06NE1ppmmydy5c3niiScYPXo0iYmJvPnmmxQVFbF06VIfVCtiYeWFkL4SgH984eNaakP8aAhqCcWHXU3gIo2YZX92p6amkpmZyfDhP51MYrfbGTx4MBs3bjzj+0pLS8nPz682iFz0Dq4ERxElAfF8czF062wLhA53u57vesm3tYj4mGWDOjMzE4Do6Ohq46Ojo93TTmfWrFlERka6h/j4hnusTuS8pbqavXMib/BxIbWo8wQw/CErGY5t9nU1Ij5j2aCuYhhGtdemadYYd7Lp06eTl5fnHtLT0+u6RBHfKs6AI647heREjPBxMbUopDW0dd2umB/+n29rEfEhywZ1TEwMQI2956ysrBp72Sez2+1ERERUG0Quavvfdt3FK6o/ZYEXWQtSN1fvfKT9C06k+bYWER+xbFC3b9+emJgY1qxZ4x5XVlZGcnIyAwYM8GFlIhZimrBvket5+zt9W0tdaHopRF/julQrRXvV0jj5NKgLCwvZtm0b27ZtA1wnkG3bto20tDQMw2DSpEnMnDmTlStX8v333zN+/HhCQkIYM2aML8sWsY7sLyFvh6vzjbYX6b+L7tNcj3tfh+Ijvq1FxAc8ujNZbdu8eTNDhw51v548eTLgulXpkiVLmDp1KsXFxUyYMIHc3Fz69evH6tWrCQ8P91XJItay93XXY5tfQWCkb2upKzHXQvMr4Ng38MMcuOx5X1ckUq98GtRDhgzBNM0zTjcMg6SkJJKSkuqvKJGGouw4HFjuet7pdz4tpU4ZBiT+AZJHwu5XoPtUsDf3dVUi9cayx6hF5Bz2LwVHsas7y6iL/LyNuBuhSS+oKNSxaml0FNQiDZFpwo+Vt97t+H+uvc6LmWFAz6dcz3f9BYrPfC8FkYuNglqkITqyFvJTwD8MOoz3dTX1o9VN0LwfOIrg+2d8XY1IvVFQizREVbfV7DD+4j2J7FSGAb1mup7vfQ0K9/m2HpF6oqAWaWgK98Gh913POz/o21rqW8zVEDPM1aPWtsd8XY1IvVBQizQ0P/wFMCH2Oojo4utq6t9lf3Z145n2L8j63NfViNQ5BbVIQ1KS/dO1092m+LYWX2naEzpWXo62ZRI4HT4tR6SuKahFGpIf/+q6JKtZb9etNRurnn+CgEjI/dZ1vFrkIqagFmkoygtcQQ3Q/bGL/5Ksswlq4QprgG3TXT2IiVykFNQiDcXu+VCWC+EJ0PoWX1fjewkToFlfKM+DLRN9XY1InVFQizQE5fmws/Ie1z0eBz+bb+uxAj8b9HsNDJvrxLL0Vb6uSKROKKhFGoIf5kJZjuss73Z3+Loa62h66U8n1X3zf1CS5dNyROqCglrE6kpz4IfK+1tf8hT4+bQvHeu55ClocgmUHnWF9Vk6+hFpiPQvXsTqvn/a1fTdpCe0udXX1dS5lJQUj98T3ORxuub9BuPgu7BnASTcXweVifiGglrEyvJS4MeXXc+rbvRxkcrILsQA7rjDu6b9aaP8ee5XuK6tbn4lNLusNssT8RkFtYiVbZ0MZoWrQ4rYYb6upk4dLyjBBOZNHUr/yxM8em/KvqPc8fhKHvvtVTQp/Bw23ArXb4LApnVTrEg9UlCLWNXBdyHjY/ALcO1NNxKd4ptyebdYr957IDaJJofvgsK9sOF2GPKBjulLg3fxtqOJNGRlebBpgut510cgwrM9zMbKYYuEq1aBLQQyV8O2ab4uSeSCKahFrGjbNCg+7Lq5SeIffV1Nw9L0Uui/xPX8hzk/HeMXaaAU1CJWk7EG9rzqen7F6+Af7Nt6GqI2t/50i9HND0H6Ct/WI3IBFNQiVlKSBV/+xvU84X6IHuzbehqyHk9Ap3sBE774NRz6wNcViXhFZ1mIWIXphK/ugpJMykIS2GGMxdy61aNFeHMN8kXLMKDPPCg9Bun/hvWjYdA70Ornvq5MxCMKahGr+P4ZOPwhpmHnZ1PT2LT7Z14vqqCgsBYLazhO+0MlZArtw3NpWrAW5+ej2ddqNvlhV1WbJSoqijZt2tRTlSKeUVCLWEH6Stg+A4C06Gls2v00/5h5C906tPBoMR+u380fXl5HSUlJXVRpWee6WYq/Dd6aAL+6spw2+3/PL/8C/zmpsSIkJJiUlB8U1mJJCmoRX8v+Br680/W888Mc8xsFPE23Di08vp44JTW79utrAM7rZimmk1zzvzT138e7jxikGwPJ9uvuvllKdna2glosSUEt4kt5O+GzEVBxAmKGweV/hm3bfV1Vg3XOm6WYY+DQ+xjHt9HG3ECbJhXQPrH+ChTxgoJaxFfyUuC/w1zdVza/AgatcN2FTOqOYXPdjjWwGWT9F459RQcyCLH7ujCRM9PlWSK+kLsNPh3suqlJZA8Y8iEEhPm6qsbBMKDlIGj9CzBsNOEAXz0FQaX7fF2ZyGkpqEXq2+GPXSFdehSaXg7XfAb25r6uqvFpkgjtfkM5wVwSD1323wl7F6s/a7EcBbVIfTFNSJkDyTe6+pdueRVcsxaConxdWeMV2oYUv1+wZjvYzBL4+reuG86U5/u6MhE3BbVIfSjJhuSb4NtHXDc26XAXDF0DgU18XVmjV2GEcN3zcCjqAdcx7P3/gA96wMH3fF2aCKCgFqlbpgn734YPusPh98HP7rpbVr+FYAv0dXVSyTThSNRvXYchwjpA0UH4fBSsvxWKM3xdnjRyCmqRupLzreus7o1jXMejI7vDdV9D5wdcJzSJ9bT8GdywHbpPc+1dp/8b3u8GO1+AimJfVyeNlC7PEqltudtgxyzMtH9hYOI0AshsfjdHmo/HTHVA6tnv3637dfuYfwhc+hy0vR2+/h3kbIZtU+HHl+CSp6D9b8BPX51Sf/TXJlIbKorh4Luu7imzPgPAAJZuhCf+Wc7+owuABR4tsrHer9syml4Kw79yHbP+3x+gKB2+vhtSXoBuj0K7MWAL8nWV0ggoqEW8VZwJmWsh4yNXSFdUBqvhR074MIZM+IRp99/CO3/V/bobLD8bdBgHbW+DH1+GHTMh/wdXYH83HRIecHVHGuTZ/2MRTyio5aKWlpZGdrZ397+u1qOSowzyUyD3O8jZAkf+C3nfV39DSBvX2dyd7mH/D1lsT/9E9+tuQM59yGEofm37EHV8JS1zlxFYcgS2z8C5/U+UNL+GkO73QdwNOklQap2C2kMX8sUP6k6vPqWlpdGtW1eKis7vJKCgAGjfEtq3gA4toXOcjbtvu4YQZ4ZrL8pZfso7DGh6GcRcA61vgah+YFSdn5lVq59F6s65et46HX8b/PIKmDwC+nasIOTYJ7D+E9eNa+J/Ca1GQvTV4B9cd4VLo6Gg9oCnX/yno+706k92djZFRcXVuov0M8uwk0+QeRw7ea7BLCCQAgIpOmUJDshZ/dPLgEjXccsmvVxnB7ccqpuVXATOq+ets/ggfQ87t/6XiTdHEVia7TpPYc+rYAuBmGsh7npoOQQiuupsf/GKgtoDp/vi94S606tHTgdBpXu542cwrN1uWgZ9C6XHwFFw9vf5BUJgU46XBPPGB/v51W+n0abbYNeXbGg7fdFexM7Z89YZbAV+/uh/aXXjHPq2yadJwWdEFq4nsOIIHHrPNQDltuYUhPTmRPAlFAX1oCioC6ZfkFrZ5JwU1F7w5rij1LHiTMj6HI5ucF1Ok/sd3R1F/P1+wPweTpw0ry3E1UQZ2BzszVw9KQU0gcCmYAsGw2BfSgaPLn2N2BsuoVvTaMjMBXLPuxxdYtV4VDWdj73jN9XG92oLP78Mru4O/RMgOPAYzQpW06zA1UpT4YDt6fBpmo1Rv32W5h2GuDpoUecscgoFtVje6c4LCCg/QljRFsKLthJWvJWgsgM13ldu2vlqVylduiXSMq4j2KNcAW0793FDb45bno4usbr4nU/T+Q9mBaEcJczMINTMIoSjBNiKuawdXNbOAXsegz2VM4e2d3UYEpnoemxyCYR30UlqtaQhnmekoBZLc50X0IWWoSUM7gaDu8Lgbq6TvU7mdMJ3afD5D/DVHti6H3ZnlmKa8NnrPWnZ1LNjjxd63FKXWDU+5246j//pqWlCeT779uxg+ao1jB+ZSJR/BgGOY3Ai1TUc+s9Ps2OjNCCO0sA2lAS2ozSwLSWBbQiNuZxWnfrokMx5aqjnGSmoxXpM03WWddbnhO16l5RZJbQ55ZwtE4Mioig0Yl2DXwxmRzuDOsKgynlqIyy9PW6pS6zkrAwDAiNJOdaCJ5bD48tdl/o1D4MereGSeEiMh8TK55EhDoLK0wkqTyfyxBc/LScdnFtD8YvoAhGdXXve7uedISDcRx/QmhrqeUYKavE9ZwUc/851jDlrPRxdD6WuoGsGNItyBbMR3ApC20JoO4yQeEJtdkKB6DMsVmEpVnc+LTd7TZMAirCT575aIcg8jlGeQ4jfCfw5AblbXcMpyvyjKve+21ES2IESewdKAttT7h8FhtFoT2RraOcZKag90Pz4Kp64GaKd2yA71XXTfr9A8A93/XL1j3DdUlDNUGdmmq6eiXI2wbFv4Ngm11BxytnYtiBofiUZjk7c+cgb/PnJ8VzasfF9oUjj4E3LzQfrdzN64lLat4QucdAlFjrHVD7GQnQkBFZkE1iRTXjRlmrvPX4CUg7DuiM2brrjMZq2HeDqNCa0zUn3AhCrUFB7IOr4OzxzK2B+A5lnmMnPDvYWrhOXglpWDjHgH1qfpVqDswIKdsPx7a4hd5sroEuO1Jw3IBJa/AxaDoIWV0Gz3mALJGPrVtbueAOnEVDv5YtY2fGCEsoc8NCdNffGDwGZZql77zuI4wSZuQRxHDv5NAk16Z8A/RMcsP9Z2F/5Rv9QiOjmCu3IHj89hrZt3AFumoATw6wg2Afn9CmoPXA8fChvfbiTX1zTmeYRdsAJjlLX3mB5PjiKwVkKxQddw8n8w+noaMqfboUm+Z9CQYSr39uL4Y+/vMAVyCcPx7dD3k7X9jiFiY1ieyeKgrpzIrgHRUGJFNs7uFooSoB0IN11zE6XOYmcncd7484KKMth394fefPfa/nt6H60DDqGvewAfhUnXJc35myu9haHEUSJvX1l83l7SgI7EhzTm7jOAxvud5hpQsUJKM+FsqrhuOv7vKIIHJWDswIwAbgM+GJG1av60yCC+pVXXuGFF14gIyODHj16MHfuXAYNGnTuN9ayI81/y70LX6bPsCE0jz/NP4zKfwCUHoWSo1Ca5dp7LMuBigIiKeDJm4HD01yDfzg07eW621XVHa/CEyAwsn4/2NmYJpTnkbF3M4VHfyCw4igBFVnYyw9hL0vDXnbQdabqGVQQxNa9pXyXZrI9HTbvg20HHBSX7QJ2ASvPqwxd5iRSS/z8IaglKTl5/GkFPL3iawBsftAxGrq3cp3Q1qOV63nXOLAHlBBakkJoyUk/nA+B89sg/CK7ufa6wxPc55AQ2hZCWvu2O1DTdH33njjgHlof+Yr3HoFujn/BzgIwKzxerL8NTr2ZcF2zfFAvX76cSZMm8corrzBw4EBeffVVRowYwc6dO613EkTlPwCCWsLJWesohZIjpO3/kU/++wVjRnQntGyv65fb0Q2u4WT2KAjrCGHtISi6cmjperS3dN2kwxbs6jfXFuxqbj/bcXHTBGeZa4+/osj16Cj66VdkaY7rD7osp/J5rutHRtEh1/FkRxHn+r1+JA92Z7qGPUdgx0HXzRxSj5ZgmvDak9cz/to2jPdwk+oyJ5G6cT4nsjmAHabTddtdcgk2cwkiF0qzCSGPoMASyP3WNZzCxEaZfwsq/JtTYWtGuX9TKmyVg39TQiOjaRHb3tXc7h8K/mGVNxzyA4zKRz/Xo1lR+b1VUv2xzFULpdlQUvlYehSK0lzhXHGiWk0tgZGXA+RW7hYbEBDhutlR1U2PAiIqv1srB78AVw2GH9t2ZdH/D0v4Ylgt/o84D5YP6jlz5nD33Xdzzz33ADB37lw++eQT5s+fz6xZs3xc3Xmy2SG0Ddl+AfzfG18QMuRxunVNIKhsPyElPxJcuovgkh8JLt1NgOOkP7xjX5/X4k0MTCMQ0/AHzMrjKSZGZQONYZa5n3srpxCMwAj8AiMpN0IoI5xSIigxIiklEmezQEKaQa/u0Av4ReX7qoK2TXSILnMSsaDzazpvVe3VB+t3c/PDS2nXwrX33b2Vq0ObdlHQtnKwBziwV2RirzjDCT0ZwA+18hHOqtzWnLKAGMoCYjmcH8RLi95nyu9uIKFjR9e5MX62816W0wikpL53p7F4UJeVlbFlyxYee+yxauOHDx/Oxo0bfVSV987nblfhwa6beXRs6fpjbxnhGqIjoWUkREdA01AIDnQ1wQAYmBhmKZg1jwefyumEojIoLnOFb26R6zGnEHJO/PR4rAAO5sChXDic65r/s9d/zmAPb/6hoBW5+BwvKKHCCZPG1dwbLwR2mCb+FBNIAQEU42+W4E8x/hQTQAkF+bmkHz5GWBCE2iHMDqFBEBzgahz0M8DvlEPfJWVQXH7SYznknoDsgprDwRw4kA3px6Ck/BhwDNjhXtaYXzchwd6szrdTbbF0UGdnZ+NwOIiOrn6lbHR0NJmZp/+VVlpaSmnpT4GVl5cHQH5+/gXXU1joOk66ZedhCovKPH7/l9+lYwL3/7In3TrFnff7TgDLvz/M39//X7X3GjjxN5zYDAc2w4mf4dprrtp3Nk1Xc/jWXVn8/YMUfjMykc4dWgGnNJPbgEgwIqE5ruHkf3qbKte96ft0DA9vY5iy7ygA2/ccJTi05m0+6/L9vnqvL9fdUOv25bpVt/frLi6tOMt3oT/QtHKobvWWvTz7+vpzfBdWtghiYmJQ9b216dTvwkCgOYQ0hza4hsvPsMQL+S4D2LXfteNRWFh4wZlS9X7TPI/WTtPCDh06ZALmxo0bq41/5plnzC5dupz2PTNmzHC1+2rQoEGDBg0WH9LT08+ZhZbeo46KisJms9XYe87Kyqqxl11l+vTpTJ482f3a6XSSk5ND8+bNMby8EUl+fj7x8fGkp6cTERHh1TIaOm0DbQPQNmjsnx+0DaB2toFpmhQUFBAXd+7WVUsHdWBgIL1792bNmjXccsst7vFr1qxh1KhRp32P3W7HbrdXG9ekSZNaqSciIqLR/mFW0TbQNgBtg8b++UHbAC58G0RGRp7XfJYOaoDJkydz55130qdPH/r3789rr71GWloa9913n69LExERqXOWD+rbbruNY8eO8fTTT5ORkUFiYiIffvghbdu29XVpIiIidc7yQQ0wYcIEJkyY4LP12+12ZsyYUaNJvTHRNtA2AG2Dxv75QdsA6n8bGKZ5PueGi4iIiC800Lupi4iINA4KahEREQtTUIuIiFiYgvocnn32WQYMGEBISMgZr8c2DKPGsGDBgvottA6dzzZIS0tj5MiRhIaGEhUVxcMPP0xZmee3WW0o2rVrV+P/+an3pL/YvPLKK7Rv356goCB69+7N+vXrfV1SvUlKSqrx/zsmJsbXZdWpzz//nJEjRxIXF4dhGKxataradNM0SUpKIi4ujuDgYIYMGcKOHTtOv7AG6Fyff/z48TX+Jq688so6qUVBfQ5lZWXceuut3H///Wedb/HixWRkZLiHcePG1VOFde9c28DhcHDjjTdy4sQJNmzYwLJly3jnnXd45JFH6rnS+lV1yWDV8OSTT/q6pDpT1d3sE088wbfffsugQYMYMWIEaWlpvi6t3vTo0aPa/+/t27f7uqQ6deLECXr16sW8efNOO3327NnMmTOHefPmsWnTJmJiYhg2bBgFBQX1XGndONfnB7j++uur/U18+OGHdVPMBd+Qu5FYvHixGRkZedppgLly5cp6rccXzrQNPvzwQ9PPz888dOiQe9zbb79t2u12My8vrx4rrD9t27Y1X3zxRV+XUW+uuOIK87777qs2rmvXruZjjz3mo4rq14wZM8xevXr5ugyfOfU7zul0mjExMeZzzz3nHldSUmJGRkaaCxYs8EGFdet03/Hjxo0zR40aVS/r1x51LXnwwQeJioqib9++LFiwAKfT6euS6s2XX35JYmJitXvWXnfddZSWlrJlyxYfVla3nn/+eZo3b86ll17Ks88+e9E29Vd1Nzt8+PBq4xtqd7Pe2r17N3FxcbRv357bb7+dffv2+bokn0lNTSUzM7Pa34Tdbmfw4MGN6m/is88+o2XLlnTu3Jnf/e53ZGVl1cl6GsQNT6zuT3/6E9dccw3BwcGsXbuWRx55hOzs7Iu6KfRkmZmZNTpJadq0KYGBgWfsjrShmzhxIpdffjlNmzblm2++Yfr06aSmpvLGG2/4urRa5013sxebfv368be//Y3OnTtz5MgRnnnmGQYMGMCOHTto3ry5r8urd1X/30/3N3HggOddbjZEI0aM4NZbb6Vt27akpqbyhz/8gauvvpotW7bU+o1QGuUe9elODDl12Lx583kv78knn6R///5ceumlPPLIIzz99NO88MILdfgJLlxtb4PT9UxmmqbXPZb5gifb5Pe//z2DBw+mZ8+e3HPPPSxYsICFCxdy7NgxH3+KunPq/8uG9v/3QowYMYJf/OIXXHLJJVx77bV88MEHALz55ps+rsy3GvPfxG233caNN95IYmIiI0eO5KOPPuLHH390/23Upka5R/3ggw9y++23n3Wedu3aeb38K6+8kvz8fI4cOXLG7jh9rTa3QUxMDF9//XW1cbm5uZSXl1v285/OhWyTqrM99+zZc9HtYXnT3ezFLjQ0lEsuuYTdu3f7uhSfqDrjPTMzk9jYWPf4xvw3ERsbS9u2bevkb6JRBnVUVBRRUVF1tvxvv/2WoKCgWutesy7U5jbo378/zz77LBkZGe5/tKtXr8Zut9O7d+9aWUd9uJBt8u233wJU+9K6WHjT3ezFrrS0lJSUFAYNGuTrUnyiffv2xMTEsGbNGi677DLAdS5DcnIyzz//vI+r841jx46Rnp5eJ98BjTKoPZGWlkZOTg5paWk4HA62bdsGQKdOnQgLC+M///kPmZmZ9O/fn+DgYNatW8cTTzzB//3f/100N60/1zYYPnw43bt358477+SFF14gJyeHKVOm8Lvf/e6i7K/2yy+/5KuvvmLo0KFERkayadMmfv/733PTTTfRpk0bX5dXJxp7d7NTpkxh5MiRtGnThqysLJ555hny8/MvqsswT1VYWMiePXvcr1NTU9m2bRvNmjWjTZs2TJo0iZkzZ5KQkEBCQgIzZ84kJCSEMWPG+LDq2nO2z9+sWTOSkpL4xS9+QWxsLPv37+fxxx8nKiqq2o/ZWlMv55Y3YOPGjTOBGsO6detM0zTNjz76yLz00kvNsLAwMyQkxExMTDTnzp1rlpeX+7bwWnSubWCapnngwAHzxhtvNIODg81mzZqZDz74oFlSUuK7ouvQli1bzH79+pmRkZFmUFCQ2aVLF3PGjBnmiRMnfF1anXr55ZfNtm3bmoGBgebll19uJicn+7qkenPbbbeZsbGxZkBAgBkXF2eOHj3a3LFjh6/LqlPr1q077b/7cePGmabpukRrxowZZkxMjGm3282rrrrK3L59u2+LrkVn+/xFRUXm8OHDzRYtWpgBAQFmmzZtzHHjxplpaWl1Uot6zxIREbGwRnnWt4iISEOhoBYREbEwBbWIiIiFKahFREQsTEEtIiJiYQpqERERC1NQi4iIWJiCWkRExMIU1CJyWkOGDHH3GlZ129jPPvsMwzA4fvy4T2s7naSkJC699NJqr6vqnzt3rs/qErlQCmoRH9q4cSOGYXD99defdb7hw4djGAZfffXVaadnZmYyceJEOnXqRFBQENHR0fzsZz9jwYIFFBUVVZt3yZIl590z2u9+9zsyMjJITEw8r/nB1fXhqlWrqo0rLi4mJCSEH3744byXc6GmTJlCRkYGrVu3rrd1itQFdcoh4kOLFi3i17/+Ne+88w5paWmn7dQjLS2N5ORkfv3rX7Nw4UJ3l5pV9u3bx8CBA2nSpAkzZ87kkksuoaKigh9//JFFixYRFxfHTTfd5FV9ISEh7i4NL8SaNWuIj4+na9euF7ys8xUWFkZYWBg2m63e1ilSF7RHLeIjJ06cYPny5UyaNImrr76aJUuWnHa+xYsXc8011zBx4kSWL1/OiRMnqk2fMGEC/v7+bN68mV/96ld069aNSy65hF/84hd88MEHjBw5EnD1pW0YBnfddRcHDhxwNwt/9tlnXn+G4uJibrzxRq688kpycnLOON+7777r/rFQ1US9aNEi2rRpQ1hYGPfffz8Oh4PZs2cTExNDy5YtefbZZ6stIy0tjVGjRhEWFkZERAS/+tWvOHLkiNe1izQUCmoRH1m+fDkxMTFcccUVjB07lsWLF3NqHzmmabJ48WLGjh1Lv379iI6O5p///Kd7+rFjx1i9ejUPPPAAoaGhp12PYRgAbNq0iYyMDObOnUvr1q3JyMggIyODAQMGeFV/Xl4ew4cPp6ysjLVr19KsWbPTzud0Onn//fer9V29d+9ePvroIz7++GPefvttFi1axI033sjBgwfdfRo/+eST7qZ+0zS5+eabycnJITk5mTVr1rB3715uu+02r2oXaUgU1CI+snDhQsaOHQvAzTffTFZWFmvXrq02z6effsrRo0e5+eabARgzZgwLFy50T9+zZw+madKlS5dq74uKinI3/U6bNg2AFi1aEBMTQ2RkJDabjZiYGGJiYggMDPS49iNHjjB48GBatmzJBx98cMYfCQBfffUVTqez2g8Cp9PJokWL6N69OyNHjmTo0KHs2rWLuXPn0qVLF+666y66dOni3tv/9NNP+d///sfSpUvp3bs3/fr14+9//zvJycls2rTJ4/pFGhIFtYgP7Nq1i40bNzJmzBjAdTx11KhRLFq0qNp8Cxcu5Oabb3YH4dixY/niiy/YtWtXtfmq9pqrfPPNN2zbto0ePXpQWlpa6/Vfe+21dOjQgX/+85/nDPp3332Xn//85/j5/fR1065dO8LDw92vo6Oj6d69e7V5oqOjycrKAiAlJYX4+Hji4+Pd07t3706TJk1ISUmprY8lYkkKahEfWLhwIX379qVz587ucWPHjmXFihXk5uYCkJOTw6pVq9x73QCdO3emT58+7kDv1KkThmHUOJu6Q4cOdOrUieDg4Dqp/8Ybb2T9+vXs3LnznPO+99571Zq9AQICAqq9NgzjtOOcTifgavo+9cfI2caLXEwU1CL1rKKigr/97W/uvekq1113HeHh4bz11lsAvPXWW4SHhzN8+PBq840ZM4Y333yTiooKmjdvzrBhw5g3b16Nk8xO1aNHD8LCwrjvvvtIS0tzN42vX7/e48/w3HPPMW7cOK655pqzhvXu3bvZv39/jc/gqe7du5OWlkZ6erp73M6dO8nLy6Nbt24XtGwRq9PlWSL17P333+fIkSMkJiby/fffV5s2aNAgFi5cyIMPPsjChQsZNGhQjb3lxMREjhw5wgcffMCoUaN45ZVXGDhwIH369CEpKYmePXvi5+fHpk2b+OGHH+jduzcAH374IeXl5axYsYKXXnrJffy3VatWXn2OP//5zzgcDq6++mo+++yz01569e6773LttdcSEhLi1TqqXHvttfTs2ZOxY8cyd+5cKioqmDBhAoMHD6ZPnz4XtGwRq1NQi9SzqpPBhg0bdsZ5tmzZwnfffcd3333HypUrz7icUaNG0bFjR7799ltmzpzJ9OnTOXjwIHa7ne7duzNlyhQmTJgAQNu2bQFo2bIl/v7+dOrU6YI/y4svvlgtrKuW6e/v+mp59913GTdu3AWvp+omKg899BBXXXUVfn5+XH/99fz1r3+94GWLWJ1hnno9iIhc1JYsWUJSUhL79+8/63xDhgzh0ksv9ej2m5mZmcTGxrJp0ybatWtHbGws6enptXLTFG+1a9eOSZMmMWnSJJ/VIHIhdIxapJG57bbbzvuSpldeeYWwsDC2b99+1vlM02T//v0888wzREdHk5iYSE5ODnPmzPFZSM+cOZOwsDDS0tJ8sn6R2qI9ahE5rUOHDlFcXAxAmzZtznoZ1vHjx4mOjqZbt27MnTuXIUOG1FOVZ5aTk+O+W1qLFi2IjIz0cUUi3lFQi4iIWJiavkVERCxMQS0iImJhCmoRERELU1CLiIhYmIJaRETEwhTUIiIiFqagFhERsTAFtYiIiIUpqEVERCzs/wN+14jhZHlDIAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, axs = plt.subplots(2,1, figsize=(5, 5))\n",
