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Figure 1: Strain gauge configuration

Strain Gauges

Strain gauges are made use throughout the whole experimental procedure.

The strain gauges, by principle, work inside a Wheatstone bridge. One of
the simplest configurations of strain gauges is what is called an active quarter-
bridge 2-wire system. [1]| (See Figure|l) This is also the configuration we use for
the strain gauge on the center of our specimen for the uncracked tests. Here, R,
is the resistance of the strain gauge placed on the specimen, which is plugged to
the strain amplifier by two cables coming out of it. (See Fig. ??) The other 3
resistances (with equal resistances of R) of the Wheatstone bridge are inside the
strain amplifier device. Excitation voltage F is given to the circuit by the strain
amplifier. Compression or tension of the specimen causes the resistance of R,
to change and creates a change in the output voltage ey, which is amplified and
read by the strain amplifier.

The strain amplifier can work in two modes depending on the required sen-
sitivity of the measurement: either 50mV/V or 5mV/V. First one means that
1V of change in the output voltage corresponds to 1% strain whereas the sec-
ond one amplifies 1% strain to a 10V of change. For materials requiring more
sensitive strain measurements such as a steel bar, 5mV/V is more suitable while
for a more ductile aluminum sheet 50mV/V is sensitive enough to measure the
change in strain. Keeping in mind that strain is a unitless parameter, 1% strain
basically means a strain of 0.01. Therefore, if we set the amplification factor of
the strain gauge couple on our steel pretensioning bar to 5mV/V, multiplying
the read voltage value with 0.01/10 = 0.001 would result the strain the bar is
going through.

The number and placement of the strain gauges modify the Wheatstone
bridge and changes the meaning of the output voltage in terms of strain. This

point will be made more clear under the next section.



If the gauge factor of the strain gauge is different from that of the strain
amplifier, the measured strain, g, needs a correction to obtain the real strain,

€. This is the case for our setup.

Kamp W

where Kqpmp is the gauge factor of the strain amplifier. It is equal to 2.00 for the
strain amplifier we use in our laboratory. kg, on the other hand, is 2.12 for the

strain gauges we use.

Strain Gauge Couple on a Bar

The torsion bar in the setup is likely to undergo a bending strain. Therefore, two
strain gauges are placed on the bar to be able to differentiate the effect of the
bending strain from the axial strain, the latter being the important parameter
for us. In this section, it will be investigated why only one strain gauge is not
enough to obtain the axial strain of a bent part and how two of them can achieve
this.

Figure [2| shows three exemplary loading cases, I, II and III, of the bar.
Initially, the machine does not apply any force on the specimen in the vertical
direction. Hence, P is zero. On the other hand, there is a Py etension given in the
transverse direction via the torsion bar, i.e. initially Ptransverse = Ppretension- In
fact, Figure [2a]illustrates the readings from both of the strain gauges as a result
of this pretension. Note that there is a linear relation between force and strain
in the linear elastic region of the material we are working with. Therefore, we
have illustrated the lines indicating forces on the top and the bottom of the cross
section whose lengths are proportional to the magnitude of the force but we have
only quantified them with the strain gauge voltage values since voltage readings
will be linearly proportional to the strain and the force. The pretension load
is the one we intentionally want to apply whereas the pure bending component
occurs as an unwanted result of it. We can only read their sums from the
strain gauges. Figure on the other hand, shows what would be the strain
gauges readings in case we start the cyclic loading and the bending is assumed
to remain the same. In this case, the transverse load will increase as a result of
the restricted displacement in the transverse direction and read values of both

of the strain gauges will increase with the same slope as the machine loads the



specimen.

There are some conclusion to be drawn from these examples. First of all,
mean of the two strain gauge readings (green dashed lines in Figure corre-
spond to the axial force the bar experiences in the transverse direction.

SG1 + SG,

SGaxial = SGmean = 2

where SG indicates the strain gauge readings in volts. This proves that if we
read the strain from two different strain gauges placed on the opposite sides of
the same bar, we can eliminate the bending of the bar by taking the mean of
the readings.

