
Perceptually-Constrained Spotforming-Inspired Spatial Audio -

README

Dimme de Groot

March 5, 2024



1 Introduction

In this README, we explain the data and code concerning the paper Perceptually-Constrained Spotforming-
Inspired Spatial Audio1.

• We consider using the supplied MATLAB code, and in particular focus on recreating Figures 2, 3 and
4 of the paper. This corresponds to the files given in FilesA - Reproduce Simulation Results.zip.

• We explain the table containing the listening-test results and give some useful code for having a look
at the results. This code can also be used to reproduce Tables II and III. This corresponds to the files
given in FilesB - Data Subjective Experiments.zip.

1A preprint of this paper is supplied together with this README. The paper is currently under submission for IEEE
Transactions on Audio, Speech and Language Processing.

1



2 Using the code to reproduce Figures 2, 3 and 4

Before using the code, please consider that the code is not well tested for different settings from those used
in the paper. I.e. using different sample frequencies, window lengths, etc. might be problematic. You should
be able to modify the room, audio signals, and distribution parameters used without difficulties. We do not
attempt to be complete in our description of the code.

2.1 File structure

The code is structured in a number of folders:

• Audio: this folder contains audiofiles (sampled at 8 kHz!) for which you want to compute the playback
signals. The white Gaussian noise signal used as sref in the paper is provided.

• functions: this folder contains some functions which are needed to perform the computations.

– fnc_get_sx: this function takes as input a room object (see below) and creates a list of image sources
and the corresponding location and reflection coefficients. This is returned as a list indexed by
the loudspeaker number.

– fnc_nearest_neighbour: this function takes as input a room object (see below) and returns the nearest
neighbouring loudspeaker w.r.t. the virtual source. This nearest neighbour is the neighbour nearest
in angle w.r.t. the expected center of the listeners head location xh.

– P_par: this function takes as input a par set object and the input signal frame and gives as output
the masking curve (in both SPL dB and in ’normal’ units) and the inverse masking curve.

• Objects: this folder contains the objects used. These are the following:

– Par_Set: this object is used for the Par-measure. It implements the filters needed for the Par
measure and performs the calibration procedure.

– Room: this object defines the room: the receiver location xr, the physical loudspeaker locations
xi, the virtual source location, the room size and the reflection coefficients. A crude estimate of
the T60 time is provided as well. In the Room object, the virtual source location is described as a
location, and not as a direction. The direction is computed from this location in all code where
the virtual source direction is needed. The default values are those used in the simulation
section of the paper.

– Settings: a simple object keeping track of the settings, such as the integration bounds and the
frame-length. Here, also the parameterisation κV , µr, σr of the probability distributions is specified.
The default values are those used in the paper.

• Results: the results when running the code are stored in this folder. The results needed to recreate Fig.
4 are already provided and stored in this folder.

• step0_calibrate: this folder contains the code which is relevant when choosing a room and distribution.
Namely

– fnc_plot_room: used when plotting the room.

– step0a_visualise_room: used to plot the room.

– step0b_visualise_weighting: used to visualise the probability distribution.

• step1_PSD_matrices: this folder contains the code required to numerically compute the spatial correlation
matrices RB and RD. In the code A corresponds to RB and B corresponds to RD. Sorry for this
confusing notation.

– step1a_compute_PSD_integral: this code computes the integrals required for RB and RD. The results
are stored (per loudspeaker) in the subdirectory step1a_compute_PSD_integral/Data/<REGION_LOUDSPEAKER>.mat,
where <REGION_LOUDSPEAKER>.mat is the region (A or B for B and D, respectively and LOUDSPEAKER is the
loudspeaker number (1 to Ns + 1, since the virtual source is also considered).

2



– step1b_combine_PSD_integral: this code combines the results computed by step1a_compute_PSD_integral

and stores the results in step1a_compute_PSD_integral/Data/data_raw.mat.

– step1c_compute_PSD: this code computes RB and RD from RB, RD and σ2
num. The latter is found

in the Settings object. The results are stored in step1a_compute_PSD_integral/Data/data_proc.mat.

– step1d_decompose_PSD: this function performs the decomposition needed for the convex relaxation,
i.e. it computes R and L. It also normalises L by its Frobenius norm. That is, it implements α1

of the paper. The results are stored in step1a_compute_PSD_integral/Data/data_res.mat.

– The function fnc_main: this function loops through the different frequency bins and computes the
mean RIR (unused) by integrating over fnc_integrandA and fnc_integrandB and the covariance matri-
ces by integrating over fnc_integrandAstd and fnc_integrandBstd. The latter two are implementations
of the integrand of Eq. (22) of the paper. The former two are not used in the paper, but can be

considered as the integrand of Eq. (5) of the paper, but with the transfer ĥ instead of the audio
signal ŝ.