"datacopy=data.copy()\n",
"datacopy['ΔΔG‡ [kJ/mol]']=datacopy['ΔΔG‡ [kJ/mol] with sign']\n",
"sns.histplot(data=datacopy, x='Conversion [-]', kde=True, ax=axs[0], bins=25, stat=\"percent\")\n",
"sns.histplot(data=datacopy, x='ΔΔG‡ [kJ/mol]', kde=True, ax=axs[1], bins = 25, stat=\"percent\", color='orange')\n",
"plt.tight_layout()\n",
"plt.savefig('ddg_conv_hist.svg')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "aaca78de",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAAESCAYAAADnpP23AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAyJUlEQVR4nO3de1TU953/8dcIMopcvA8QwaBrtkaNWUEnkFWSakBr4jFuN1qvSdxG17M1hLgGjttFcjyQmM1lTaJN3HjLxiJpak4uupHsaZGU1q2oUTFJbYMBFbRGhFEpJPL9/eGPaUYuzuB3Zpjx+ThnzvH7+X5mvu/xw8CbD5/v+2MxDMMQAAAAEAR6+DsAAAAAwCwktwAAAAgaJLcAAAAIGiS3AAAACBoktwAAAAgaJLcAAAAIGiS3AAAACBqh/g6gO2hpadHp06cVGRkpi8Xi73AAAABwDcMw5HA4FBcXpx49Op6fJbmVdPr0acXHx/s7DAAAAFxHdXW1hgwZ0uF5kltJkZGRkq7+Z0VFRfk5GgAAAFyroaFB8fHxzrytIyS3knMpQlRUFMktAAAwRZ4lz98heF2ukevza15vCSk3lAEAACBo+DW53bt3rx544AHFxcXJYrHo3XffdTlvGIZWr16tuLg49e7dW/fcc48qKipc+jQ1NeknP/mJBg4cqD59+mjGjBk6efKkD98FAAAAugu/JreXLl3S2LFj9corr7R7fu3atXrhhRf0yiuv6Pe//71iYmJ03333yeFwOPtkZmZq586dKiws1CeffKKLFy/q/vvv15UrV3z1NgAAANBN+HXN7bRp0zRt2rR2zxmGoZdeekmrVq3SrFmzJElbt26VzWbT9u3btWTJEtXX1+uNN97Qm2++qSlTpkiS/vu//1vx8fH6+OOPlZGR4bP3AgAAAP/rtmtuKysrVVtbq/T0dGeb1WpVWlqaysrKJEnl5eX65ptvXPrExcVp9OjRzj7taWpqUkNDg8sDAAAAga/bJre1tbWSJJvN5tJus9mc52praxUWFqZ+/fp12Kc9BQUFio6Odj6ocQsAABAcbji5PXTokN5++2198sknMgzDjJhcXFvuwTCM65aAuF6fnJwc1dfXOx/V1dWmxAoAAAD/8ii5nTt3rvNmrosXLyojI0Pjxo3T/PnzNWnSJE2YMEEXLlwwJbCYmBhJajMDe/bsWedsbkxMjJqbm1VXV9dhn/ZYrVZnTVtq2wIAAAQPj5LbHTt2qLGxUZKUl5en48ePa//+/WpqatLhw4d16dIlPf3006YElpiYqJiYGBUXFzvbmpubVVJSotTUVElSUlKSevbs6dKnpqZGR48edfYBAADAzcOj5Pa7yw52796tZ555RuPGjZMkjR49Wv/xH/+hDz74wO3Xu3jxog4dOqRDhw5JunoT2aFDh1RVVSWLxaLMzEzl5+dr586dOnr0qB5++GGFh4dr7ty5kqTo6GgtXrxYTz75pP73f/9XBw8e1Pz58zVmzBhn9QQAAADcPDwuBda6lvXMmTMaPXq0y7lRo0Z5tH51//79uvfee53HWVlZkqRFixZpy5YtWrlypRobG7Vs2TLV1dXJbrdrz549LnsKv/jiiwoNDdVDDz2kxsZGTZ48WVu2bFFISIinbw0AAAABzuPk9qc//anCw8PVo0cP1dbW6vbbb3eeO3funCIiItx+rXvuuafTm9AsFotWr16t1atXd9inV69eevnll/Xyyy+7fV0AAAAEJ4+S20mTJumLL76QJN1+++2qrKx0Ob9r1y6NGjXKvOgAAAAAD3iU3P7617/u9Py8efP0yCOP3Eg8AAAAQJeZuv3usGHDzHw5AAAAwCMeJbfbtm1zq9/ChQu7FAwAAABwIzxKbh9++GFFREQoNDS0wxvBLBYLyS0AAAD8wqPkduTIkTpz5ozmz5+vRx99VHfccYe34gIAAAA85tEmDhUVFfrwww/V2NioSZMmKTk5WRs2bFBDQ4O34gMAAADc5lFyK0l2u12vvfaaampqtHz5chUVFSk2Nlbz5s1TU1OTN2IEAAAA3OJxctuqd+/eWrhwofLy8jRhwgQVFhbq8uXLZsYGAAAAeKRLye2pU6eUn5+vESNGaM6cORo/frwqKirUr18/s+MDAAAA3ObRDWVFRUXavHmzSkpKlJGRoeeff17Tp09XSEiIt+IDAAAA3OZRcjtnzhwlJCToiSeekM1m04kTJ/Tqq6+26bd8+XLTAgQAAADc5VFym5CQIIvFou3bt3fYx2KxkNwCAADALzxKbk+cOOGlMAAAAIAb59ENZfv27dPu3btd2rZt26bExEQNHjxYjz32GOXAAAAA4DceJbe5ubk6fPiw8/jIkSNavHixpkyZouzsbL3//vsqKCgwPUgAAADAHR4lt59++qkmT57sPC4sLJTdbtfGjRuVlZWldevWqaioyPQgAQAAAHd4lNzW1dXJZrM5j0tKSjR16lTn8fjx41VdXW1edAAAAIAHPEpubTabKisrJUnNzc06cOCAUlJSnOcdDod69uxpboQAAACAmzxKbqdOnars7GyVlpYqJydH4eHhmjhxovP84cOHNXz4cNODBAAAANzhUSmwNWvWaNasWUpLS1NERIS2bt2qsLAw5/lNmzYpPT3d9CABAAAAd3iU3A4aNEilpaWqr69XREREm2133377bUVERJgaoLvWr1+v5557TjU1NRo1apReeukll1llwBvyLHn+DgE3INfI9XcIwE2N76HwBo+WJbSKjo5uk9hKUv/+/V1mcn1lx44dyszM1KpVq3Tw4EFNnDhR06ZNU1VVlc9jAQAAgP9YDMMw/B3EjbLb7Ro3bpw2bNjgbBs5cqRmzpzpVt3dhoYGRUdHq76+XlFRUd4M1QW/sQIAgEDmy7+AuZuvebQsoTtqbm5WeXm5srOzXdrT09NVVlbW7nOamppcdlKrr6+XdPU/zZf+or/49HoAAABm8mXu1Hqt683LBnxye+7cOV25csWl/q50tWxZbW1tu88pKChQXl7bWdP4+HivxAgAABCMnol+xufXdDgcio6O7vB8wCe3rSwWi8uxYRht2lrl5OQoKyvLedzS0qLz589rwIABHT7HTA0NDYqPj1d1dbVPl0HAPIxh4GMMAxvjF/gYw8Dn6zE0DEMOh0NxcXGd9gv45HbgwIEKCQlpM0t79uzZNrO5raxWq6xWq0tb3759vRVih6KiovhABzjGMPAxhoGN8Qt8jGHg8+UYdjZj26pL1RK6k7CwMCUlJam4uNilvbi4WKmpqX6KCgAAAP4Q8DO3kpSVlaUFCxYoOTlZKSkpev3111VVVaWlS5f6OzQAAAD4UFAkt7Nnz9bXX3+tp59+WjU1NRo9erR27dqloUOH+ju0dlmtVuXm5rZZGoHAwRgGPsYwsDF+gY8xDHzddQyDos4tAAAAIPl55nbv3r167rnnVF5erpqaGu3cuVMzZ850njcMQ3l5eXr99ddVV1cnu92uV199VaNGjXL2aWpq0ooVK/Tzn/9cjY2Nmjx5stavX68hQ4a4HUdLS4tOnz6tyMhIn1RLAAAAgGe+Wy2hR49Obhsz/GjXrl3GqlWrjHfeeceQZOzcudPl/DPPPGNERkYa77zzjnHkyBFj9uzZRmxsrNHQ0ODss3TpUuOWW24xiouLjQMHDhj33nuvMXbsWOPbb791O47q6mpDEg8ePHjw4MGDB49u/qiuru40r+s2yxIsFovLzK1hGIqLi1NmZqaeeuopSVdnaW02m5599lktWbJE9fX1GjRokN58803Nnj1bknT69GnFx8dr165dysjIcOva9fX16tu3L7X2AAAAuqnWuroXLlwIzE0cKisrVVtbq/T0dGeb1WpVWlqaysrKtGTJEpWXl+ubb75x6RMXF6fRo0errKysw+T22u13HQ6HJGrtAQAA81jygn+po5Hr+znS6y0h7bZ1bls3ZehsW93a2lqFhYWpX79+HfZpT0FBgaKjo50Ptt0FAAAIDt02uW3lyba67vbJyclRfX2981FdXW1KrAAAAPCvbpvcxsTESFKn2+rGxMSoublZdXV1HfZpj9VqdS5BYCkCAABA8Oi2yW1iYqJiYmJcttVtbm5WSUmJc1vdpKQk9ezZ06VPTU2Njh49yta7AAAANyG/3lB28eJF/fGPf3QeV1ZW6tChQ+rfv78SEhKUmZmp/Px8jRgxQiNGjFB+fr7Cw8M1d+5cSVJ0dLQWL16sJ598UgMGDFD//v21YsUKjRkzRlOmTPHX2wIAAICf+DW53b9/v+69917ncVZWliRp0aJF2rJli1auXKnGxkYtW7bMuYnDnj17FBkZ6XzOiy++qNDQUD300EPOTRy2bNmikJAQn78fAAAA+JfHdW4Nw9CJEycUHx+v0NBQNTc3a+fOnWpqatIPfvADDRw40Fuxek1DQ4Oio6NVX1/P+lsAAGAKSoGZy918zaOZ2y+++EIZGRmqrq7WsGHDtGfPHv3jP/6jPv/8cxmGofDwcJWVlWnEiBE3/AYAAAAAT3l0Q9lTTz2lsWPH6tChQ7r//vt1//33a8iQIaqrq1NdXZ3uvvtuPf30096KFQAAAOiUR8sSBg8erD179ujOO+/UpUuXFBkZqb179+rv//7vJUm//e1vNWfOHH311VdeC9gbWJYAAADMxrIEc7mbr3k0c3vx4kX1799fktSnTx/16dNHsbGxzvNDhgzRmTNnuhgyAAAAcGM8Sm7j4uJUVVXlPF67dq0GDx7sPP7zn//cZitcAAAAwFc8Sm6nTJmizz//3Hn8z//8zy5lufbs2aNx48aZFx0AAADgAY9LgXWmsrJSvXr1clmqEAhYcwsAAMzGmltzeaUU2PUkJiaa+XIAAACARzxKbrdt2+ZWv4ULF3YpGAAAAOBGeJTcPvzww4qIiFBoaKg6Ws1gsVhIbgEAAOAXHiW3I0eO1JkzZzR//nw9+uijuuOOO7wVFwAAAOAxj6olVFRU6MMPP1RjY6MmTZqk5ORkbdiwQQ0NDd6KDwAAAHCbR8mtJNntdr322muqqanR8uXLVVRUpNjYWM2bN09NTU3eiBEAAABwS5erJfTu3VsLFy7UrbfeqtzcXBUWFuqVV16R1Wo1M76gFezlQXxZGgQAAKCVxzO3knTq1Cnl5+drxIgRmjNnjsaPH6+Kigp2JwMAAIBfeTRzW1RUpM2bN6ukpEQZGRl6/vnnNX36dIWEhHgrPgAAAMBtHiW3c+bMUUJCgp544gnZbDadOHFCr776apt+y5cvNy1AAAAAwF0eJbcJCQmyWCzavn17h30sFgvJLQAAAPzCo+T2xIkTXgoDAAAAuHEe3VC2b98+7d6926Vt27ZtSkxM1ODBg/XYY49RDgwAAAB+41Fym5ubq8OHDzuPjxw5osWLF2vKlCnKzs7W+++/r4KCAtODBAAAANzhUXL76aefavLkyc7jwsJC2e12bdy4UVlZWVq3bp2KiopMDxIAAABwh0fJbV1dnWw2m/O4pKREU6dOdR6PHz9e1dXV5kUHAAAAeMCj5NZms6myslKS1NzcrAMHDiglJcV53uFwqGfPnuZGCAAAALjJo+R26tSpys7OVmlpqXJychQeHq6JEyc6zx8+fFjDhw83PUgAAADAHR6VAluzZo1mzZqltLQ0RUREaOvWrQoLC3Oe37Rpk9LT000PEuiOLHkWf4fgVUau4e8QAADwmEczt4MGDVJpaanq6upUV1enBx980OX822+/rdzcXFMDdNf69euVmJioXr16KSkpSaWlpX6JAwAAAP7j0cxtq+jo6Hbb+/fvf0PBdNWOHTuUmZmp9evX6+6779Zrr72madOm6dixY0pISPBLTAAAoHPB/hcw+IfFMIyA/9uj3W7XuHHjtGHDBmfbyJEjNXPmTLfq7jY0NCg6Olr19fWKioryZqhOfKABeBtLSwIfPyvQ3fny+4y7+VqXZm67k+bmZpWXlys7O9ulPT09XWVlZe0+p6mpyWUntfr6eklX/9N85i++uxSAm5Mlh8QIgHf5Mndqvdb15mUDPrk9d+6crly54lJ/V7patqy2trbd5xQUFCgvL69Ne3x8vFdiBAAACEbRz7S/VNWbHA5Hh0tkpSBIbltZLK4zFIZhtGlrlZOTo6ysLOdxS0uLzp8/rwEDBnT4HDM1NDQoPj5e1dXVPlsGAXMxhoGPMQxsjF/gYwwDn6/H0DAMORwOxcXFddov4JPbgQMHKiQkpM0s7dmzZ9vM5rayWq2yWq0ubX379vVWiB2KioriAx3gGMPAxxgGNsYv8DGGgc+XY9jZjG0rj0qBdUdhYWFKSkpScXGxS3txcbFSU1P9FBUAAAD8IeBnbiUpKytLCxYsUHJyslJSUvT666+rqqpKS5cu9XdoAAAA8KGgSG5nz56tr7/+Wk8//bRqamo0evRo7dq1S0OHDvV3aO2yWq3Kzc1tszQCgYMxDHyMYWBj/AIfYxj4uusYBkWdWwAAAEAKkpnbG9XS0qLTp08rMjLSJ9USAAAA4JnvVkvo0aPj28ZIbiWdPn2aGrcAAAABoLq6WkOGDOnwPMmtpMjISEmi1h4AAEA31VpXtzVv6wjJrf66AYRPa+0F+/IHlnIDAAAvuN4S0oCvcwsAAAC0IrkFAABA0CC5BQAAQNBgzS0AAIA3BPv9NVK3vMeGmVsAAAAEDZ8nt3V1ddq2bZuvLwsAAICbgM+T26qqKj3yyCNu9V29erUsFovLIyYmxnneMAytXr1acXFx6t27t+655x5VVFR4K3QAAAB0c6avuW1oaOj0vMPh8Oj1Ro0apY8//th5HBIS4vz32rVr9cILL2jLli267bbbtGbNGt1333364osvrlvgFwAAAMHH9OS2b9++nRbXNQzjusV3vys0NNRltva7r/PSSy9p1apVmjVrliRp69atstls2r59u5YsWeJ58AAAAAhopie3kZGRWrVqlex2e7vnjx8/7lHiefz4ccXFxclqtcputys/P1/Dhg1TZWWlamtrlZ6e7uxrtVqVlpamsrKyTq/R1NSkpqYm5/H1ZpsBAAAQGExPbseNGydJSktLa/d83759ZbhZNsJut2vbtm267bbbdObMGa1Zs0apqamqqKhQbW2tJMlms7k8x2az6auvvur0dQsKCpSXl+dWDAAAAAgcpt9QNnfuXPXq1avD8zExMcrNzXXrtaZNm6Z/+Id/0JgxYzRlyhR9+OGHkq4uP2h17RIHd5Y95OTkqL6+3vmorq52Kx4AAAB0b6bP3P74xz/u9LzNZnM7ub1Wnz59NGbMGB0/flwzZ86UJNXW1io2NtbZ5+zZs21mc69ltVpltVq7FAMAAAC6r4DaxKGpqUmfffaZYmNjlZiYqJiYGBUXFzvPNzc3q6SkRKmpqX6MEgAAAP5i+sytuxs0LFy48Lp9VqxYoQceeEAJCQk6e/as1qxZo4aGBi1atEgWi0WZmZnKz8/XiBEjNGLECOXn5ys8PFxz58690bcBAACAAGR6cvvwww8rIiJCoaGhHd44ZrFY3EpuT548qR/96Ec6d+6cBg0apLvuuku/+93vNHToUEnSypUr1djYqGXLlqmurk52u1179uyhxi0AAMBNymK4W7rATaNGjdKZM2c0f/58Pfroo7rjjjvMfHmvaGhoUHR0tOrr6xUVFeWbi3pQ6zcgmftlBQBA4An2n/WST3/eu5uvmb7mtqKiQh9++KEaGxs1adIkJScna8OGDdSSBQAAgNd55YYyu92u1157TTU1NVq+fLmKiooUGxurefPmuWyeAAAAAJjJq9USevfurYULFyovL08TJkxQYWGhLl++7M1LAgAA4CbmteT21KlTzkoGc+bM0fjx41VRUaF+/fp565IAAAC4yZleLaGoqEibN29WSUmJMjIy9Pzzz2v69OkKCQkx+1IAAACAC9OrJfTo0UMJCQmaN29epzuFLV++3MzL3hCqJXgB1RIAADe7YP9ZL3XLagmmJ7e33nqrLNcZTIvFoi+//NLMy94QklsvILkFANzsgv1nvdQtk1vTlyWcOHHC7JcEAAAA3GL6DWX79u3T7t27Xdq2bdumxMREDR48WI899hjlwAAAAOAVpie3ubm5Onz4sPP4yJEjWrx4saZMmaLs7Gy9//77KigoMPuyAAAAgPnJ7aeffqrJkyc7jwsLC2W327Vx40ZlZWVp3bp1KioqMvuyAAAAgPnJbV1dnUuVhJKSEk2dOtV5PH78eFVXV5t9WQAAAMD85NZms6myslKS1NzcrAMHDiglJcV53uFwqGfPnmZfFvA9iyW4HwAABCDTk9upU6cqOztbpaWlysnJUXh4uCZOnOg8f/jwYQ0fPtzsywIAAADmlwJbs2aNZs2apbS0NEVERGjr1q0KCwtznt+0aZPS09PNviy6G2b+AACAH5i+iUOr+vp6RUREtNl29/z584qIiHBJeP2NTRyAdrARR+AL9u8zfI2iuwv2z6DULTdxMH1ZQqvo6Og2ia0k9e/f3yuJ7fr165WYmKhevXopKSlJpaWlpl8DuKn4e80v64oB/39G+AwiAHktufWlHTt2KDMzU6tWrdLBgwc1ceJETZs2TVVVVf4ODUB35u8f7CQOuNn5+zPCZzAoeW1Zgi/Z7XaNGzdOGzZscLaNHDlSM2fOdGvDCJYlAAAAdEE3XJZg+g1lvtbc3Kzy8nJlZ2e7tKenp6usrKzd5zQ1NblsAVxfXy/p6n8aAAAA3OTD3Kk1T7vevGzAJ7fnzp3TlStXXDaOkK7W262trW33OQUFBcrLy2vTHh8f75UYAQAAglJ0tM8v6XA4FN3JdQM+uW1luebP/IZhtGlrlZOTo6ysLOdxS0uLzp8/rwEDBnT4HDM1NDQoPj5e1dXVvlsGAVMxhoGPMQxsjF/gYwwDn6/H0DAMORwOxcXFddov4JPbgQMHKiQkpM0s7dmzZ9vM5rayWq2yWq0ubX379vVWiB2KioriAx3gGMPAxxgGNsYv8DGGgc+XY9jZjG2rgK+WEBYWpqSkJBUXF7u0FxcXKzU11U9RAQAAwB8CfuZWkrKysrRgwQIlJycrJSVFr7/+uqqqqrR06VJ/hwYAAAAfCorkdvbs2fr666/19NNPq6amRqNHj9auXbs0dOhQf4fWLqvVqtzc3DZLIxA4GMPAxxgGNsYv8DGGga+7jmFQ1LkFAAAApCCZub1RLS0tOn36tCIjI31SLQEAAACe+W61hB49Or5tjORW0unTp6lxCwAAEACqq6s1ZMiQDs+T3EqKjIyUJGrtAQAAdFOtdXVb87aOkNzqrxtAUGsPAACYanuQL3ec6/tbt663hDTg69wCAAAArUhuAQAAEDRIbgEAABA0SG4BAAAQNEhuAQAAEDR8ltx+//vf11dffeWrywEAAOAmZHopsPfee6/d9r179+qDDz5wbpYwY8YMsy8NAACAm5zFMAxTC5T16NFDFotFnb2sxWLRlStXzLzsDWloaFB0dLTq6+upcwsAAMxDnVvTuJuvmb4sISMjQ9OmTVNtba1aWlqcj5CQEB09elQtLS3dKrEFAABA8DA9ud29e7cmT56s8ePH64MPPjD75QEAAIAOeeWGsieeeELvvfeennrqKS1ZskSXL1/2xmUAAAAAF16rljB27Fjt379fFotFd955Z6drcDuyevVqWSwWl0dMTIzzvGEYWr16teLi4tS7d2/dc889qqioMPNtAAAAIICYXi3hu3r37q2f/exneu+99/SrX/1KAwcO9Pg1Ro0apY8//th5HBIS4vz32rVr9cILL2jLli267bbbtGbNGt1333364osvFBkZacp7AAAAQODwanLbasaMGV0u/RUaGuoyW9vKMAy99NJLWrVqlWbNmiVJ2rp1q2w2m7Zv364lS5Z0+JpNTU1qampyHjc0NHQpNgAAAHQvpie327Ztc6vfwoUL3ep3/PhxxcXFyWq1ym63Kz8/X8OGDVNlZaVqa2uVnp7u7Gu1WpWWlqaysrJOk9uCggLl5eW5dX0AAAAEDq/UuY2IiFBoaGiH62wtFovOnz9/3dfavXu3Ll++rNtuu01nzpzRmjVr9Pnnn6uiokJffPGF7r77bp06dUpxcXHO5zz22GP66quv9NFHH3X4uu3N3MbHx1PnFgAAmIs6t6Zxt86t6TO3I0eO1JkzZzR//nw9+uijuuOOO7r8WtOmTXP+e8yYMUpJSdHw4cO1detW3XXXXZKuJsrfZRhGm7ZrWa1WWa3WLscFAACA7sn0agkVFRX68MMP1djYqEmTJik5OVkbNmwwZV1rnz59NGbMGB0/fty5Dre2ttalz9mzZ2Wz2W74WgAAAAg8XikFZrfb9dprr6mmpkbLly9XUVGRYmNjNW/ePJflAJ5qamrSZ599ptjYWCUmJiomJkbFxcXO883NzSopKVFqaqoZbwMAAAABxmt1bqWrpcAWLlyovLw8TZgwQYWFhR5t6LBixQqVlJSosrJS+/bt0w9/+EM1NDRo0aJFslgsyszMVH5+vnbu3KmjR4/q4YcfVnh4uObOnevFdwUAAIDuymulwE6dOqWtW7dq8+bNunTpkubPn68NGzaoX79+br/GyZMn9aMf/Ujnzp3ToEGDdNddd+l3v/udhg4dKklauXKlGhsbtWzZMtXV1clut2vPnj3UuAUAALhJmV4toaioSJs3b1ZJSYkyMjL0yCOPaPr06S6bL3Q37t59BwAA4BGqJZjG3XzNK6XAEhISNG/evE5v7Fq+fLmZl70hJLcAAMArSG5N47dSYAkJCbJYLNq+fXuHfSwWS7dKbgEAABAcTE9uT5w4YfZLAgAAAG4xvVrCvn37tHv3bpe2bdu2KTExUYMHD9Zjjz12Q+XAAAAAgI6Yntzm5ubq8OHDzuMjR45o8eLFmjJlirKzs/X++++roKDA7MsCAAAA5ie3n376qSZPnuw8LiwslN1u18aNG5WVlaV169apqKjI7MsCAAAA5ie3dXV1LlUSSkpKNHXqVOfx+PHjVV1dbfZlAQAAAPOTW5vNpsrKSklXt8M9cOCAUlJSnOcdDod69uxp9mUBAAAA86slTJ06VdnZ2Xr22Wf17rvvKjw8XBMnTnSeP3z4sIYPH272ZYMPdfHQXQXz1yZfl4ErmL8uJb42AQ+YntyuWbNGs2bNUlpamiIiIrR161aFhYU5z2/atEnp6elmXxaBJph/EPFDKHAF89elxNcmgJuC6cntoEGDVFpaqvr6ekVERLTZdvftt99WRESE2ZcFACB4BfsvXoCJTE9uW0VHR7fb3r9/f69cb/369XruuedUU1OjUaNG6aWXXnJZDgH4DD+E0F3xtQngJmD6DWX+sGPHDmVmZmrVqlU6ePCgJk6cqGnTpqmqqsrfoQEAAMCHLIZhBPwiLLvdrnHjxmnDhg3OtpEjR2rmzJntbhjR1NTksktafX29EhISVF1draioKJ/EfF1F7c98AwAAdBsP1fvsUg0NDYqPj9eFCxc6XCEgeXFZgq80NzervLxc2dnZLu3p6ekqKytr9zkFBQXKy8tr0x4fH++VGAEAAILSj30/GedwOII7uT137pyuXLnisnGEdLXebm1tbbvPycnJUVZWlvO4paVF58+f14ABA2SxeH9NWutvHt1qphgeYQwDH2MY2Bi/wMcYBj5fj6FhGHI4HIqLi+u0X8Ant62uTUoNw+gwUbVarbJarS5tffv29VZoHYqKiuIDHeAYw8DHGAY2xi/wMYaBz5dj2NmMbauAv6Fs4MCBCgkJaTNLe/bs2TazuQAAAAhuAZ/choWFKSkpScXFxS7txcXFSk1N9VNUAAAA8IegWJaQlZWlBQsWKDk5WSkpKXr99ddVVVWlpUuX+ju0dlmtVuXm5rZZGoHAwRgGPsYwsDF+gY8xDHzddQyDohSYdHUTh7Vr16qmpkajR4/Wiy++qEmTJvk7LAAAAPhQ0CS3N6KlpUWnT59WZGSkT6olAAAAwDPfrZbQo0fHK2uDYlnCjTp9+jQ1bgEAAAJAdXW1hgwZ0uF5kltJkZGRkkStPQAAgG6qta5ua97WEZJb/bVGLrX2AACAWW6GlY7+WNx6vSWkfi0FtnfvXj3wwAOKi4uTxWLRu+++63LeMAytXr1acXFx6t27t+655x5VVFS49GlqatJPfvITDRw4UH369NGMGTN08uRJH74LAAAAdBd+TW4vXbqksWPH6pVXXmn3/Nq1a/XCCy/olVde0e9//3vFxMTovvvuk8PhcPbJzMzUzp07VVhYqE8++UQXL17U/fffrytXrvjqbQAAAKCb6DbVEiwWi3bu3KmZM2dKujprGxcXp8zMTD311FOSrs7S2mw2Pfvss1qyZInq6+s1aNAgvfnmm5o9e7akv94ctmvXLmVkZLh17YaGBkVHR6u+vp5lCQAAwBQsSzCXu/lat92hrLKyUrW1tUpPT3e2Wa1WpaWlqaysTJJUXl6ub775xqVPXFycRo8e7ezTnqamJjU0NLg8AAAAEPi6bXJbW1srSbLZbC7tNpvNea62tlZhYWHq169fh33aU1BQoOjoaOeDMmAAAADBodsmt62uvSPOMIzr3iV3vT45OTmqr693Pqqrq02JFQAAAP7VpeS2paWlw/aqqqobCqhVTEyMJLWZgT179qxzNjcmJkbNzc2qq6vrsE97rFars+wX5b8AAACCh0fJbUNDgx566CH16dNHNptNubm5LlUJ/vznPysxMdGUwBITExUTE6Pi4mJnW3Nzs0pKSpSamipJSkpKUs+ePV361NTU6OjRo84+AAAAuHl4tInDT3/6U3366ad68803deHCBa1Zs0bl5eX65S9/qbCwMElXlwS46+LFi/rjH//oPK6srNShQ4fUv39/JSQkKDMzU/n5+RoxYoRGjBih/Px8hYeHa+7cuZKk6OhoLV68WE8++aQGDBig/v37a8WKFRozZoymTJniyVsDAABAEPAouX333Xe1detW3XPPPZKkBx98UNOnT9cDDzyg9957T9L1d434rv379+vee+91HmdlZUmSFi1apC1btmjlypVqbGzUsmXLVFdXJ7vdrj179rhsu/biiy8qNDRUDz30kBobGzV58mRt2bJFISEhnrw1AAAABAGP6tz26dNHR48edVl64HA4lJGRod69e+u//uu/9Dd/8zcBt4ECdW4BAIDZqHNrLq/UuY2Pj9dnn33m0hYZGak9e/aosbFRDz74YNeiBQAAAEzgUXKbnp6uzZs3t2mPiIjQRx99pF69epkWGAAAAOApj9bc5uXl6fTp0+2ei4yM1Mcff6zy8nJTAgMAAAA85VFy269fvza7gX1XRESE0tLSbjgoAAAAoCs8Sm63bdvmVr+FCxd2KRgAAADgRnhULaFHjx6KiIhQaGhoh/VsLRaLzp8/b1qAvkC1BAAAYDaqJZjL3XzNo5nbkSNH6syZM5o/f74effRR3XHHHTccKAAAAGAWj6olVFRU6MMPP1RjY6MmTZqk5ORkbdiwQQ0NDd6KDwAAAHCbR8mtJNntdr322muqqanR8uXLVVRUpNjYWM2bN09NTU3eiBEAAABwi8fJbavevXtr4cKFysvL04QJE1RYWKjLly+bGRsAAADgkS4lt6dOnVJ+fr5GjBihOXPmaPz48aqoqOi0TBgAAADgbR7dUFZUVKTNmzerpKREGRkZev755zV9+nSFhIR4Kz4AAADAbR6XAktISNC8efNks9k67Ld8+XJTgvMVSoEBAACzUQrMXO7max4lt7feeqss1xkpi8WiL7/80v1IuwGSWwAAYDaSW3N5pc7tiRMnbjQu/H/B/gXvyy92AACAVh7dULZv3z7t3r3bpW3btm1KTEzU4MGD9dhjj1EODAAAAH7jUXKbm5urw4cPO4+PHDmixYsXa8qUKcrOztb777+vgoIC04MEAAAA3OFRcvvpp59q8uTJzuPCwkLZ7XZt3LhRWVlZWrdunYqKikwPEgAAAHCHR8ltXV2dS5WEkpISTZ061Xk8fvx4VVdXmxcdAAAA4AGPklubzabKykpJUnNzsw4cOKCUlBTneYfDoZ49e5obIQAAAOAmj5LbqVOnKjs7W6WlpcrJyVF4eLgmTpzoPH/48GENHz7c9CABAAAAd3hUCmzNmjWaNWuW0tLSFBERoa1btyosLMx5ftOmTUpPTzc9SAAAAMAdHm3i0Kq+vl4RERFttt09f/68IiIiXBLeQOCPTRyocwsAQHAL9p/1UvfcxMGjZQmtoqOj2yS2ktS/f3+/Jbbr169XYmKievXqpaSkJJWWlvolDlxlsQT/AwC8zd/f5/g+ikDUpeS2u9mxY4cyMzO1atUqHTx4UBMnTtS0adNUVVXl79AAAEAH/J1ck7wHpy4tS+hu7Ha7xo0bpw0bNjjbRo4cqZkzZ7a7qURTU5PLTmr19fVKSEhQdXW1z5YlREf75DIAbmL19f6OwLv4Pgr4ny+/zzQ0NCg+Pl4XLlxQdCffADy6oaw7am5uVnl5ubKzs13a09PTVVZW1u5zCgoKlJeX16Y9Pj7eKzECgD+Q/AHwNn98n3E4HMGd3J47d05Xrlxx2VxCulqTt7a2tt3n5OTkKCsry3nc0tKi8+fPa8CAAbL44O8Irb95+HKmGOZiDAMfYxjYGL/AxxgGPl+PoWEYcjgciouL67RfwCe3ra5NSg3D6DBRtVqtslqtLm19+/b1VmgdioqK4gMd4BjDwMcYBjbGL/AxhoHPl2PY2Yxtq4C/oWzgwIEKCQlpM0t79uzZNrO5AAAACG4Bn9yGhYUpKSlJxcXFLu3FxcVKTU31U1QAAADwh6BYlpCVlaUFCxYoOTlZKSkpev3111VVVaWlS5f6O7R2Wa1W5ebmtlkagcDBGAY+xjCwMX6BjzEMfN11DIOiFJh0dROHtWvXqqamRqNHj9aLL76oSZMm+TssAAAA+FDQJLcAAABAwK+5BQAAAFqR3AIAACBokNwCAAAgaJDcAgAAIGiQ3HrJ+vXrlZiYqF69eikpKUmlpaWd9i8pKVFSUpJ69eqlYcOG6Wc/+5mPIkVHPBnDX/7yl7rvvvs0aNAgRUVFKSUlRR999JEPo8W1PP0MtvrNb36j0NBQ3Xnnnd4NENfl6Rg2NTVp1apVGjp0qKxWq4YPH65Nmzb5KFq0x9MxfOuttzR27FiFh4crNjZWjzzyiL7++msfRYvv2rt3rx544AHFxcXJYrHo3Xffve5zuk0uY8B0hYWFRs+ePY2NGzcax44dMx5//HGjT58+xldffdVu/y+//NIIDw83Hn/8cePYsWPGxo0bjZ49exq/+MUvfBw5Wnk6ho8//rjx7LPPGv/3f/9n/OEPfzBycnKMnj17GgcOHPBx5DAMz8ev1YULF4xhw4YZ6enpxtixY30TLNrVlTGcMWOGYbfbjeLiYqOystLYt2+f8Zvf/MaHUeO7PB3D0tJSo0ePHsZ//ud/Gl9++aVRWlpqjBo1ypg5c6aPI4dhGMauXbuMVatWGe+8844hydi5c2en/btTLkNy6wUTJkwwli5d6tL2ve99z8jOzm63/8qVK43vfe97Lm1Lliwx7rrrLq/FiM55Oobtuf322428vDyzQ4Mbujp+s2fPNv7t3/7NyM3NJbn1M0/HcPfu3UZ0dLTx9ddf+yI8uMHTMXzuueeMYcOGubStW7fOGDJkiNdihHvcSW67Uy7DsgSTNTc3q7y8XOnp6S7t6enpKisra/c5v/3tb9v0z8jI0P79+/XNN994LVa0rytjeK2WlhY5HA7179/fGyGiE10dv82bN+tPf/qTcnNzvR0irqMrY/jee+8pOTlZa9eu1S233KLbbrtNK1asUGNjoy9CxjW6Moapqak6efKkdu3aJcMwdObMGf3iF7/Q9OnTfREyblB3ymWCYvvd7uTcuXO6cuWKbDabS7vNZlNtbW27z6mtrW23/7fffqtz584pNjbWa/Gira6M4bWef/55Xbp0SQ899JA3QkQnujJ+x48fV3Z2tkpLSxUayrdFf+vKGH755Zf65JNP1KtXL+3cuVPnzp3TsmXLdP78edbd+kFXxjA1NVVvvfWWZs+erb/85S/69ttvNWPGDL388su+CBk3qDvlMszceonFYnE5NgyjTdv1+rfXDt/xdAxb/fznP9fq1au1Y8cODR482Fvh4TrcHb8rV65o7ty5ysvL02233ear8OAGTz6DLS0tslgseuuttzRhwgT94Ac/0AsvvKAtW7Ywe+tHnozhsWPHtHz5cv37v/+7ysvL9T//8z+qrKzU0qVLfREqTNBdchmmKEw2cOBAhYSEtPnN9OzZs21+o2kVExPTbv/Q0FANGDDAa7GifV0Zw1Y7duzQ4sWL9fbbb2vKlCneDBMd8HT8HA6H9u/fr4MHD+pf/uVfJF1NlAzDUGhoqPbs2aPvf//7PokdV3XlMxgbG6tbbrlF0dHRzraRI0fKMAydPHlSI0aM8GrMcNWVMSwoKNDdd9+tf/3Xf5Uk3XHHHerTp48mTpyoNWvW8FfMbq475TLM3JosLCxMSUlJKi4udmkvLi5Wampqu89JSUlp03/Pnj1KTk5Wz549vRYr2teVMZSuztg+/PDD2r59O2vE/MjT8YuKitKRI0d06NAh52Pp0qX627/9Wx06dEh2u91XoeP/68pn8O6779bp06d18eJFZ9sf/vAH9ejRQ0OGDPFqvGirK2N4+fJl9ejhmpaEhIRI+usMILqvbpXL+PwWtptAa/mTN954wzh27JiRmZlp9OnTxzhx4oRhGIaRnZ1tLFiwwNm/tXzGE088YRw7dsx44403KAXmZ56O4fbt243Q0FDj1VdfNWpqapyPCxcu+Ost3NQ8Hb9rUS3B/zwdQ4fDYQwZMsT44Q9/aFRUVBglJSXGiBEjjH/6p3/y11u46Xk6hps3bzZCQ0ON9evXG3/605+MTz75xEhOTjYmTJjgr7dwU3M4HMbBgweNgwcPGpKMF154wTh48KCzlFt3zmVIbr3k1VdfNYYOHWqEhYUZ48aNM0pKSpznFi1aZKSlpbn0//Wvf2383d/9nREWFmbceuutxoYNG3wcMa7lyRimpaUZkto8Fi1a5PvAYRiG55/B7yK57R48HcPPPvvMmDJlitG7d29jyJAhRlZWlnH58mUfR43v8nQM161bZ9x+++1G7969jdjYWGPevHnGyZMnfRw1DMMwfvWrX3X6c6075zIWw2CuHwAAAMGBNbcAAAAIGiS3AAAACBoktwAAAAgaJLcAAAAIGiS3AAAACBoktwAAAAgaJLcAAAAIGiS3AAAACBoktwAAAAgaJLcAAAAIGiS3AAAACBr/DygT8l5HVumXAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"colors_mapping = {'SM1': 'red', 'SM2': 'blue', 'SM3': 'green', 'SM4': 'orange', 'SM5': 'purple'}\n",
"fig, axs = plt.subplots(5, figsize=(8, 3), sharex=True)\n",
"for idx,selected_subs in enumerate(list(data['Starting material'].unique())):\n",
" axs[idx].hist(data['Conversion [-]'].values[data['Starting material']==selected_subs], \n",
" color = colors_mapping[selected_subs])\n",
" #data['ΔΔG‡ [kJ/mol] with sign'].values[data['Starting material']==selected_subs],\n",
" #alpha = 0.6)\n",
" axs[idx].set_ylabel(f'{selected_subs}')\n",
"#plt.tight_layout()\n",
"#plt.savefig('conv_hist.svg')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "0df3270f",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAATQAAAGsCAYAAABTtFuxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsq0lEQVR4nO3dfVAUZ4I/8O8AMoIDKIIzTAlm4pJaA5o9AUfwBO9EXs645bG3CRFFVzbGtfYolrVcKGoLsDjIktNQliur3mlgrzwkdUkqRr1AqnKELTZeolEM66bYCoZRGFiEzIxKhj3o3x/+6M3I24z00DPN91PVVfbLzPNMF/P1me6nn0clCIIAIiIF8JG7AkREUmGgEZFiMNCISDEYaESkGAw0IlIMBhoRKQYDjYgUw0/uCniCsbEx9PT0ICgoCCqVSu7qENG3CIIAm80GvV4PH5/p22AMNAA9PT2IjIyUuxpENA2TyYTly5dPewwDDUBQUBCARycsODhY5toQ0bdZrVZERkaK39PpMNAA8WdmcHAwA43IQzlzOYiBRl6rXFU+q9eXCqUS1YQ8hax3OT/66CNs27YNer0eKpUK77zzjsN+QRBQVlYGvV6PgIAAbNq0CR0dHQ7H2O12/PM//zPCwsKwaNEifP/738edO3fm8FMQkaeQNdAePHiA5557DsePH590f3V1NY4ePYrjx4/jk08+gU6nw5YtW2Cz2cRjCgoK8Pbbb6OhoQG/+93vcP/+fTz//PMYHR2dq49BRB5C1p+cmZmZyMzMnHSfIAioqalBSUkJsrKyAAB1dXXQarU4d+4cXnnlFVgsFvz7v/87fvvb3yI1NRUA8B//8R+IjIzEBx98gPT09Dn7LEQkP4/tWNvV1QWz2Yy0tDRxm1qtRkpKCtra2gAAV69exV/+8heHY/R6PWJjY8VjJmO322G1Wh0WIvJ+HhtoZrMZAKDVah22a7VacZ/ZbIa/vz+WLFky5TGTqaqqQkhIiLiwDxqRMnhsoI17/FatIAgz3r6d6Zji4mJYLBZxMZlMktSViOTlsYGm0+kAYEJLq7+/X2y16XQ6jIyMYGhoaMpjJqNWq8U+Z+x7RqQcHhtoBoMBOp0Ozc3N4raRkRG0tLQgKSkJABAXF4cFCxY4HNPb24vPP/9cPIaI5g9Z73Lev38ff/rTn8T1rq4uXL9+HaGhoYiKikJBQQEqKysRHR2N6OhoVFZWIjAwEDt27AAAhISEIC8vDz//+c+xdOlShIaG4uDBg1i9erV415OI5g9ZA+3TTz/F3/3d34nrhYWFAIDdu3fjjTfewKFDhzA8PIwDBw5gaGgIRqMRTU1NDs90vf766/Dz88MLL7yA4eFhbN68GW+88QZ8fX3n/PMQkbxUnMbu0cOvISEhsFgsvJ7mRfjo0/zgyvfTY6+hERG5ioFGRIrBQCMixWCgEZFiMNCISDEYaESkGAw0IlKMWXesvX79Ojo7OxEREYENGzZwGjgiko1LLbQdO3aIo8Xev38f6enpWLt2LXbu3Ink5GSsW7cOX3/9tTvqSUQ0I5cC7fz58xgeHgYAlJeXo7OzE59++insdjva29vx4MEDHD582C0VJSKaiUuB9u2npC5fvoxXX30Va9euBQDExsbiX//1X/Hee+9JW0MiIie5fFNg/BpZX18fYmNjHfbFxMRwsEQiko3LNwV++ctfIjAwED4+PjCbzXj22WfFfQMDA9BoNJJWkIjIWS4FWnJyMr744gsAwLPPPouuri6H/ZcuXUJMTIx0tSMicoFLgfY///M/0+7PycnBj370o9nUh4joiUk6wOPTTz8t5dsREbnEpUCrr6936rjc3NwnqgwR0Wy4FGh79uyBRqOBn58fphroVqVSMdCISBYuBdqqVavQ19eHnTt3Yu/evVizZo276kVE5DKX+qF1dHTg4sWLGB4eRnJyMuLj41FbWwur1equ+hEROc3ljrVGoxEnT55Eb28v8vPz0djYiIiICOTk5MBut7ujjkRETnni4YMCAgKQm5uL8vJyrFu3Dg0NDXj48KGUdSMicskTBdrdu3fFCYCzs7ORkJCAjo4OLFmyROr6ERE5zaWbAo2NjTh79ixaWlqQnp6OI0eOYOvWrZzUl4g8gkuBlp2djaioKPzsZz+DVqvF7du38etf/3rCcfn5+ZJVkIjIWS4FWlRUFFQqFc6dOzflMSqVioFGRLJwKdBu377tpmoQEc2eSzcFrly5gsuXLztsq6+vh8FgwLJly7Bv3z523SAi2bgUaKWlpWhvbxfXb968iby8PKSmpqKoqAgXLlxAVVWV5JUkInKGS4F248YNbN68WVxvaGiA0WjE6dOnUVhYiGPHjqGxsVHyShIROcOlQBsaGoJWqxXXW1pakJGRIa4nJCRwCG4iko1LNwW0Wi26uroQGRmJkZERXLt2DeXl5eJ+m82GBQsWSF5JUqZyVfnMBxG5wKVAy8jIQFFREX71q1/hnXfeQWBgIDZu3Cjub29vx8qVKyWvJJE7zDZQS4VSiWpCUnEp0CoqKpCVlYWUlBRoNBrU1dXB399f3H/mzBmkpaVJXkkiIme4FGjh4eFobW2FxWKBRqOZ8MjTm2++yVmfiEg2TzSnQEhIyKTbQ0NDZ1UZIqLZeOLhg4iIPA0DjYgUg4FGRIrBQCMixWCgEZFiMNCISDEYaESkGAw0IlIMBhoRKQYDjYgUg4FGRIrxRM9yEgEcz4w8j2JaaCdOnIDBYMDChQsRFxeH1tZWuatERHNMES208+fPo6CgACdOnMCGDRtw8uRJZGZm4g9/+AOioqLkrh4pFAeI9DyKaKEdPXoUeXl5+PGPf4xVq1ahpqYGkZGRqK2tlbtqRDSHvL6FNjIygqtXr6KoqMhhe1paGtra2iZ9jd1ud5g/1GKxAACsVqv7KuqBqkI45aCcvP3vbbZ/P8WWYqeOGz9PgiDMeKzXB9rAwABGR0cdZqMCHk3oYjabJ31NVVWVw+Qu4yIjI91SR6LJvBryqtxVkJWrn99ms005uOw4rw+0cSqVymFdEIQJ28YVFxejsLBQXB8bG8Pg4CCWLl065Ws8kdVqRWRkJEwmE4KDg+WujsfgeZmaN54bQRBgs9mg1+tnPNbrAy0sLAy+vr4TWmP9/f0TWm3j1Go11Gq1w7bFixe7q4puFxwc7DV/nHOJ52Vq3nZuZmqZjfP6mwL+/v6Ii4tDc3Ozw/bm5mYkJSXJVCsikoPXt9AAoLCwELt27UJ8fDwSExNx6