On the other hand, the difference between the readings of each of the strain
gauges and their mean (red lines in Figure correspond to the size of the

pure bending component of the strain.
SGbending - |SG1,2 - SGmean|

Next, we will assume a load state for the case I of Figure[2| at a forward time
instance, ii, in comparison with the initial state, i. This time, not only a change
in the axial component but also a change of bending is assumed. (See Figure [3)
It is clear that if the bent of the bar is enhanced or reduced, the slopes of the
strain gauge reading lines differ from each other. More importantly, one of the
readings increasing while the other decreasing means that the bending is greater
than the axial loading. If the magnitude of increase in the axial loading was
greater than the increase of the bent, values of both readings would increase.

These findings provide us the knowledge of what is happening when two
strain gauges are placed on the bar and read separately. The most important
outcome is to know that we should take their means to assess the transverse
response to the axial cyclic loading.

In the bar calibration test, we read the strain gauges separately and used the
findings of this section. However, in the uncracked specimen test setup, since
we did not have enough input ports in the machine for all the strain gauges and
LVDT we have, we had to design a Wheatstone bridge that reads two strain
gauges on the bar at the same time and eliminates the bending effects by taking
their mean. We found the configuration shown in Figure [4] competent for this
purpose. We did not break this configuration afterwards and used it for fatigue

tests too.
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strain gauge readings
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Figure 4: Wheatstone bridge of the strain gauges used on the bar



Bar Calibration

Relating the strain gauge readings on the bar to the force acting on it requires a
procedure which is simply called as calibration. Before being assembled with the
rest of the setup components, the torsion bar underwent through this calibration
test after the strain gauges are placed on it. For the calibration test, the bar
is clamped to a tensile test machine and starting from the unloaded condition,
load is increased gradually up to a magnitude of 50 kN and then taken back to
zero. Note that this is below yield stress and we expect linear elastic behaviour.
Meanwhile, the voltages are read and recorded from the strain gauges. Cor-
responding load and displacement values at each data point are measured and
recorded by the machine.

Enough runs are made to have a sufficient number of curves to obtain ac-
curate values. 3 of the tests are done after the bar is rotated 90 degrees to
account for the changes when the strain gauges are placed orthogonally to the
clamps of the test machine. In all of the calibration tests, both of the strain
gauges were connected with the configuration shown in Fig. [[] Hence, we had
two separate readings from the two strain gauges. We averaged them to have
a single averaged curve for each run. Then the curves of all runs are averaged
to give the resultant calibration curve shown in Figure [5| with the blue dashed
line, labeled as the Mean.

A few outlier runs are not taken into account as well as one that increases
dramatically in the beginning due to clamping issues. After all, we were able to
make use of 5 consistent lines whose mean provided us the ultimate calibration
curve.

Thanks to this calibration curve, we will be able to relate the strain value
read from the strain gauges on the bar during the experiments to the response

it gives in terms of load.

Linear Voltage Differential Transformers

Linear voltage differential transformer (LVDT) is an absolute measuring device
that converts linear displacement into an electrical signal through the principle
of mutual induction.

LVDT calibration process is basically placing gauge blocks with known thick-
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Figure 5: Calibration bar of the steel torsion bar

ness under the push rod (a non-ferromagnetic shaft) to see how the LVDT read-
ing changes for that amount of displacement. (See Figure |§[) Since there is a
linear relationship between the displacement change and the voltage read from
the LVDT, a coefficient can be found which can be multiplied by any reading
from LVDT to result in the displacement.

Since there may be small amount of surface defects on the gauge blocks and
the results may vary according to the way the gauge blocks sit on the defec-
tive surface of the hydraulic piston, we place the gauge blocks in two different
alignments and take the average of the results. Additionally, since the response
of LVDT may differ in different ranges of displacements, we take results from
gauge blocks of different thickness. Using a 1.005 mm gauge block and a 2 mm
one satisfies the displacement range we are working with.

It is seen that placing a 1.005 mm thick gauge block in two different align-
ments increased the voltage read from the LVDT, averagely, by 1.042 V, which
is equal to 1.005/1.042 = 0.9645 mm/V. The average result of placing a 2 mm
thick gauge block is found as 0.9790 mm/V. Total average of the two blocks gives

0.9718 mm/V, which is the coefficient we are using throughout our calculations.



Figure 6: LVDT calibration including the two different alignments of the gauge
block
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