• step2_sound: this folder contains the code used to implement NN, GEV and the novel algorithm.

– main_1_nn: this file implements NN (nearest neighbour) and stores the results in the Results folder.

– main_2_gev: this file implements the GEV-based algorithm and stores the results in the Results

folder.

– main_3a_transfer: this file creates some stuff needed to perform the novel algorithm. Among others,
the zero-padded DFT matrix, the analysis and synthesis windows, the par_set object and the
distortion-constrained loudspeaker ε is defined and stored in the Results folder.

– main_3b_novel: this file implements the novel algorithm. The user needs to define dpar (dPar) and
α2 (lambda). The results are stored in the Results folder.

• step3_simulation This folder is used to compute things for evaluating the results. In particular, it uses
Habets implementation of the mirror image source method (MISM) to compute the RIRs to a number of
points in the highlighted region and subsequently construct the plots. The folder contains the following
items

– fnc_habets: this functions takes as input a Room object and a Settings object and returns a list of
RIRs from each of the loudspeakers (stored in room.S) to the receiver location (stored in room.R).
It uses rir_generator.mexa64 to do so, see below.

– fnc_nearest_neighbour: this is a copy of the function with the same name in the functions folder
described above.

– fnc_subplot_image_1: this function is handy for plotting and used by step3b_octavefilters.

– rir_generator.mexa64: this is the RIR generator from Habets, it is not provided by us. You can ob-
tain it from https://github.com/ehabets/RIR-Generator. Alternatively, we provide the RIRs
needed to recreate Figure 4 in the step3_simulation/Data folder.

– step3a_compute_transfer_functions: this file is used to compute the RIR to a number of points using
rir_generator.mexa64. The resulting RIRs are stored in the Data folder.

– fnc_subplot_image_1: this function is handy for plotting and used by step3b_octavefilters.

– step3b_octavefilters: this file uses the RIRs stored in the Data folder and computes the energy per
octaveband per RIR for a given set of playback signals (as stored in the ../Results folder). This
file reproduces Fig. 4 of the paper.

2.2 Using the code: reproducing Figure 2 and 3

You can run step0_calibrate/step0a_visualise_room.m to reproduce Figure 3. In case you want to modify the
room, simply modify the Objects/Room.m object.

You can simply run step0_calibrate/step0b_visualise_weighting.m to reproduce Figure 2. In case you want
to modify the distribution parameters, simply modify the Objects/Settings.m object (mu_r, sigma_r, kappaA,
kappaB), the parameters muA and muB are computed from room.R and the virtual source direction (last row of
room.S).

3

https://github.com/ehabets/RIR-Generator


2.3 Using the code: computing playback signals

As mentioned in the paper, we use CVX equipped with MOSEK to solve the optimisation problems, see
https://cvxr.com/cvx/download/. The NN and GEV algorithm do not need to perform convex optimi-
sation. However, to use step2_sound/main_3b_novel, you will need to install CVX. It might also work without
MOSEK installed, but the accuracy and runtimes will likely differ.

Note that we provide all playback signals required to reproduce Fig. 4. So, if that is your goal, you do
not need to recompute them.

To compute the playback signal for the nearest neighbour algorithm, simply provide the path to your
audiofile (example is given for "../Audio/white_noise.wav") and run step2_sound/main_1_nn.mat. The result will
be stored in the Results folder.

To compute the playback signals for the GEV-based algorithms and the novel algorithms, you first need
to compute the spatial covariance matrices. The covariance matrices are computed by running
step1_PSD_matrices/step1a_compute_PSD_integral up to step1d_decompose_PSD. Note that we use a parfor loop, so
Matlabs parallel computing toolbox is required (or you can modify the code). If you want to compute the
covariance matrices for a different room or for different distribution parameterisations, simply modify the
corresponding files in the Objects folder.

Now you can simply run main_2_sound/main_2_gev.m to compute the GEV-based algorithms playback signals.
The audio path should be specified (example is given for "../Audio/white_noise.wav").

To compute the novel algorithms playback signals, first run main_2_sound/main_3a_transfer.m and then
run main_2_sound/main_3b_novel. The audio path should be specified in the latter (example is given for
"../Audio/white_noise.wav").