tQpdHd3Y//+/XJXjYjmkCIC7cUXX8S9e/dw+PBh9Pb2IjY2FpcuXcKKFSvkrppbqdVqlJaWTvj5PN/xvExN6edGJThzL5SIyAt4/TU0IqJxDDQiUgwGGhEpBgONiBSDgUZEiqGIbhuzNTY2hp6eHgQFBXnVo09E88G3H33y8Zm+DcZAA9DT08MH04k8nMlkwvLly6c9hoEGICgoCAC86oFdovli/IH68e/pdBho+OtIHd72wC7RfOLM5SAGGslOVS79dUuhlA/AzEe8y0lEisFAIyLFYKARkWIw0IhIMTw60MrKyqBSqRwWnU4n7hcEAWVlZdDr9QgICMCmTZvQ0dEhY42JSE4ef5czJiYGH3zwgbju6+sr/ru6uhpHjx7FG2+8gWeeeQYVFRXYsmULvvjiC6f6rJBy8c7p/OTRLTQA8PPzg06nE5fw8HAAj1pnNTU1KCkpQVZWFmJjY1FXV4eHDx/i3LlzMteaiOTg8YHW2dkJvV4Pg8GA7OxsfPnllwCArq4umM1mpKWliceq1WqkpKRMOcHwOLvdDqvV6rAQkffz6EAzGo2or6/H+++/j9OnT8NsNiMpKQn37t0Tp61zZYLhcVVVVQgJCREXPsdJpAweHWiZmZn4wQ9+gNWrVyM1NRUXL14EANTV1YnHuDLB8Lji4mJYLBZxMZlM0leeiOacRwfa4xYtWoTVq1ejs7NTvNvpygTD49RqtfjcJp/fJFIOrwo0u92OW7duISIiAgaDATqdzmGC4ZGREbS0tHCCYaJ5yqO7bRw8eBDbtm1DVFQU+vv7UVFRAavVit27d0OlUqGgoACVlZWIjo5GdHQ0KisrERgYiB07dshddSKSgUcH2p07d/DSSy9hYGAA4eHhWL9+PT7++GNxAuFDhw5heHgYBw4cwNDQEIxGI5qamtgHjWie4kTDeDSAXEhICCwWC6+nycAdnWDdgR1r5eHK99OrrqEREU2HgUZEisFAIyLFcEugCYKArq4u/N///R+AR90pzp8/j/r6egwMDLijSCIi6e9yfvHFF0hPT4fJZMLTTz+NpqYm/PCHP8Qf//hHCIKAwMBAtLW1ITo6WuqiiWiek7yF9otf/ALPPfccrl+/jueffx7PP/88li9fjqGhIQwNDWHDhg04fPiw1MUSEUnfbWPZsmVoamrC9773PTx48ABBQUH46KOP8Ld/+7cAgN///vfIzs7GV199JWWxs8JuG/Jitw2ajqzdNu7fv4/Q0FAAj569XLRoESIiIsT9y5cvR19fn9TFEhFJH2h6vR7d3d3ienV1NZYtWyau//nPf8aSJUukLpaISPpAS01NxR//+Edx/Sc/+YnDo0hNTU1Yu3at1MUSEc39o09dXV1YuHChw89QufEamrx4DY2m48r3c84fTjcYDHNdJBHNE5IHWn19vVPH5ebmSl00Ec1zkgfanj17oNFo4Ofnh6l+zapUKgYaEUlO8kBbtWoV+vr6sHPnTuzduxdr1qyRuggioklJfpezo6MDFy9exPDwMJKTkxEfH4/a2lpOFUdEbueWh9ONRiNOnjyJ3t5e5Ofno7GxEREREcjJyYHdbndHkURE7h0+KCAgALm5uSgvL8e6devQ0NCAhw8furNIIprH3BZod+/eFScwyc7ORkJCAjo6OviUABG5jeQ3BRobG3H27Fm0tLQgPT0dR44cwdatW+Hr6yt1UUREDiR/UsDHxwdRUVHIycmZdsLf/Px8KYudFT4pIC8+KUDTkfVJgaioKKhUKpw7d27KY1QqlUcFGhEpg+SBdvv2banfksgjuKMlyVaftCS/KXDlyhVcvnzZYVt9fT0MBgOWLVuGffv2sesGEbmF5IFWWlqK9vZ2cf3mzZvIy8tDamoqioqKcOHCBVRVVUldLBGR9IF248YNbN68WVxvaGiA0WjE6dOnUVhYiGPHjqGxsVHqYomIpA+0oaEhh7ubLS0tyMjIENcTEhJgMpmkLpaISPpA02q16OrqAvBoPs5r164hMTFR3G+z2bBgwQKpiyUikj7QMjIyUFRUhNbWVhQXFyMwMBAbN24U97e3t2PlypVSF0tEJH23jYqKCmRlZSElJQUajQZ1dXXw9/cX9585cwZpaWlSF0vkldgVRFqSB1p4eDhaW1thsVig0WgmPPL05ptvQqPRSF0sEZH75hQICQmZdPv4nJ3kft7ySBGRVNw6fBAR0VxioBGRYjDQiEgxGGhEpBgMNCJSDAYaESkGA42IFIOBRkSKwUAjIsVw25MCSid1L/z5/PwdkVTYQiMixWCgEZFiKOYn54kTJ/Daa6+ht7cXMTExqKmpcRiHzdPxQXKi2VNEoJ0/fx4FBQU4ceIENmzYgJMnTyIzMxN/+MMfEBUVJXf1iLyet4zbpohAO3r0KPLy8vDjH/8YAFBTU4P3338ftbW1k84wZbfbHabSs1gsAB7N0Oy0b2ZXZyJ3cenv2Flu+Ht3tp7jxwmCEwEoeDm73S74+voKb731lsP2/Px8ITk5edLXlJaWCgC4cOHiRYvJZJoxD7y+hTYwMIDR0VGHmaaAR5O1mM3mSV9TXFyMwsJCcX1sbAyDg4NYunQpVCrvuZZltVoRGRkJk8mE4OBguavjMXhepuaN50YQBNhsNuj1+hmP9fpAG/d4EAmCMGU4qdVqqNVqh22LFy92V9XcLjg42Gv+OOcSz8vUvO3cTDUC9uO8vttGWFgYfH19J7TG+vv7J7TaiEjZvD7Q/P39ERcXh+bmZoftzc3NSEpKkqlWRCQHRfzkLCwsxK5duxAfH4/ExEScOnUK3d3d2L9/v9xVcyu1Wo3S0tIJP5/nO56XqSn93KgEwZl7oZ7vxIkTqK6uRm9vL2JjY/H6668jOTlZ7moR0RxSTKAREXn9NTQionEMNCJSDAYaESkGA42IFIOBRkSKoYh+aLM1NjaGnp4eBAUFedWznETzwbef5fTxmb4NxkAD0NPTg8jISLmrQUTTMJlMWL58+bTHMNAABAUFAYBXjUBANF+MjxAy/j2dDgMNfx2pw9tGICCaT5y5HMRAI2Vyx7VQPlTj8XiXk4gUg4FGRIrBQCMixWCgEZFiMNCISDEYaESkGAw0IlIMBhoRKQYDjYgUg4FGRIrBQCMixWCgEZFiMNCISDEYaESkGAw0IlIMBhoRKQYDjYgUY84DbWhoCPX19XNdLBHNA3MeaN3d3fjRj37k1LFlZWVQqVQOi06nE/cLgoCysjLo9XoEBARg06ZN6OjocFfVicjDST6ngNVqnXa/zWZz6f1iYmLwwQcfiOu+vr7iv6urq3H06FG88cYbeOaZZ1BRUYEtW7bgiy++cGqGGCJSFskDbfHixdPOziIIgkuT+fr5+Tm0yr79PjU1NSgpKUFWVhYAoK6uDlqtFufOncMrr7wy5Xva7XbY7XZxfaYQJiLvIHmgBQUFoaSkBEajcdL9nZ2d04bNZMfr9Xqo1WoYjUZUVlbi6aefRldXF8xmM9LS0sRj1Wo1UlJS0NbWNm0ZVVVVKC8vd/5DEZFXkDzQ1q5dCwBISUmZdP/ixYshODkdmNFoRH19PZ555hn09fWhoqICSUlJ6OjogNlsBgBotVqH12i1Wnz11VfTvm9xcTEKCwvF9fGJTInIu0keaDt27MDw8PCU+3U6HUpLS516r8zMTPHfq1evRmJiIlauXIm6ujqsX78ewMTJR535SatWq6FWq52qAxF5D8kD7eWXX552v1ardTrQHrdo0SKsXr0anZ2d2L59OwDAbDYjIiJCPKa/v39Cq42I5gev6lhrt9tx69YtREREwGAwQKfTobm5Wdw/MjKClpYWJCUlyVhLIpKL5C00ZzvN5ubmznjMwYMHsW3bNkRFRaG/vx8VFRWwWq3YvXs3VCoVCgoKUFlZiejoaERHR6OyshKBgYHYsWPHbD8GEXkhyQNtz5490Gg08PPzm/Liv0qlcirQ7ty5g5deegkDAwMIDw/H+vXr8fHHH2PFihUAgEOHDmF4eBgHDhzA0NAQjEYjmpqa2AeNaJ5SCc7ecnRSTEwM+vr6sHPnTuzduxdr1qyR8u3dwmq1IiQkBBaLBcHBwXJXh6TgQl9Hp0n7VSEnufL9lPwaWkdHBy5evIjh4WEkJycjPj4etbW17LxKRG7nlpsCRqMRJ0+eRG9vL/Lz89HY2IiIiAjk5OQ49NAnIpKSW+9yBgQEIDc3F+Xl5Vi3bh0aGhrw8OFDdxZJRPOY2wLt7t274h3I7OxsJCQkoKOjA0uWLHFXkUQ0z0l+l7OxsRFnz55FS0sL0tPTceTIEWzdutVhlAwiIneQ/C6nj48PoqKikJOTM22P/fz8fCmLnRXe5ZSZO+5IugPvcsrCle+n5IH21FNPzfgspUqlwpdffillsbPCQJMZA42m4cr3U/KfnLdv35b6LYmInCL5TYErV67g8uXLDtvq6+thMBiwbNky7Nu3j103iMgtJA+00tJStLe3i+s3b95EXl4eUlNTUVRUhAsXLqCqqkrqYomIpA+0GzduYPPmzeJ6Q0MDjEYjTp8+jcLCQhw7dgyNjY1SF0tEJH2gDQ0NOdzdbGlpQUZGhriekJAAk8kkdbFERNIHmlarRVdXF4BH45Ndu3YNiYmJ4n6bzYYFCxZIXSwRkfSBlpGRgaKiIrS2tqK4uBiBgYHYuHGjuL+9vR0rV66UulgiIum7bVRUVCArKwspKSnQaDSoq6uDv7+/uP/MmTMOMzUREUlF8o614ywWCzQazYRHngYHB6HRaBxCTm7sWCszdqylacjasXZcSEjIpNtDQ0PdVSSRe3HQSI/nVZOkEBFNh4FGRIrBQCMixWCgEZFiMNCISDHcdpeTFMpbulh4C945lRRbaESkGAw0IlIM/uRUMv48pHmGgUZEM/OSa338yUlEisEWGpHSzONLDYppoZ04cQIGgwELFy5EXFwcWltb3VugSiXtQkSzpohAO3/+PAoKClBSUoLPPvsMGzduRGZmJrq7u+WuGhHNIbeNhzaXjEYj1q5di9raWnHbqlWrsH37dqdmmHqi8dDYqiKaHSejxyPGQ5srIyMjuHr1KoqKihy2p6Wloa2tbdLX2O12h7lBLRYLgEcnjojmiJPft/HvpTNtL68PtIGBAYyOjjrMNAU8mqzFbDZP+pqqqiqUl5dP2B4ZGemWOhLRJKYYBHYqNpttyoFjx3l9oI1TPfYTUBCECdvGFRcXo7CwUFwfGxvD4OAgli5dOuVrPJHVakVkZCRMJhOHDv8WnpepeeO5EQQBNpsNer1+xmO9PtDCwsLg6+s7oTXW398/odU2Tq1WQ61WO2xbvHixu6rodsHBwV7zxzmXeF6m5m3nZqaW2Tivv8vp7++PuLg4NDc3O2xvbm5GUlKSTLUiIjl4fQsNAAoLC7Fr1y7Ex8cjMTERp06dQnd3N/bv3y931YhoDiki0F588UXcu3cPhw8fRm9vL2JjY3Hp0iWsWLFC7qq5lVqtRmlp6YSfz/Mdz8vUlH5uFNEPjYgIUMA1NCKicQw0IlIMBhoRKQYDjYgUg4FGRIqhiG4bszU2Noaenh4EBQV51aNPRPPBtx998vGZvg3GQAPQ09PDB9OJPJzJZMLy5cunPYaBBiAoKAgAvOqBXaL5YvyB+vHv6XQYaPjrSB3e9sAu0XzizOUgBhopwzknr33u4IMxSsa7nESkGAw0IlIMBhoRKQYDjYgUg4FGRIrBQCMixWCgEZFiMNCISDEYaESkGAw0IlIMBhoRKQYDjYgUg4FGRIrBQCMixWCgEZFiMNCISDEYaESkGAw0IlKMOQu0v//7v8dXX301V8UR0Twk+ZwC77777qTbP/roI7z33nvidHHf//73pS6aiOY5lSAIks4a4ePjA5VKheneVqVSYXR0VMpiZ8VqtSIkJAQWi4WzPnkrTpKiWK58PyX/yZmeno7MzEyYzWaMjY2Ji6+vLz7//HOMjY05HWZlZWVQqVQOi06nE/cLgoCysjLo9XoEBARg06ZN6OjokPojEZGXkDzQLl++jM2bNyMhIQHvvfferN8vJiYGvb294nLz5k1xX3V1NY4ePYrjx4/jk08+gU6nw5YtW2Cz2WZdLhF5H7fcFPjZz36Gd999F7/4xS/wyiuv4OHDh0/8Xn5+ftDpdOISHh4O4FHrrKamBiUlJcjKykJsbCzq6urw8OFDnDt3TqqPQkRexG13OZ977jl8+umnUKlU+N73vjftNbXpdHZ2Qq/Xw2AwIDs7G19++SUAoKurC2azGWlpaeKxarUaKSkpaGtrm/Y97XY7rFarw0JE3s+tM6cHBATgN7/5Dd599118+OGHCAsLc+n1RqMR9fX1eOaZZ9DX14eKigokJSWho6MDZrMZAKDVah1eo9VqZ+weUlVVhfLyctc+DBF5PMnvcrrTgwcPsHLlShw6dAjr16/Hhg0b0NPTg4iICPGYl19+GSaTCf/93/895fvY7XbY7XZx3Wq1IjIyknc5vRnvciqWK3c5JW+h1dfXO3Vcbm6uy++9aNEirF69Gp2dndi+fTsAwGw2OwRaf3//hFbb49RqNdRqtcvlE5FnkzzQ9uzZA41GAz8/vymvm6lUqicKNLvdjlu3bmHjxo0wGAzQ6XRobm7G3/zN3wAARkZG0NLSgl/96lez+gxE5J0kD7RVq1ahr68PO3fuxN69e7FmzZonfq+DBw9i27ZtiIqKQn9/PyoqKmC1WrF7926oVCoUFBSgsrIS0dHRiI6ORmVlJQIDA7Fjxw4JPxEReQvJA62jowNXrlzBmTNnkJycjO985zvIy8tDTk6Oy9en7ty5g5deegkDAwMIDw/H+vXr8fHHH2PFihUAgEOHDmF4eBgHDhzA0NAQjEYjmpqaEBQUJPXHIiIv4NabAsPDw3jzzTdx9uxZ/O///i+2b9+OM2fOeNz1Kz76pAC8KaBYsj769G0BAQHIzc1FeXk51q1bh4aGhll1siUimo7bAu3u3bvi9a3s7GwkJCSgo6MDS5YscVeRRDTPSX4NrbGxEWfPnkVLSwvS09Nx5MgRbN26Fb6+vlIXRUTkwC3DB0VFRSEnJ2fa/mD5+flSFjsrvIamALyGpliydqyNioqCSqWa9gFxlUrlUYFGRMogeaDdvn1b6rek+crZVpe73pOtOa8j+U2BK1eu4PLlyw7b6uvrYTAYsGzZMuzbt8/hOUoiIqlIHmilpaVob28X12/evIm8vDykpqaiqKgIFy5cQFVVldTFEhFJH2g3btzA5s2bxfWGhgYYjUacPn0ahYWFOHbsGBobG6UulohI+kAbGhpyuLvZ0tKCjIwMcT0hIQEmk0nqYomIpA80rVaLrq4uAI9Gv7h27RoSExPF/TabDQsWLJC6WCIi6QMtIyMDRUVFaG1tRXFxMQIDA7Fx40Zxf3t7O1auXCl1sURE0nfbqKioQFZWFlJSUqDRaFBXVwd/f39x/5kzZxzmASAikorkgRYeHo7W1lZYLBZoNJoJjzy9+eab0Gg0UhdLROS+SVJCQkIm3R4aGuquIolonnPr8EFERHOJgUZEisFAIyLFYKARkWK4deZ0Iq/GkTm8DltoRKQYDDQiUgwGGhEpBgONiBSDgUZEisG7nDQ9d8ym5I65AojAFhoRKYhiWmgnTpzAa6+9ht7eXsTExKCmpsZhHDZyM7a6yAMoooV2/vx5FBQUoKSkBJ999hk2btyIzMxMdHd3y101IppDks+cLgej0Yi1a9eitrZW3LZq1Sps377dqRmmOHP6NNjykg+fPgAg88zpc21kZARXr15FUVGRw/a0tDS0tbVN+hq73e4wN6jFYgHw6MTRYx7KXYF57N+c/M/kBYt76yGz8e+lM20vrw+0gYEBjI6OOsw0BTyarMVsNk/6mqqqKpSXl0/YHhkZ6ZY6ErnVy5MPpqo0NpttyoFjx3l9oI1TqRz/NxMEYcK2ccXFxSgsLBTXx8bGMDg4iKVLl075Gk9ktVoRGRkJk8nEn8rfwvMyNW88N4IgwGazQa/Xz3is1wdaWFgYfH19J7TG+vv7J7TaxqnVaqjVaodtixcvdlcV3S44ONhr/jjnEs/L1Lzt3MzUMhvn9Xc5/f39ERcXh+bmZoftzc3NSEpKkqlWRCQHr2+hAUBhYSF27dqF+Ph4JCYm4tSpU+ju7sb+/fvlrhoRzSFFBNqLL76Ie/fu4fDhw+jt7UVsbCwuXbqEFStWyF01t1Kr1SgtLZ3w83m+43mZmtLPjSL6oRERAQq4hkZENI6BRkSKwUAjIsVgoBGRYjDQiEgxFNFtY7bGxsbQ09ODoKAgr3r0iWg++PajTz4+07fBGGgAenp6+GA6kYczmUxYvnz5tMcw0AAEBQUBgFc9sEs0X4w/UD/+PZ0OAw1/HanD2x7YJZpPnLkcxEAjRXLHpVA+U+P5eJeTiBSDgUZEisFAIyLFYKARkWIw0IhIMRhoRKQYDDQiUgwGGhEpBgONiBSDgUZEisFAIyLF8OhAKysrg0qlclh0Op24XxAElJWVQa/XIyAgAJs2bUJHR4eMNSYiOXl0oAFATEwMent7xeXmzZvivurqahw9ehTHjx/HJ598Ap1Ohy1btsBms8lYYyKSi8cHmp+fH3Q6nbiEh4cDeNQ6q6mpQUlJCbKyshAbG4u6ujo8fPgQ586dk7nWRCQHjw+0zs5O6PV6GAwGZGdn48svvwQAdHV1wWw2Iy0tTTxWrVYjJSUFbW1t076n3W6H1Wp1WIjI+3l0oBmNRtTX1+P999/H6dOnYTabkZSUhHv37sFsNgMAtFqtw2u0Wq24bypVVVUICQkRFw6/TaQMHh1omZmZ+MEPfoDVq1cjNTUVFy9eBADU1dWJxzw+iqUgCDOObFlcXAyLxSIuJpNJ+soT0Zzz6EB73KJFi7B69Wp0dnaKdzsfb4319/dPaLU9Tq1Wi8Ntc9htIuVwW6CNjY1Nub27u/uJ3tNut+PWrVuIiIiAwWCATqdDc3OzuH9kZAQtLS1ISkp6ovcnIu8meaBZrVa88MILWLRoEbRaLUpLSzE6Oiru//Of/wyDweDUex08eBAtLS3o6urClStX8E//9E+wWq3YvXs3VCoVCgoKUFlZibfffhuff/459uzZg8DAQOzYsUPqj0VEXkDySVJ++ctf4saNG/jtb3+Lr7/+GhUVFbh69Sreeust+Pv7A3h0ncsZd+7cwUsvvYSBgQGEh4dj/fr1+Pjjj7FixQoAwKFDhzA8PIwDBw5gaGgIRqMRTU1NTk13RUTKoxKcTRcnrVixAnV1ddi0aRMA4N69e9i6dStCQkLw7rvv4uuvv4Zer3dotcnNarUiJCQEFouF19MUgrM+KYcr30/Jf3IODAyILSgAWLp0KZqbm2Gz2fAP//APePjwodRFEhEBcEOgRUZG4tatWw7bgoKC0NTUhOHhYfzjP/6j1EUSEQFwQ6ClpaXh7NmzE7ZrNBq8//77WLhwodRFEhEBcMNNgfLycvT09Ey6LygoCB988AGuXr0qdbHkxdxxvYvmJ8kDbcmSJViyZMmU+zUaDVJSUqQulohI+kCrr6936rjc3FypiyaieU7ybhs+Pj7QaDTw8/Obsr+ZSqXC4OCglMXOCrttyMtbfnKy24Y8XPl+St5CW7VqFfr6+rBz507s3bsXa9askboIIqJJSX6Xs6OjAxcvXsTw8DCSk5MRHx+P2tpajjlGRG7nlofTjUYjTp48id7eXuTn56OxsRERERHIycmB3W53R5FERO4dPiggIAC5ubkoLy/HunXr0NDQwCcFiMht3BZod+/eRWVlJaKjo5GdnY2EhAR0dHRM26WDiGg2JL8p0NjYiLNnz6KlpQXp6ek4cuQItm7dCl9fX6mLIiJy4JZuG1FRUcjJyZl25Nj8/Hwpi50VdtuQF7tt0HRc+X5KHmhPPfXUjGP6q1QqcfYmT8BAkxcDjaYjaz+027dvS/2WREROkfymwJUrV3D58mWHbfX19TAYDFi2bBn27dvHrhtE5BaSB1ppaSna29vF9Zs3byIvLw+pqakoKirChQsXUFVVJXWxRETSB9qNGzewefNmcb2hoQFGoxGnT59GYWEhjh07hsbGRqmLJSKSPtCGhoYc7m62tLQgIyNDXE9ISODEvkTkFpIHmlarRVdXF4BH82Reu3YNiYmJ4n6bzYYFCxZIXSyR26lU0i8kLckDLSMjA0VFRWhtbUVxcTECAwOxceNGcX97eztWrlwpdbFERNJ326ioqEBWVhZSUlKg0WhQV1cnzscJAGfOnEFaWprUxRIRSd+xdpzFYoFGo5nwyNPg4CA0Go1DyMmNHWvlNZ9/erGz7sxk7Vg7LiQkZNLtoaGh7iqSiOY5twWa0kndquD/1ESz59bx0IiI5hIDjYgUg4FGRIrBa2jkkvl8R5I8HwONiGbkjv/I3HEjjD85iUgx2EJTMP48pPmGLTQiUgy20Ihk5C3XprwFW2hEpBhsoREpzHy+dqqYFtqJEydgMBiwcOFCxMXFobW1Ve4quYSDBxLNniIC7fz58ygoKEBJSQk+++wzbNy4EZmZmeju7pa7akQ0h9w2HtpcMhqNWLt2LWpra8Vtq1atwvbt2yedYcputztMpWexWBAVFQWTyeT0eGhTjI5ERE6yWJw7zmq1IjIyEl9//fWUw5KJBC9nt9sFX19f4a233nLYnp+fLyQnJ0/6mtLSUgEAFy5cvGgxmUwz5oHX3xQYGBjA6Oiow0xTwKPJWsxm86SvKS4uRmFhobg+NjaGwcFBLF26FCovuvg0/j+XKy3L+YDnZWreeG4EQYDNZoNer5/xWK8PtHGPB5EgCFOGk1qthlqtdti2ePFid1XN7YKDg73mj3Mu8bxMzdvOzYw/Nf8/r78pEBYWBl9f3wmtsf7+/gmtNiJSNq8PNH9/f8TFxaG5udlhe3NzM5KSkmSqFRHJQRE/OQsLC7Fr1y7Ex8cjMTERp06dQnd3N/bv3y931dxKrVajtLR0ws/n+Y7nZWpKPzeK6LYBPOpYW11djd7eXsTGxuL1119HcnKy3NUiojmkmEAjIvL6a2hEROMYaESkGAw0IlIMBhoRKQYDzUv9y7/8C5KSkhAYGDjlUw7d3d3Ytm0bFi1ahLCwMOTn52NkZGRuKyoDbx9KarY++ugjbNu2DXq9HiqVCu+8847DfkEQUFZWBr1ej4CAAGzatAkdHR3yVFZiDDQvNTIygh/+8If4yU9+Mun+0dFRbN26FQ8ePMDvfvc7NDQ04L/+67/w85//fI5rOrc4lBTw4MEDPPfcczh+/Pik+6urq3H06FEcP34cn3zyCXQ6HbZs2QKbzTbHNXWD2Y11QXI7e/asEBISMmH7pUuXBB8fH+Hu3bvitv/8z/8U1Gq1YLFY5rCGc2vdunXC/v37HbZ997vfFYqKimSqkbwACG+//ba4PjY2Juh0OuHVV18Vt33zzTdCSEiI8Jvf/EaGGkqLLTSF+v3vf4/Y2FiHEQrS09Nht9tx9epVGWvmPiMjI7h69SrS0tIctqelpaGtrU2mWnmWrq4umM1mh3OkVquRkpKiiHPEQFMos9k84eH8JUuWwN/ff8phlbzdkwwlNd+MnwelniMGmgcpKyuDSqWadvn000+dfr/Jhk8SphlWSSlcGUpqvlLqOVLEw+lK8dOf/hTZ2dnTHvPUU0859V46nQ5Xrlxx2DY0NIS//OUvih1WiUNJzUyn0wF41FKLiIgQtyvlHLGF5kHCwsLw3e9+d9pl4cKFTr1XYmIiPv/8c/T29orbmpqaoFarERcX566PICsOJTUzg8EAnU7ncI5GRkbQ0tKiiHPEFpqX6u7uxuDgILq7uzE6Oorr168DAL7zne9Ao9EgLS0Nzz77LHbt2oXXXnsNg4ODOHjwIF5++WWvGqnUVfN1KKlvu3//Pv70pz+J611dXbh+/TpCQ0MRFRWFgoICVFZWIjo6GtHR0aisrERgYCB27NghY60lIvNdVnpCu3fvnnQiiQ8//FA85quvvhK2bt0qBAQECKGhocJPf/pT4ZtvvpGv0nPk17/+tbBixQrB399fWLt2rdDS0iJ3lebUhx9+OOnfxu7duwVBeNR1o7S0VNDpdIJarRaSk5OFmzdvyltpiXD4ICJSDF5DIyLFYKARkWIw0IhIMRhoRKQYDDQiUgwGGhEpBgONiBSDgUZEisFAIyLFYKARkWIw0IhIMf4fnehkLAYypgsAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"colors_mapping = {'SM1': 'red', 'SM2': 'blue', 'SM3': 'green', 'SM4': 'orange', 'SM5': 'purple'}\n",
"fig, axs = plt.subplots(5, figsize=(3, 5), sharex=True)\n",
"for idx,selected_subs in enumerate(list(data['Starting material'].unique())):\n",
" axs[idx].hist(data['ΔΔG‡ [kJ/mol] with sign'].values[data['Starting material']==selected_subs], \n",
" color = colors_mapping[selected_subs])\n",
" #data['ΔΔG‡ [kJ/mol] with sign'].values[data['Starting material']==selected_subs],\n",
" #alpha = 0.6)\n",
" axs[idx].set_ylabel(f'{selected_subs}')\n",
" axs[idx].set_xlim([-16.5,16.5])\n",
"#plt.tight_layout()\n",
"#plt.savefig('ddg_hist.svg')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "81436cba",
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
" \n",
" \n",
" Starting material \n",
" SM1 \n",
" SM2 \n",
" SM3 \n",
" SM4 \n",
" SM5 \n",
" \n",
" \n",
" Ligand# \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" L1 \n",
" 1.790000 \n",
" -0.120000 \n",
" 2.260000 \n",
" 1.600000 \n",
" 3.790000 \n",
" \n",
" \n",
" L10 \n",
" -0.010000 \n",
" 1.970000 \n",
" -0.560000 \n",
" 1.240000 \n",
" 0.170000 \n",
" \n",
" \n",
" L100 \n",
" 0.140000 \n",
" 1.980000 \n",
" -1.400000 \n",
" -2.040000 \n",
" -5.010000 \n",
" \n",
" \n",
" L101 \n",
" -0.430000 \n",
" -0.130000 \n",
" -0.770000 \n",
" 0.270000 \n",
" 0.090000 \n",
" \n",
" \n",
" L102 \n",
" -6.000000 \n",
" -6.320000 \n",
" -7.630000 \n",
" -0.760000 \n",
" -3.650000 \n",
" \n",
" \n",
" L103 \n",
" 0.000000 \n",
" -0.250000 \n",
" -1.390000 \n",
" 0.380000 \n",
" -5.430000 \n",
" \n",
" \n",
" L104 \n",
" -5.690000 \n",
" -8.370000 \n",
" -2.420000 \n",
" 1.260000 \n",
" -1.340000 \n",
" \n",
" \n",
" L105 \n",
" 0.000000 \n",
" -4.900000 \n",
" -1.030000 \n",
" 1.550000 \n",
" 0.630000 \n",
" \n",
" \n",
" L106 \n",
" 6.550000 \n",
" 6.960000 \n",
" 5.890000 \n",
" 0.610000 \n",
" 0.800000 \n",
" \n",
" \n",
" L107 \n",
" 0.000000 \n",
" -0.300000 \n",
" 0.870000 \n",
" 0.220000 \n",
" -0.140000 \n",
" \n",
" \n",
" L108 \n",
" -6.090000 \n",
" -5.450000 \n",
" -6.930000 \n",
" 0.480000 \n",
" -0.400000 \n",
" \n",
" \n",
" L109 \n",
" 0.000000 \n",
" 2.970000 \n",
" -0.960000 \n",
" -0.010000 \n",
" 0.760000 \n",
" \n",
" \n",
" L11 \n",
" -0.750000 \n",
" 2.960000 \n",
" -0.260000 \n",
" 1.510000 \n",
" -1.380000 \n",
" \n",
" \n",
" L110 \n",
" -14.850000 \n",
" -14.850000 \n",
" -12.470000 \n",
" 1.270000 \n",
" -1.340000 \n",
" \n",
" \n",
" L111 \n",
" 14.850000 \n",
" 14.850000 \n",
" 8.660000 \n",
" 0.310000 \n",
" 0.270000 \n",
" \n",
" \n",
" L112 \n",
" -0.120000 \n",
" 0.570000 \n",
" -0.340000 \n",
" 1.230000 \n",
" -0.590000 \n",
" \n",
" \n",
" L113 \n",
" 11.950000 \n",
" 14.850000 \n",
" 7.910000 \n",
" -0.670000 \n",
" -2.990000 \n",
" \n",
" \n",
" L114 \n",
" 0.000000 \n",
" 4.330000 \n",
" 1.680000 \n",
" -0.440000 \n",
" -0.510000 \n",
" \n",
" \n",
" L115 \n",
" 0.000000 \n",
" -3.140000 \n",
" -1.180000 \n",
" 0.750000 \n",
" 0.230000 \n",
" \n",
" \n",
" L116 \n",
" 0.000000 \n",
" -0.190000 \n",
" -0.820000 \n",
" 0.340000 \n",
" 0.060000 \n",
" \n",
" \n",
" L117 \n",
" 2.760000 \n",
" 3.590000 \n",
" 2.720000 \n",
" 1.260000 \n",
" -0.970000 \n",
" \n",
" \n",
" L118 \n",
" -0.940000 \n",
" -0.260000 \n",
" -2.670000 \n",
" 2.800000 \n",
" 1.910000 \n",
" \n",
" \n",
" L119 \n",
" -2.290000 \n",
" -1.560000 \n",
" -3.760000 \n",
" 2.320000 \n",
" 1.000000 \n",
" \n",
" \n",
" L12 \n",
" 3.310000 \n",
" 3.680000 \n",
" 3.250000 \n",
" -1.690000 \n",
" 1.570000 \n",
" \n",
" \n",
" L120 \n",
" 1.080000 \n",
" 3.740000 \n",
" 2.980000 \n",
" -0.190000 \n",
" 0.120000 \n",
" \n",
" \n",
" L121 \n",
" 5.960000 \n",
" 8.330000 \n",
" 3.730000 \n",
" -0.250000 \n",
" -1.500000 \n",
" \n",
" \n",
" L122 \n",
" 2.470000 \n",
" 2.390000 \n",
" 1.830000 \n",
" 1.100000 \n",
" 1.370000 \n",
" \n",
" \n",
" L123 \n",
" 8.370000 \n",
" 10.460000 \n",
" 6.280000 \n",
" 0.120000 \n",
" 0.020000 \n",
" \n",
" \n",
" L124 \n",
" 0.000000 \n",
" 1.600000 \n",
" -1.180000 \n",
" -1.430000 \n",
" -0.380000 \n",
" \n",
" \n",
" L125 \n",
" 0.000000 \n",
" -1.680000 \n",
" -0.360000 \n",
" -0.130000 \n",
" -1.180000 \n",
" \n",
" \n",
" L126 \n",
" 1.560000 \n",
" -2.560000 \n",
" -0.080000 \n",
" -1.510000 \n",
" 1.810000 \n",
" \n",
" \n",
" L127 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.000000 \n",
" 1.760000 \n",
" -0.700000 \n",
" \n",
" \n",
" L128 \n",
" -0.080000 \n",
" -4.140000 \n",
" -0.730000 \n",
" -3.960000 \n",
" -2.600000 \n",
" \n",
" \n",
" L129 \n",
" 0.000000 \n",
" -3.230000 \n",
" -1.480000 \n",
" -0.250000 \n",
" -0.400000 \n",
" \n",
" \n",
" L13 \n",
" -3.120000 \n",
" -1.600000 \n",
" -4.590000 \n",
" 0.560000 \n",
" 0.480000 \n",
" \n",
" \n",
" L130 \n",
" 6.760000 \n",
" 6.570000 \n",
" 4.990000 \n",
" 0.560000 \n",
" 0.570000 \n",
" \n",
" \n",
" L131 \n",
" 4.160000 \n",
" 14.850000 \n",
" -0.730000 \n",
" -2.650000 \n",
" 2.780000 \n",
" \n",
" \n",
" L132 \n",
" 5.390000 \n",
" 5.210000 \n",
" 1.160000 \n",
" -0.870000 \n",
" 1.330000 \n",
" \n",
" \n",
" L133 \n",
" 7.380000 \n",
" 12.470000 \n",
" 4.480000 \n",
" -3.110000 \n",
" -0.060000 \n",
" \n",
" \n",
" L134 \n",
" 4.880000 \n",
" 12.670000 \n",
" 3.990000 \n",
" 1.220000 \n",
" 1.630000 \n",
" \n",
" \n",
" L135 \n",
" -14.850000 \n",
" -10.730000 \n",
" -6.820000 \n",
" 2.010000 \n",
" -0.570000 \n",
" \n",
" \n",
" L136 \n",
" 3.380000 \n",
" 3.850000 \n",
" 3.650000 \n",
" 2.850000 \n",
" 0.310000 \n",
" \n",
" \n",
" L137 \n",
" 2.040000 \n",
" 4.410000 \n",
" 3.180000 \n",
" 2.580000 \n",
" 0.290000 \n",
" \n",
" \n",
" L138 \n",
" 7.200000 \n",
" 9.190000 \n",
" 7.220000 \n",
" -1.720000 \n",
" -2.160000 \n",
" \n",
" \n",
" L139 \n",
" 8.980000 \n",
" 9.460000 \n",
" 6.120000 \n",
" 3.100000 \n",
" 1.050000 \n",
" \n",
" \n",
" L14 \n",
" -1.760000 \n",
" -0.710000 \n",
" -4.650000 \n",
" -2.520000 \n",
" -0.110000 \n",
" \n",
" \n",
" L140 \n",
" 0.000000 \n",
" 0.000000 \n",
" 1.220000 \n",
" 0.530000 \n",
" -0.370000 \n",
" \n",
" \n",
" L141 \n",
" -9.460000 \n",
" -10.830000 \n",
" -9.190000 \n",
" -0.940000 \n",
" -1.320000 \n",
" \n",
" \n",
" L142 \n",
" 0.000000 \n",
" 2.260000 \n",
" -14.850000 \n",
" 0.590000 \n",
" -0.230000 \n",
" \n",
" \n",
" L143 \n",
" -7.030000 \n",
" -3.080000 \n",
" -7.850000 \n",
" 2.140000 \n",
" 1.270000 \n",
" \n",
" \n",
" L144 \n",
" 5.800000 \n",
" 5.070000 \n",
" 1.680000 \n",
" -0.330000 \n",
" 1.590000 \n",
" \n",
" \n",
" L145 \n",
" -0.530000 \n",
" -0.410000 \n",
" -2.520000 \n",
" 2.430000 \n",
" 1.480000 \n",
" \n",
" \n",
" L146 \n",
" 0.000000 \n",
" 0.000000 \n",
" -0.600000 \n",
" 0.400000 \n",
" 0.080000 \n",
" \n",
" \n",
" L147 \n",
" 0.770000 \n",
" 1.590000 \n",
" 2.940000 \n",
" 0.320000 \n",
" 0.430000 \n",
" \n",
" \n",
" L148 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.520000 \n",
" 0.710000 \n",
" 0.970000 \n",
" \n",
" \n",
" L149 \n",
" 2.220000 \n",
" 3.010000 \n",
" 3.310000 \n",
" 0.830000 \n",
" 0.640000 \n",
" \n",
" \n",
" L15 \n",
" -0.760000 \n",
" -0.320000 \n",
" 0.680000 \n",
" 3.230000 \n",
" -3.790000 \n",
" \n",
" \n",
" L150 \n",
" 0.000000 \n",
" 0.000000 \n",
" -0.060000 \n",
" 0.980000 \n",
" -0.790000 \n",
" \n",
" \n",
" L151 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.000000 \n",
" -1.460000 \n",
" -0.110000 \n",
" \n",
" \n",
" L152 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.000000 \n",
" 1.400000 \n",
" -0.730000 \n",
" \n",
" \n",
" L153 \n",
" 9.350000 \n",
" 9.130000 \n",
" 8.530000 \n",
" 1.780000 \n",
" -0.650000 \n",
" \n",
" \n",
" L154 \n",
" 0.000000 \n",
" 0.000000 \n",
" -0.940000 \n",
" 0.320000 \n",
" 0.000000 \n",
" \n",
" \n",
" L155 \n",
" 2.120000 \n",
" 0.400000 \n",
" 4.140000 \n",
" 0.260000 \n",
" -0.950000 \n",
" \n",
" \n",
" L156 \n",
" -1.690000 \n",
" -2.050000 \n",
" -2.120000 \n",
" 1.500000 \n",
" 2.260000 \n",
" \n",
" \n",
" L157 \n",
" -7.600000 \n",
" -10.130000 \n",
" -6.670000 \n",
" -0.070000 \n",
" -2.510000 \n",
" \n",
" \n",
" L158 \n",
" 0.000000 \n",
" 0.000000 \n",
" -14.850000 \n",
" 0.800000 \n",
" 0.020000 \n",
" \n",
" \n",
" L159 \n",
" 5.310000 \n",
" 5.630000 \n",
" 4.500000 \n",
" 0.450000 \n",
" -0.390000 \n",
" \n",
" \n",
" L16 \n",
" -0.410000 \n",
" 0.630000 \n",
" -0.690000 \n",
" 0.970000 \n",
" -2.400000 \n",
" \n",
" \n",
" L160 \n",
" 3.100000 \n",
" 1.670000 \n",
" 2.810000 \n",
" 0.340000 \n",
" 0.030000 \n",
" \n",
" \n",
" L161 \n",
" 0.000000 \n",
" 0.000000 \n",
" -0.870000 \n",
" 0.570000 \n",
" 0.060000 \n",
" \n",
" \n",
" L162 \n",
" 0.490000 \n",
" -0.150000 \n",
" -0.110000 \n",
" 0.380000 \n",
" 0.030000 \n",
" \n",
" \n",
" L163 \n",
" 4.990000 \n",
" 2.720000 \n",
" 6.370000 \n",
" -2.160000 \n",
" -1.840000 \n",
" \n",
" \n",
" L164 \n",
" 0.000000 \n",
" -0.870000 \n",
" -1.030000 \n",
" -0.830000 \n",
" 1.600000 \n",
" \n",
" \n",
" L165 \n",
" -0.030000 \n",
" -0.440000 \n",
" -1.460000 \n",
" 0.350000 \n",
" 1.680000 \n",
" \n",
" \n",
" L166 \n",
" 0.000000 \n",
" -0.340000 \n",
" -1.300000 \n",
" 0.130000 \n",
" -0.590000 \n",
" \n",
" \n",
" L167 \n",
" -9.520000 \n",
" -12.670000 \n",
" -8.300000 \n",
" -0.170000 \n",
" 0.990000 \n",
" \n",
" \n",
" L168 \n",
" 14.850000 \n",
" 0.000000 \n",
" -1.790000 \n",
" 2.680000 \n",
" 3.250000 \n",
" \n",
" \n",
" L169 \n",
" -0.200000 \n",
" 0.250000 \n",
" -1.430000 \n",
" 0.200000 \n",
" -0.610000 \n",
" \n",
" \n",
" L17 \n",
" 0.580000 \n",
" 0.000000 \n",
" 0.340000 \n",
" 1.010000 \n",
" -0.370000 \n",
" \n",
" \n",
" L170 \n",
" 14.850000 \n",
" 10.370000 \n",
" 7.460000 \n",
" 0.130000 \n",
" -1.480000 \n",
" \n",
" \n",
" L171 \n",
" 1.010000 \n",
" 4.770000 \n",
" 1.430000 \n",
" 3.550000 \n",
" 2.000000 \n",
" \n",
" \n",
" L172 \n",
" -0.040000 \n",
" -14.850000 \n",
" -0.690000 \n",
" -1.170000 \n",
" 1.340000 \n",
" \n",
" \n",
" L173 \n",
" 14.850000 \n",
" -0.470000 \n",
" 4.670000 \n",
" 0.710000 \n",
" 0.040000 \n",
" \n",
" \n",
" L174 \n",
" 1.310000 \n",
" -0.040000 \n",
" -0.540000 \n",
" 0.450000 \n",
" -1.180000 \n",
" \n",
" \n",
" L175 \n",
" 0.000000 \n",
" 0.000000 \n",
" -3.850000 \n",
" -0.330000 \n",
" -0.300000 \n",
" \n",
" \n",
" L176 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.000000 \n",
" 3.550000 \n",
" 2.200000 \n",
" \n",
" \n",
" L177 \n",
" -2.480000 \n",
" -7.150000 \n",
" -1.760000 \n",