2.4 Using the code: reproducing Figure 4

To reproduce Figure 4, first run step3_simulation/step3a_compute_transfer_functions.m and then run
step3_simulation/step3b_octavefilters.m. The former computes the required RIRs and the letter plots Fig.
4. Note that, if you didnt modify any of the parameters, the step3_simulation/Data folder already contains
the RIRs, so it is not needed to run step3_simulation/step3a_compute_transfer_functions.m. Additionally, note
that step3_simulation/step3b_octavefilters.m requires the paths to the computed audiofiles. Currently, the
paths needed to reproduce Fig. 4 are given. If you want to use the same colormap, please visit https:

//www.fabiocrameri.ch/colourmaps/. Here, the perceptually uniform and colour-vision-deficiency friendly
colormaps can be downloaded, along with some explanation.

4

https://cvxr.com/cvx/download/
https://www.fabiocrameri.ch/colourmaps/
https://www.fabiocrameri.ch/colourmaps/


3 Subjective experiment results

We provide two .mat files concerning the results of the subjective experiments. Additionally, some functions
are provided plotting the results. Below, we first briefly describe the files. We then explain the structure of
the tables.

3.1 Provided files

• Results/table_loc.mat: this is the table containing the results of the localisation experiment.

• Results/table_statistics.mat: this is the table containing some statistics, such as confidence and intelli-
gibility ratings. We removed gender information from this table.

• fnc_cart2sph.m: this function converts cartesian coordinates to spherical coordinates.

• step1_statistics.m: this function prints the statistics. It effectively reproduces Table II.

• step2a_azimuth_elevationMeas.m: this function reports the errors for a given virtual source direction. Thus,
it effectively reproduces Table III. Additionally, it plots the mean directions reported, and it plots the
individual responses.

• step2b_azimuth_elevationTrain.m: this function plots the responses of the users to the training signals.
Note that all training signals are single loudspeakers playing back a signal.

3.2 The .mat tables

Below, the content of the tables is described. When observing the tables, you will sometimes notice a NaN

value. This is because sometimes the listeners did not answer all questions and because sometimes the post-its
(used to measure the location the listener pointed at) fell of the crepe-paper.

The table: Results/table_statistics.mat

This is a 780× 11 matrix. The columns (ordered) indicate the following:

1. Medically diagnosed hearing impairment (1 yes; 2 no; 3 would rather not say)

2. Age range (1 younger than 19; 2 19-30; 3 30-40; 4 41-60; 5 61 or older; 6 would rather not say)

3. Native English speaker (1 yes; 2 no; 3 would rather not say)

4. Self-reported English level (1 beginner; 2 pre-intermediate; 3 intermediate; 4 near fluent; 5 fluent; 6
would rather not say)

5. Reported confidence (1 to 5, where higher is more confident)

6. Reported quality (1 to 5, where higher is higher quality)

7. Reported intelligibility (1 to 5, where higher is more intelligible)

8. Virtual source direction (1 to 11)

9. Algorithm (1 NN; 2 GEV; 3 Novel α2 = 0.1; 4 Novel α2 = 1)

10. Gender of speaker, i.e. was the segment from the TIMIT database a female or a male speaker (1 female;
2 male).

11. Number of repetitions, how often did the listener request the signal to be repeated?

5



The table: Results/table_loc.mat

This is a 936× 15 matrix. The columns (ordered) indicate the following:

1. Listener number, replaced by all -1’s (i.e. not informative).

2. Measured x-location, centered at room.R (xh).

3. Measured y-location, centered at room.R (xh).

4. Measured z-location, centered at room.R (xh).

5. Virtual source direction (1 to 11)

6. Algorithm (1 NN; 2 GEV; 3 Novel α2 = 0.1; 4 Novel α2 = 1)

7. Gender of speaker, i.e. was the segment from the TIMIT database a female or a male speaker (1 female;
2 male; 3 part of the training segments). All training segment speakers were female as well. For the
training segments, the algorithm and virtual source direction column are ignored.

8. Target x-location, centered at room.R (xh). I.e. a x-location corresponding to a virtual source direction.

9. Target y-location, centered at room.R (xh). I.e. a y-location corresponding to a virtual source direction.

10. Target z-location, centered at room.R (xh). I.e. a z-location corresponding to a virtual source direction.

11. Nearest Neighbour (reference loudspeaker ε) x-location, centered at room.R (xh)

12. Nearest Neighbour (reference loudspeaker ε) y-location, centered at room.R (xh)

13. Nearest Neighbour (reference loudspeaker ε) z-location, centered at room.R (xh)

14. Medically diagnosed hearing impairment (1 yes; 2 no; 3 would rather not say)

15. Age range (1 younger than 19; 2 19-30; 3 30-40; 4 41-60; 5 61 or older; 6 would rather not say)

6


	Introduction
	Using the code to reproduce Figures 2, 3 and 4
	File structure
	Using the code: reproducing Figure 2 and 3
	Using the code: computing playback signals
	Using the code: reproducing Figure 4

	Subjective experiment results
	Provided files
	The .mat tables