" 0.320000 \n",
" -0.690000 \n",
" \n",
" \n",
" L178 \n",
" -0.990000 \n",
" -0.960000 \n",
" -1.290000 \n",
" 0.650000 \n",
" 0.580000 \n",
" \n",
" \n",
" L179 \n",
" 0.000000 \n",
" 0.000000 \n",
" -0.400000 \n",
" 0.370000 \n",
" 0.030000 \n",
" \n",
" \n",
" L18 \n",
" 1.560000 \n",
" -1.980000 \n",
" -1.500000 \n",
" 8.370000 \n",
" -7.880000 \n",
" \n",
" \n",
" L180 \n",
" 2.010000 \n",
" 3.000000 \n",
" 1.070000 \n",
" 0.370000 \n",
" 1.660000 \n",
" \n",
" \n",
" L181 \n",
" 3.270000 \n",
" 3.670000 \n",
" 0.790000 \n",
" 0.400000 \n",
" -0.620000 \n",
" \n",
" \n",
" L182 \n",
" 1.210000 \n",
" 2.580000 \n",
" -1.130000 \n",
" 3.330000 \n",
" 1.240000 \n",
" \n",
" \n",
" L183 \n",
" -0.150000 \n",
" -0.040000 \n",
" 0.640000 \n",
" 0.650000 \n",
" 3.310000 \n",
" \n",
" \n",
" L184 \n",
" 0.460000 \n",
" -0.210000 \n",
" 0.580000 \n",
" -0.160000 \n",
" -0.650000 \n",
" \n",
" \n",
" L185 \n",
" -1.080000 \n",
" 1.730000 \n",
" -1.870000 \n",
" -2.060000 \n",
" 2.160000 \n",
" \n",
" \n",
" L186 \n",
" 0.000000 \n",
" 0.000000 \n",
" 1.240000 \n",
" -0.330000 \n",
" 16.090000 \n",
" \n",
" \n",
" L187 \n",
" -5.590000 \n",
" -5.870000 \n",
" -5.600000 \n",
" 0.060000 \n",
" -0.830000 \n",
" \n",
" \n",
" L188 \n",
" 3.140000 \n",
" 1.390000 \n",
" 1.730000 \n",
" 2.370000 \n",
" -0.840000 \n",
" \n",
" \n",
" L189 \n",
" 0.890000 \n",
" 0.180000 \n",
" -1.570000 \n",
" 0.960000 \n",
" -2.790000 \n",
" \n",
" \n",
" L19 \n",
" -2.740000 \n",
" 0.000000 \n",
" -3.310000 \n",
" -1.010000 \n",
" -2.890000 \n",
" \n",
" \n",
" L190 \n",
" 0.710000 \n",
" -0.150000 \n",
" 0.020000 \n",
" 0.490000 \n",
" -0.220000 \n",
" \n",
" \n",
" L191 \n",
" 0.000000 \n",
" 0.000000 \n",
" -0.410000 \n",
" -2.010000 \n",
" -2.610000 \n",
" \n",
" \n",
" L192 \n",
" 14.850000 \n",
" 0.000000 \n",
" -1.220000 \n",
" -3.610000 \n",
" 0.510000 \n",
" \n",
" \n",
" L2 \n",
" 0.000000 \n",
" 3.350000 \n",
" 0.190000 \n",
" 1.430000 \n",
" -0.860000 \n",
" \n",
" \n",
" L20 \n",
" 8.660000 \n",
" 6.910000 \n",
" 3.280000 \n",
" -2.920000 \n",
" 1.080000 \n",
" \n",
" \n",
" L21 \n",
" -2.230000 \n",
" -14.850000 \n",
" 0.000000 \n",
" -0.890000 \n",
" -0.430000 \n",
" \n",
" \n",
" L22 \n",
" 9.910000 \n",
" 5.220000 \n",
" 6.670000 \n",
" -5.870000 \n",
" 2.710000 \n",
" \n",
" \n",
" L23 \n",
" 10.130000 \n",
" 6.510000 \n",
" 7.270000 \n",
" -5.560000 \n",
" 2.500000 \n",
" \n",
" \n",
" L24 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.000000 \n",
" -0.600000 \n",
" 0.680000 \n",
" \n",
" \n",
" L25 \n",
" -2.980000 \n",
" -14.850000 \n",
" -4.690000 \n",
" -6.580000 \n",
" 1.830000 \n",
" \n",
" \n",
" L26 \n",
" -5.860000 \n",
" -14.850000 \n",
" -5.350000 \n",
" -4.360000 \n",
" 3.450000 \n",
" \n",
" \n",
" L27 \n",
" 0.360000 \n",
" 1.420000 \n",
" 0.500000 \n",
" 4.320000 \n",
" -3.670000 \n",
" \n",
" \n",
" L28 \n",
" 1.670000 \n",
" 14.850000 \n",
" 3.200000 \n",
" 5.670000 \n",
" -2.850000 \n",
" \n",
" \n",
" L29 \n",
" -0.710000 \n",
" 0.060000 \n",
" -0.370000 \n",
" 6.380000 \n",
" -2.260000 \n",
" \n",
" \n",
" L3 \n",
" 3.750000 \n",
" 1.530000 \n",
" 3.500000 \n",
" -0.630000 \n",
" 0.430000 \n",
" \n",
" \n",
" L30 \n",
" -6.280000 \n",
" -14.850000 \n",
" -5.530000 \n",
" -4.190000 \n",
" -0.600000 \n",
" \n",
" \n",
" L31 \n",
" -0.340000 \n",
" -0.710000 \n",
" -4.390000 \n",
" -6.230000 \n",
" -0.290000 \n",
" \n",
" \n",
" L32 \n",
" -0.960000 \n",
" -1.230000 \n",
" -1.340000 \n",
" -1.190000 \n",
" 0.200000 \n",
" \n",
" \n",
" L33 \n",
" -1.880000 \n",
" -14.850000 \n",
" -0.690000 \n",
" -1.290000 \n",
" -1.100000 \n",
" \n",
" \n",
" L34 \n",
" -0.910000 \n",
" -0.400000 \n",
" -1.140000 \n",
" -0.940000 \n",
" 0.150000 \n",
" \n",
" \n",
" L35 \n",
" 3.920000 \n",
" 2.610000 \n",
" 1.500000 \n",
" 0.350000 \n",
" -0.620000 \n",
" \n",
" \n",
" L36 \n",
" 2.360000 \n",
" 1.610000 \n",
" 1.500000 \n",
" 1.290000 \n",
" -1.720000 \n",
" \n",
" \n",
" L37 \n",
" -3.220000 \n",
" -3.790000 \n",
" -3.410000 \n",
" -0.120000 \n",
" 0.510000 \n",
" \n",
" \n",
" L38 \n",
" -8.300000 \n",
" -14.850000 \n",
" -7.380000 \n",
" -0.530000 \n",
" 0.860000 \n",
" \n",
" \n",
" L39 \n",
" 3.900000 \n",
" 4.620000 \n",
" 3.890000 \n",
" 1.260000 \n",
" -0.810000 \n",
" \n",
" \n",
" L4 \n",
" 0.950000 \n",
" -0.630000 \n",
" -0.960000 \n",
" 1.080000 \n",
" -0.890000 \n",
" \n",
" \n",
" L40 \n",
" 1.150000 \n",
" 0.920000 \n",
" 0.390000 \n",
" 0.940000 \n",
" -1.170000 \n",
" \n",
" \n",
" L41 \n",
" -6.710000 \n",
" -8.300000 \n",
" -8.260000 \n",
" -1.660000 \n",
" 0.190000 \n",
" \n",
" \n",
" L42 \n",
" 5.830000 \n",
" 5.330000 \n",
" 4.040000 \n",
" -1.080000 \n",
" -0.810000 \n",
" \n",
" \n",
" L43 \n",
" -14.850000 \n",
" -9.190000 \n",
" -6.410000 \n",
" -1.850000 \n",
" -0.580000 \n",
" \n",
" \n",
" L44 \n",
" -0.250000 \n",
" 0.400000 \n",
" 1.250000 \n",
" -0.580000 \n",
" 1.290000 \n",
" \n",
" \n",
" L45 \n",
" -2.370000 \n",
" -3.710000 \n",
" -2.530000 \n",
" -0.870000 \n",
" 0.620000 \n",
" \n",
" \n",
" L46 \n",
" -3.480000 \n",
" -6.020000 \n",
" -6.000000 \n",
" -1.970000 \n",
" 0.060000 \n",
" \n",
" \n",
" L47 \n",
" 1.250000 \n",
" 1.680000 \n",
" 1.950000 \n",
" -1.980000 \n",
" 0.050000 \n",
" \n",
" \n",
" L48 \n",
" 1.300000 \n",
" 1.660000 \n",
" 2.710000 \n",
" 0.410000 \n",
" -1.020000 \n",
" \n",
" \n",
" L49 \n",
" 6.250000 \n",
" 6.190000 \n",
" 5.370000 \n",
" 0.760000 \n",
" -0.970000 \n",
" \n",
" \n",
" L5 \n",
" 0.470000 \n",
" 0.930000 \n",
" -2.940000 \n",
" -0.600000 \n",
" -0.580000 \n",
" \n",
" \n",
" L50 \n",
" -4.060000 \n",
" -14.850000 \n",
" -4.620000 \n",
" -1.070000 \n",
" 0.750000 \n",
" \n",
" \n",
" L51 \n",
" 8.660000 \n",
" 4.790000 \n",
" 6.690000 \n",
" 0.250000 \n",
" -0.810000 \n",
" \n",
" \n",
" L52 \n",
" 2.920000 \n",
" 2.850000 \n",
" 2.700000 \n",
" 0.360000 \n",
" -0.470000 \n",
" \n",
" \n",
" L53 \n",
" 0.840000 \n",
" -0.120000 \n",
" 0.880000 \n",
" 0.190000 \n",
" -0.060000 \n",
" \n",
" \n",
" L54 \n",
" -2.550000 \n",
" -4.280000 \n",
" -2.880000 \n",
" -0.120000 \n",
" 1.080000 \n",
" \n",
" \n",
" L55 \n",
" 14.850000 \n",
" 14.850000 \n",
" 14.850000 \n",
" 3.050000 \n",
" 3.420000 \n",
" \n",
" \n",
" L56 \n",
" -6.930000 \n",
" -14.850000 \n",
" -6.930000 \n",
" 0.530000 \n",
" -2.720000 \n",
" \n",
" \n",
" L57 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.450000 \n",
" 0.080000 \n",
" \n",
" \n",
" L58 \n",
" 3.110000 \n",
" -14.850000 \n",
" -6.390000 \n",
" -5.800000 \n",
" 3.610000 \n",
" \n",
" \n",
" L59 \n",
" -2.070000 \n",
" -6.730000 \n",
" -1.830000 \n",
" 0.060000 \n",
" -0.060000 \n",
" \n",
" \n",
" L6 \n",
" 6.390000 \n",
" 5.840000 \n",
" 7.720000 \n",
" 0.410000 \n",
" 5.400000 \n",
" \n",
" \n",
" L60 \n",
" 2.300000 \n",
" 0.820000 \n",
" -2.590000 \n",
" -0.530000 \n",
" -1.710000 \n",
" \n",
" \n",
" L61 \n",
" 0.000000 \n",
" 2.290000 \n",
" 2.160000 \n",
" 2.070000 \n",
" -0.380000 \n",
" \n",
" \n",
" L62 \n",
" 4.810000 \n",
" 7.750000 \n",
" 0.150000 \n",
" -1.150000 \n",
" 1.770000 \n",
" \n",
" \n",
" L63 \n",
" -3.840000 \n",
" -0.840000 \n",
" -5.520000 \n",
" 2.320000 \n",
" -1.080000 \n",
" \n",
" \n",
" L64 \n",
" -14.010000 \n",
" -14.850000 \n",
" -14.850000 \n",
" 0.680000 \n",
" -2.420000 \n",
" \n",
" \n",
" L65 \n",
" 6.530000 \n",
" 5.120000 \n",
" 7.690000 \n",
" 0.500000 \n",
" -2.090000 \n",
" \n",
" \n",
" L66 \n",
" 4.240000 \n",
" 1.400000 \n",
" 5.060000 \n",
" 0.260000 \n",
" 0.020000 \n",
" \n",
" \n",
" L67 \n",
" 13.120000 \n",
" 14.850000 \n",
" 8.840000 \n",
" 0.170000 \n",
" 1.280000 \n",
" \n",
" \n",
" L68 \n",
" 11.270000 \n",
" 14.850000 \n",
" 14.850000 \n",
" 0.570000 \n",
" 1.470000 \n",
" \n",
" \n",
" L69 \n",
" 9.410000 \n",
" 14.850000 \n",
" 8.840000 \n",
" 0.150000 \n",
" 1.590000 \n",
" \n",
" \n",
" L7 \n",
" -0.020000 \n",
" -0.620000 \n",
" -0.320000 \n",
" 0.960000 \n",
" 3.990000 \n",
" \n",
" \n",
" L70 \n",
" -5.030000 \n",
" -14.850000 \n",
" -3.510000 \n",
" 4.110000 \n",
" -1.000000 \n",
" \n",
" \n",
" L71 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.000000 \n",
" 1.970000 \n",
" -0.780000 \n",
" \n",
" \n",
" L72 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.130000 \n",
" -0.060000 \n",
" \n",
" \n",
" L73 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.000000 \n",
" -0.260000 \n",
" -0.710000 \n",
" \n",
" \n",
" L74 \n",
" -9.350000 \n",
" -5.720000 \n",
" -11.650000 \n",
" -0.970000 \n",
" 0.600000 \n",
" \n",
" \n",
" L75 \n",
" 7.570000 \n",
" 14.850000 \n",
" 4.650000 \n",
" -5.270000 \n",
" 1.070000 \n",
" \n",
" \n",
" L76 \n",
" 1.060000 \n",
" 2.020000 \n",
" 0.840000 \n",
" 2.350000 \n",
" -3.210000 \n",
" \n",
" \n",
" L77 \n",
" -4.730000 \n",
" -3.200000 \n",
" -7.410000 \n",
" 2.900000 \n",
" -1.210000 \n",
" \n",
" \n",
" L78 \n",
" -4.670000 \n",
" -6.370000 \n",
" -6.670000 \n",
" 0.520000 \n",
" 1.030000 \n",
" \n",
" \n",
" L79 \n",
" 4.290000 \n",
" 2.070000 \n",
" 3.850000 \n",
" -1.010000 \n",
" 0.510000 \n",
" \n",
" \n",
" L8 \n",
" 0.600000 \n",
" -0.330000 \n",
" -1.330000 \n",
" -0.920000 \n",
" -1.180000 \n",
" \n",
" \n",
" L80 \n",
" 3.500000 \n",
" 2.180000 \n",
" 4.180000 \n",
" -1.130000 \n",
" -3.430000 \n",
" \n",
" \n",
" L81 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.000000 \n",
" -1.260000 \n",
" -0.380000 \n",
" \n",
" \n",
" L82 \n",
" -7.490000 \n",
" -6.370000 \n",
" -8.930000 \n",
" -4.670000 \n",
" 2.690000 \n",
" \n",
" \n",
" L83 \n",
" 0.730000 \n",
" -0.060000 \n",
" -0.700000 \n",
" 2.810000 \n",
" -0.430000 \n",
" \n",
" \n",
" L84 \n",
" -14.850000 \n",
" -14.850000 \n",
" -13.120000 \n",
" -1.150000 \n",
" -1.300000 \n",
" \n",
" \n",
" L85 \n",
" 0.830000 \n",
" 3.610000 \n",
" 1.080000 \n",
" 2.960000 \n",
" -2.330000 \n",
" \n",
" \n",
" L86 \n",
" 0.870000 \n",
" -2.770000 \n",
" 1.200000 \n",
" 3.820000 \n",
" -3.110000 \n",
" \n",
" \n",
" L87 \n",
" -4.200000 \n",
" -14.850000 \n",
" -5.000000 \n",
" -3.100000 \n",
" -2.180000 \n",
" \n",
" \n",
" L88 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.000000 \n",
" 1.140000 \n",
" 0.630000 \n",
" \n",
" \n",
" L89 \n",
" 1.220000 \n",
" 1.270000 \n",
" 0.910000 \n",
" 0.570000 \n",
" -0.910000 \n",
" \n",
" \n",
" L9 \n",
" 1.320000 \n",
" 1.210000 \n",
" 0.840000 \n",
" -0.030000 \n",
" -2.560000 \n",
" \n",
" \n",
" L90 \n",
" 1.480000 \n",
" -0.500000 \n",
" 1.000000 \n",
" 0.390000 \n",
" -0.120000 \n",
" \n",
" \n",
" L91 \n",
" -0.660000 \n",
" -1.680000 \n",
" 1.780000 \n",
" 1.440000 \n",
" 0.190000 \n",
" \n",
" \n",
" L92 \n",
" 0.780000 \n",
" 0.950000 \n",
" 1.500000 \n",
" 0.420000 \n",
" -0.010000 \n",
" \n",
" \n",
" L93 \n",
" -0.800000 \n",
" -0.170000 \n",
" -0.270000 \n",
" 0.430000 \n",
" -0.230000 \n",
" \n",
" \n",
" L94 \n",
" -0.370000 \n",
" -1.380000 \n",
" -1.710000 \n",
" 0.100000 \n",
" 0.100000 \n",
" \n",
" \n",
" L95 \n",
" 6.530000 \n",
" 2.930000 \n",
" 8.110000 \n",
" -2.330000 \n",
" 1.520000 \n",
" \n",
" \n",
" L96 \n",
" 4.600000 \n",
" 1.700000 \n",
" 7.940000 \n",
" -5.160000 \n",
" 2.070000 \n",
" \n",
" \n",
" L97 \n",
" -0.690000 \n",
" -0.250000 \n",
" -0.960000 \n",
" -5.100000 \n",
" -3.380000 \n",
" \n",
" \n",
" L98 \n",
" -6.760000 \n",
" -6.630000 \n",
" -8.260000 \n",
" -0.130000 \n",
" -1.320000 \n",
" \n",
" \n",
" L99 \n",
" 0.000000 \n",
" 0.000000 \n",
" -14.850000 \n",
" 0.540000 \n",
" -3.460000 \n",
" \n",
" \n",
"
\n"
],
"text/plain": [
""
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ddg_pivot = data.pivot(index=['Ligand#'], \n",
" columns='Starting material', \n",
" values='ΔΔG‡ [kJ/mol] with sign')\n",
"ddg_pivot.style.background_gradient(cmap='Blues')"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "0f9772eb",
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
" \n",
" \n",
" Starting material \n",
" SM1 \n",
" SM2 \n",
" SM3 \n",
" SM4 \n",
" SM5 \n",
" \n",
" \n",
" Ligand# \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" L1 \n",
" 1.000000 \n",
" 0.955924 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L10 \n",
" 1.000000 \n",
" 0.614312 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L100 \n",
" 0.045569 \n",
" 1.000000 \n",
" 0.994232 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L101 \n",
" 0.022800 \n",
" 1.000000 \n",
" 0.130264 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L102 \n",
" 0.340740 \n",
" 0.745984 \n",
" 0.990044 \n",
" 0.725925 \n",
" 1.000000 \n",
" \n",
" \n",
" L103 \n",
" 0.000000 \n",
" 0.256069 \n",
" 0.278151 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L104 \n",
" 0.185275 \n",
" 0.996236 \n",
" 0.969174 \n",
" 0.399783 \n",
" 0.473115 \n",
" \n",
" \n",
" L105 \n",
" 0.000000 \n",
" 0.704812 \n",
" 0.181092 \n",
" 0.629594 \n",
" 0.560717 \n",
" \n",
" \n",
" L106 \n",
" 0.456585 \n",
" 1.000000 \n",
" 0.992953 \n",
" 0.526250 \n",
" 0.352808 \n",
" \n",
" \n",
" L107 \n",
" 0.000000 \n",
" 0.378987 \n",
" 0.039829 \n",
" 0.861102 \n",
" 1.000000 \n",
" \n",
" \n",
" L108 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.985836 \n",
" 0.192431 \n",
" 1.000000 \n",
" \n",
" \n",
" L109 \n",
" 0.000000 \n",
" 0.133075 \n",
" 0.023575 \n",
" 0.550322 \n",
" 1.000000 \n",
" \n",
" \n",
" L11 \n",
" 1.000000 \n",
" 0.780420 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L110 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.980770 \n",
" 0.690142 \n",
" 1.000000 \n",
" \n",
" \n",
" L111 \n",
" 0.215854 \n",
" 0.085735 \n",
" 0.981323 \n",
" 0.371403 \n",
" 0.916903 \n",
" \n",
" \n",
" L112 \n",
" 0.264606 \n",
" 0.997124 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L113 \n",
" 0.893875 \n",
" 0.672628 \n",
" 1.000000 \n",
" 0.126466 \n",
" 0.770648 \n",
" \n",
" \n",
" L114 \n",
" 0.000000 \n",
" 0.635435 \n",
" 0.074160 \n",
" 0.755627 \n",
" 0.647504 \n",
" \n",
" \n",
" L115 \n",
" 0.000000 \n",
" 0.132292 \n",
" 0.085763 \n",
" 0.951120 \n",
" 1.000000 \n",
" \n",
" \n",
" L116 \n",
" 0.000000 \n",
" 1.000000 \n",
" 0.013179 \n",
" 0.993270 \n",
" 1.000000 \n",
" \n",
" \n",
" L117 \n",
" 0.562664 \n",
" 1.000000 \n",
" 0.980654 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L118 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L119 \n",
" 0.096467 \n",
" 1.000000 \n",
" 0.990618 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L12 \n",
" 0.831695 \n",
" 0.835825 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L120 \n",
" 0.026559 \n",
" 1.000000 \n",
" 0.713063 \n",
" 0.315148 \n",
" 0.372884 \n",
" \n",
" \n",
" L121 \n",
" 0.832989 \n",
" 0.997728 \n",
" 1.000000 \n",
" 0.413879 \n",
" 1.000000 \n",
" \n",
" \n",
" L122 \n",
" 0.341830 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.853938 \n",
" 0.968394 \n",
" \n",
" \n",
" L123 \n",
" 0.179394 \n",
" 1.000000 \n",
" 0.867539 \n",
" 0.622875 \n",
" 0.084661 \n",
" \n",
" \n",
" L124 \n",
" 0.000000 \n",
" 0.087448 \n",
" 0.795042 \n",
" 0.920140 \n",
" 0.369398 \n",
" \n",
" \n",
" L125 \n",
" 0.000000 \n",
" 1.000000 \n",
" 0.802328 \n",
" 0.384409 \n",
" 1.000000 \n",
" \n",
" \n",
" L126 \n",
" 0.029043 \n",
" 0.535977 \n",
" 0.346299 \n",
" 0.998271 \n",
" 1.000000 \n",
" \n",
" \n",
" L127 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.729804 \n",
" 0.222035 \n",
" \n",
" \n",
" L128 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.988544 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L129 \n",
" 0.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.417333 \n",
" 1.000000 \n",
" \n",
" \n",
" L13 \n",
" 0.157797 \n",
" 0.567358 \n",
" 0.297720 \n",
" 0.909290 \n",
" 0.097523 \n",
" \n",
" \n",
" L130 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.865790 \n",
" 0.828292 \n",
" \n",
" \n",
" L131 \n",
" 0.062642 \n",
" 0.018884 \n",
" 0.040317 \n",
" 0.794698 \n",
" 1.000000 \n",
" \n",
" \n",
" L132 \n",
" 0.074799 \n",
" 0.448497 \n",
" 0.849523 \n",
" 0.362537 \n",
" 0.282096 \n",
" \n",
" \n",
" L133 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L134 \n",
" 0.459327 \n",
" 0.995903 \n",
" 0.992613 \n",
" 0.991205 \n",
" 1.000000 \n",
" \n",
" \n",
" L135 \n",
" 0.035104 \n",
" 1.000000 \n",
" 0.963274 \n",
" 0.651522 \n",
" 0.282586 \n",
" \n",
" \n",
" L136 \n",
" 0.297752 \n",
" 0.995694 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L137 \n",
" 0.201211 \n",
" 0.998116 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L138 \n",
" 0.706355 \n",
" 1.000000 \n",
" 0.990391 \n",
" 0.999080 \n",
" 1.000000 \n",
" \n",
" \n",
" L139 \n",
" 0.568554 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.538112 \n",
" 1.000000 \n",
" \n",
" \n",
" L14 \n",
" 0.588429 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.723386 \n",
" 0.928701 \n",
" \n",
" \n",
" L140 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.017021 \n",
" 0.262947 \n",
" 0.357654 \n",
" \n",
" \n",
" L141 \n",
" 0.288486 \n",
" 1.000000 \n",
" 0.989912 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L142 \n",
" 0.000000 \n",
" 0.201509 \n",
" 0.014131 \n",
" 0.153409 \n",
" 0.122010 \n",
" \n",
" \n",
" L143 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.998818 \n",
" 1.000000 \n",
" \n",
" \n",
" L144 \n",
" 0.168795 \n",
" 0.476016 \n",
" 0.645246 \n",
" 0.163532 \n",
" 0.310722 \n",
" \n",
" \n",
" L145 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L146 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.054316 \n",
" 0.529838 \n",
" 1.000000 \n",
" \n",
" \n",
" L147 \n",
" 0.028976 \n",
" 0.914574 \n",
" 0.983200 \n",
" 0.607690 \n",
" 0.451313 \n",
" \n",
" \n",
" L148 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.030753 \n",
" 0.107657 \n",
" 0.030137 \n",
" \n",
" \n",
" L149 \n",
" 0.138992 \n",
" 0.996557 \n",
" 0.992695 \n",
" 0.693799 \n",
" 0.896693 \n",
" \n",
" \n",
" L15 \n",
" 0.065025 \n",
" 0.852010 \n",
" 0.205222 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L150 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.024033 \n",
" 0.214655 \n",
" 0.305031 \n",
" \n",
" \n",
" L151 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.557145 \n",
" 0.310341 \n",
" \n",
" \n",
" L152 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.348251 \n",
" 0.007877 \n",
" \n",
" \n",
" L153 \n",
" 0.720057 \n",
" 1.000000 \n",
" 0.976781 \n",
" 0.905310 \n",
" 1.000000 \n",
" \n",
" \n",
" L154 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.030437 \n",
" 0.317874 \n",
" 0.301921 \n",
" \n",
" \n",
" L155 \n",
" 0.966967 \n",
" 1.000000 \n",
" 0.985465 \n",
" 0.551537 \n",
" 1.000000 \n",
" \n",
" \n",
" L156 \n",
" 0.469277 \n",
" 0.996829 \n",
" 1.000000 \n",
" 0.995204 \n",
" 1.000000 \n",
" \n",
" \n",
" L157 \n",
" 0.074222 \n",
" 0.997309 \n",
" 0.989200 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L158 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.012572 \n",
" 0.080072 \n",
" 0.034600 \n",
" \n",
" \n",
" L159 \n",
" 0.959620 \n",
" 1.000000 \n",
" 0.991734 \n",
" 0.869342 \n",
" 1.000000 \n",
" \n",
" \n",
" L16 \n",
" 1.000000 \n",
" 0.441899 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L160 \n",
" 0.239344 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.752552 \n",
" 1.000000 \n",
" \n",
" \n",
" L161 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.035439 \n",
" 0.369379 \n",
" 0.880955 \n",
" \n",
" \n",
" L162 \n",
" 0.042608 \n",
" 0.978381 \n",
" 0.085065 \n",
" 0.891701 \n",
" 1.000000 \n",
" \n",
" \n",
" L163 \n",
" 0.954433 \n",
" 1.000000 \n",
" 0.980099 \n",
" 0.956798 \n",
" 1.000000 \n",
" \n",
" \n",
" L164 \n",
" 0.000000 \n",
" 1.000000 \n",
" 0.047292 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L165 \n",
" 0.058806 \n",
" 0.997141 \n",
" 0.980164 \n",
" 0.399566 \n",
" 1.000000 \n",
" \n",
" \n",
" L166 \n",
" 0.000000 \n",
" 0.105435 \n",
" 0.030846 \n",
" 0.184174 \n",
" 0.180885 \n",
" \n",
" \n",
" L167 \n",
" 0.837932 \n",
" 1.000000 \n",
" 0.986026 \n",
" 0.450181 \n",
" 0.195950 \n",
" \n",
" \n",
" L168 \n",
" 0.055279 \n",
" 0.000000 \n",
" 0.026713 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L169 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L17 \n",
" 0.068114 \n",
" 0.000000 \n",
" 0.107509 \n",
" 0.069776 \n",
" 0.842687 \n",
" \n",
" \n",
" L170 \n",
" 0.024713 \n",
" 1.000000 \n",
" 0.969749 \n",
" 0.504273 \n",
" 0.197002 \n",
" \n",
" \n",
" L171 \n",
" 0.367601 \n",
" 0.995509 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L172 \n",
" 0.055978 \n",
" 0.059970 \n",
" 0.057246 \n",
" 0.468811 \n",
" 0.904983 \n",
" \n",
" \n",
" L173 \n",
" 0.027955 \n",
" 0.085385 \n",
" 0.146614 \n",
" 0.427025 \n",
" 0.105763 \n",
" \n",
" \n",
" L174 \n",
" 0.020518 \n",
" 0.749249 \n",
" 0.269297 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L175 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.031090 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L176 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.991910 \n",
" 0.262862 \n",
" \n",
" \n",
" L177 \n",
" 0.040042 \n",
" 0.976185 \n",
" 0.483818 \n",
" 0.444025 \n",
" 0.899400 \n",
" \n",
" \n",
" L178 \n",
" 0.599813 \n",
" 0.998259 \n",
" 0.991192 \n",
" 0.558194 \n",
" 0.811788 \n",
" \n",
" \n",
" L179 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.035520 \n",
" 0.342349 \n",
" 0.893759 \n",
" \n",
" \n",
" L18 \n",
" 1.000000 \n",
" 0.450696 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L180 \n",
" 0.355501 \n",
" 0.995153 \n",
" 0.988656 \n",
" 0.267751 \n",
" 1.000000 \n",
" \n",
" \n",
" L181 \n",
" 0.939307 \n",
" 0.994447 \n",
" 1.000000 \n",
" 0.442725 \n",
" 0.738835 \n",
" \n",
" \n",
" L182 \n",
" 0.077962 \n",
" 0.995395 \n",
" 0.438674 \n",
" 0.841843 \n",
" 0.134069 \n",
" \n",
" \n",
" L183 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.987074 \n",
" 0.758068 \n",
" 1.000000 \n",
" \n",
" \n",
" L184 \n",
" 0.057323 \n",
" 1.000000 \n",
" 0.388247 \n",
" 0.853149 \n",
" 1.000000 \n",
" \n",
" \n",
" L185 \n",
" 0.094907 \n",
" 0.167654 \n",
" 0.045750 \n",
" 0.159951 \n",
" 0.193837 \n",
" \n",
" \n",
" L186 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.006726 \n",
" 0.050371 \n",
" 0.001995 \n",
" \n",
" \n",
" L187 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.984963 \n",
" 0.555305 \n",
" 0.711228 \n",
" \n",
" \n",
" L188 \n",
" 0.680906 \n",
" 0.997766 \n",
" 0.987370 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L189 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L19 \n",
" 1.000000 \n",
" 0.000000 \n",
" 0.256515 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L190 \n",
" 0.070334 \n",
" 1.000000 \n",
" 0.101777 \n",
" 0.971570 \n",
" 1.000000 \n",
" \n",
" \n",
" L191 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.044260 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L192 \n",
" 0.022589 \n",
" 0.000000 \n",
" 0.057902 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L2 \n",
" 1.000000 \n",
" 0.985206 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L20 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.772880 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L21 \n",
" 0.014427 \n",
" 0.041748 \n",
" 0.000000 \n",
" 0.630434 \n",
" 0.145393 \n",
" \n",
" \n",
" L22 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.751380 \n",
" 1.000000 \n",
" 0.668616 \n",
" \n",
" \n",
" L23 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.262292 \n",
" 1.000000 \n",
" 0.521742 \n",
" \n",
" \n",
" L24 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L25 \n",
" 0.961149 \n",
" 0.710287 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L26 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L27 \n",
" 1.000000 \n",
" 0.489275 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L28 \n",
" 0.385738 \n",
" 0.272268 \n",
" 0.554417 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L29 \n",
" 1.000000 \n",
" 0.364810 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L3 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L30 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L31 \n",
" 0.103467 \n",
" 0.982066 \n",
" 0.358847 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L32 \n",
" 0.712081 \n",
" 1.000000 \n",
" 0.294588 \n",
" 0.618124 \n",
" 1.000000 \n",
" \n",
" \n",
" L33 \n",
" 0.057251 \n",
" 0.072307 \n",
" 0.016009 \n",
" 0.117536 \n",
" 0.243076 \n",
" \n",
" \n",
" L34 \n",
" 0.505075 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.666894 \n",
" 1.000000 \n",
" \n",
" \n",
" L35 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.752490 \n",
" 0.372628 \n",
" \n",
" \n",
" L36 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.817447 \n",
" 0.539225 \n",
" \n",
" \n",
" L37 \n",
" 0.961106 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.578653 \n",
" 0.993740 \n",
" \n",
" \n",
" L38 \n",
" 0.883182 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.634574 \n",
" 0.658783 \n",
" \n",
" \n",
" L39 \n",
" 0.148473 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.911418 \n",
" 0.881665 \n",
" \n",
" \n",
" L4 \n",
" 0.561166 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.952754 \n",
" 0.584882 \n",
" \n",
" \n",
" L40 \n",
" 0.641877 \n",
" 0.977403 \n",
" 0.295332 \n",
" 0.310493 \n",
" 0.440302 \n",
" \n",
" \n",
" L41 \n",
" 0.135581 \n",
" 0.794622 \n",
" 0.792502 \n",
" 0.421084 \n",
" 0.261567 \n",
" \n",
" \n",
" L42 \n",
" 0.726624 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.969386 \n",
" \n",
" \n",
" L43 \n",
" 0.150908 \n",
" 1.000000 \n",
" 0.607253 \n",
" 0.941778 \n",
" 0.631481 \n",
" \n",
" \n",
" L44 \n",
" 0.137840 \n",
" 1.000000 \n",
" 0.346980 \n",
" 0.102815 \n",
" 1.000000 \n",
" \n",
" \n",
" L45 \n",
" 0.720528 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.716083 \n",
" 0.872086 \n",
" \n",
" \n",
" L46 \n",
" 0.026576 \n",
" 1.000000 \n",
" 0.855345 \n",
" 0.930924 \n",
" 0.343583 \n",
" \n",
" \n",
" L47 \n",
" 0.306450 \n",
" 0.772562 \n",
" 0.482685 \n",
" 0.925535 \n",
" 0.447376 \n",
" \n",
" \n",
" L48 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.657144 \n",
" 0.761930 \n",
" \n",
" \n",
" L49 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.837711 \n",
" 0.616409 \n",
" \n",
" \n",
" L5 \n",
" 0.270491 \n",
" 0.993323 \n",
" 1.000000 \n",
" 0.278382 \n",
" 0.906903 \n",
" \n",
" \n",
" L50 \n",
" 0.220729 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.478442 \n",
" 0.291205 \n",
" \n",
" \n",
" L51 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.999302 \n",
" \n",
" \n",
" L52 \n",
" 0.654025 \n",
" 0.801943 \n",
" 1.000000 \n",
" 0.437331 \n",
" 0.798770 \n",
" \n",
" \n",
" L53 \n",
" 0.251151 \n",
" 1.000000 \n",
" 0.292034 \n",
" 0.908706 \n",
" 1.000000 \n",
" \n",
" \n",
" L54 \n",
" 0.490913 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L55 \n",
" 1.000000 \n",
" 0.935469 \n",
" 1.000000 \n",
" 0.389714 \n",
" 1.000000 \n",
" \n",
" \n",
" L56 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.844853 \n",
" 0.178191 \n",
" 1.000000 \n",
" \n",
" \n",
" L57 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.098978 \n",
" 0.856176 \n",
" \n",
" \n",
" L58 \n",
" 0.030044 \n",
" 0.047892 \n",
" 0.305609 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L59 \n",
" 0.242531 \n",
" 1.000000 \n",
" 0.176162 \n",
" 0.945137 \n",
" 1.000000 \n",
" \n",
" \n",
" L6 \n",
" 1.000000 \n",
" 0.841995 \n",
" 1.000000 \n",
" 0.872348 \n",
" 1.000000 \n",
" \n",
" \n",
" L60 \n",
" 0.041115 \n",
" 0.337039 \n",
" 0.434484 \n",
" 0.052359 \n",
" 0.233251 \n",
" \n",
" \n",
" L61 \n",
" 0.000000 \n",
" 0.074627 \n",
" 0.067422 \n",
" 0.951892 \n",
" 0.752358 \n",
" \n",
" \n",
" L62 \n",
" 0.087751 \n",
" 0.856308 \n",
" 0.888128 \n",
" 0.182532 \n",
" 0.228537 \n",
" \n",
" \n",
" L63 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.998967 \n",
" \n",
" \n",
" L64 \n",
" 0.981726 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.657207 \n",
" 0.387010 \n",
" \n",
" \n",
" L65 \n",
" 0.674318 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.121661 \n",
" 1.000000 \n",
" \n",
" \n",
" L66 \n",
" 0.233241 \n",
" 0.185234 \n",
" 1.000000 \n",
" 0.490927 \n",
" 1.000000 \n",
" \n",
" \n",
" L67 \n",
" 0.941579 \n",
" 0.653344 \n",
" 0.516176 \n",
" 0.103433 \n",
" 0.896850 \n",
" \n",
" \n",
" L68 \n",
" 0.972886 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.094511 \n",
" 0.947916 \n",
" \n",
" \n",
" L69 \n",
" 0.512044 \n",
" 1.000000 \n",
" 0.867472 \n",
" 0.083225 \n",
" 0.798512 \n",
" \n",
" \n",
" L7 \n",
" 1.000000 \n",
" 0.723387 \n",
" 0.292984 \n",
" 0.992460 \n",
" 1.000000 \n",
" \n",
" \n",
" L70 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L71 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.300450 \n",
" 0.335525 \n",
" \n",
" \n",
" L72 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.147646 \n",
" 0.232994 \n",
" \n",
" \n",
" L73 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.165359 \n",
" 0.233604 \n",
" \n",
" \n",
" L74 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L75 \n",
" 1.000000 \n",
" 0.998460 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L76 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L77 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.786793 \n",
" 1.000000 \n",
" \n",
" \n",
" L78 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.102148 \n",
" 1.000000 \n",
" \n",
" \n",
" L79 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L8 \n",
" 0.401975 \n",
" 0.180513 \n",
" 0.431832 \n",
" 0.312294 \n",
" 1.000000 \n",
" \n",
" \n",
" L80 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.650320 \n",
" 1.000000 \n",
" \n",
" \n",
" L81 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.060056 \n",
" 0.015380 \n",
" \n",
" \n",
" L82 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L83 \n",
" 0.208979 \n",
" 0.086791 \n",
" 0.246185 \n",
" 0.996293 \n",
" 1.000000 \n",
" \n",
" \n",
" L84 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.335688 \n",
" 1.000000 \n",
" \n",
" \n",
" L85 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L86 \n",
" 0.931083 \n",
" 0.911447 \n",
" 0.864944 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L87 \n",
" 0.273337 \n",
" 1.000000 \n",
" 0.296711 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L88 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.667706 \n",
" 0.460935 \n",
" \n",
" \n",
" L89 \n",
" 0.526516 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.612750 \n",
" 0.892760 \n",
" \n",
" \n",
" L9 \n",
" 1.000000 \n",
" 0.813069 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L90 \n",
" 0.766509 \n",
" 0.345658 \n",
" 0.026963 \n",
" 0.214402 \n",
" 1.000000 \n",
" \n",
" \n",
" L91 \n",
" 0.051267 \n",
" 0.178037 \n",
" 0.042386 \n",
" 0.013915 \n",
" 0.224879 \n",
" \n",
" \n",
" L92 \n",
" 0.137422 \n",
" 0.100428 \n",
" 0.022610 \n",
" 0.041058 \n",
" 0.546494 \n",
" \n",
" \n",
" L93 \n",
" 0.089780 \n",
" 0.139227 \n",
" 0.044802 \n",
" 0.035742 \n",
" 0.381946 \n",
" \n",
" \n",
" L94 \n",
" 0.228946 \n",
" 0.761722 \n",
" 0.091788 \n",
" 0.207765 \n",
" 1.000000 \n",
" \n",
" \n",
" L95 \n",
" 0.964106 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.983082 \n",
" 1.000000 \n",
" \n",
" \n",
" L96 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 0.988225 \n",
" 1.000000 \n",
" \n",
" \n",
" L97 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" 1.000000 \n",
" \n",
" \n",
" L98 \n",
" 1.000000 \n",
" 0.996975 \n",
" 1.000000 \n",
" 0.303747 \n",
" 1.000000 \n",
" \n",
" \n",
" L99 \n",
" 0.000000 \n",
" 0.000000 \n",
" 0.022434 \n",
" 0.257249 \n",
" 0.424863 \n",
" \n",
" \n",
"
\n"
],
"text/plain": [
""
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conv_pivot = data.pivot(index=['Ligand#'], \n",
" columns='Starting material', \n",
" values='Conversion [-]')\n",
"conv_pivot.style.background_gradient(cmap='Blues')"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "f6362c69",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
" \n",
" \n",
" Starting material \n",
" SM1 \n",
" SM2 \n",
" SM3 \n",
" SM4 \n",
" SM5 \n",
" \n",
" \n",
" Starting material \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" SM1 \n",
" 1.000000 \n",
" 0.820716 \n",
" 0.831675 \n",
" 0.028791 \n",
" 0.123575 \n",
" \n",
" \n",
" SM2 \n",
" 0.820716 \n",
" 1.000000 \n",
" 0.795473 \n",
" 0.094309 \n",
" 0.080998 \n",
" \n",
" \n",
" SM3 \n",
" 0.831675 \n",
" 0.795473 \n",
" 1.000000 \n",
" 0.085678 \n",
" 0.106625 \n",
" \n",
" \n",
" SM4 \n",
" 0.028791 \n",
" 0.094309 \n",
" 0.085678 \n",
" 1.000000 \n",
" -0.126114 \n",
" \n",
" \n",
" SM5 \n",
" 0.123575 \n",
" 0.080998 \n",
" 0.106625 \n",
" -0.126114 \n",
" 1.000000 \n",
" \n",
" \n",
"
\n"
],
"text/plain": [
""
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ddg_pivot.corr('spearman').style.background_gradient(cmap='Blues')"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "080117ab",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
" \n",
" \n",
" Starting material \n",
" SM1 \n",
" SM2 \n",
" SM3 \n",
" SM4 \n",
" SM5 \n",
" \n",
" \n",
" Starting material \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" SM1 \n",
" 1.000000 \n",
" 0.588199 \n",
" 0.768803 \n",
" 0.352076 \n",
" 0.418120 \n",
" \n",
" \n",
" SM2 \n",
" 0.588199 \n",
" 1.000000 \n",
" 0.650393 \n",
" 0.280742 \n",
" 0.315474 \n",
" \n",
" \n",
" SM3 \n",
" 0.768803 \n",
" 0.650393 \n",
" 1.000000 \n",
" 0.348677 \n",
" 0.386055 \n",
" \n",
" \n",
" SM4 \n",
" 0.352076 \n",
" 0.280742 \n",
" 0.348677 \n",
" 1.000000 \n",
" 0.575675 \n",
" \n",
" \n",
" SM5 \n",
" 0.418120 \n",
" 0.315474 \n",
" 0.386055 \n",
" 0.575675 \n",
" 1.000000 \n",
" \n",
" \n",
"
\n"
],
"text/plain": [
""
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conv_pivot.corr('spearman').style.background_gradient(cmap='Blues')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2a0d9573",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}