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Biogenic carbon calculations
The amount of biogenic CO; stored in 1 kg of bio-HDPE was calculated according to the following
equation:

_ mpe Meo, ~ 12.0096 12.0096 + 2 - 15.99903
Mpcstored =" Ty Mpolymer = 1570096 + 2 - 1.00784 12.0096
=314 kg

In this equation, mgcstorea 1S the atmospheric CO; stored in the polymer in kg. Mg is the molecular
weight of biogenic carbon in 1 repeating unit of the polymer. The molecular structure of polyethylene
is (CH2)n, so it equals the molecular weight of one carbon atom in our case. myppg is the molecular
weight of one repeating unit of the polymer, m,, is the molecular weight of one carbon dioxide
molecule, and m is the atomic weight of carbon. Finally, m,,4;ymer is the mass for which the contained
COzisto be calculated, 1 kg in this case. The equation first calculates fraction of the weight of a polymer
is biogenic carbon. Every kg polyethylene contains of 0.85 kg of carbon atoms. Next, the relation
between CO; and atomic carbon is used to compute the weight of the corresponding CO,, amounting to
3.14 kg for bio-HDPE.



Table S1: Lifecycle inventory of petrochemical-based HDPE scenarios.

Scenario amount | Activity Adjustments
Petro-RoW | 1 kg Polyethylene, high density, granulate [RoW]
Petro-RER | 1 kg Polyethylene, high density, granulate [RER]

Table S2: Lifecycle inventory of the ethylene conversion process.

Amount Activity Location
0.0672 kg | nitrogen, liquid RoW or RER
0.00011 kg | zeolite, powder RoW or RER
0.0266 kg | sodium bicarbonate RoW or RER
2.57 kg tap water Specific country
0.0372 kg | nitrogen, liquid RoW or RER
0.0035 kg | propylene RoW or RER
0.47 kWh | electricity, medium voltage | Specific country
4.84 MJ heat, district or industrial Specific country




Table S3: Lifecycle inventory of bio-based HDPE scenario’s. *Data from the Global Feed LCA

database.
Scenario Amount | Activity Adjustments
SC-BR 18.57 kg | Sugarcane [BR]
2.084 kg | ethanol, without water, in 99.7% solution
state, from fermentation [BR]
1.002 kg | Ethylene [RoW] Adjusted energy and tap
water to [BR]
1 kg polyethylene, high density, granulate [RoW] | Adjusted energy to [BR}
SC-CN 18.57 kg | Sugarcane [CN]*
2.084 kg | ethanol, without water, in 99.7% solution Adjusted energy to [CN]
state, from fermentation [BR]
1.002 kg | Ethylene [RoW] Adjusted energy and tap
water to [CN]
1 kg polyethylene, high density, granulate [RoW] | Adjusted energy to [CN]
SC-CO 18.57 kg | Sugarcane [CO]
2.08 kg ethanol, without water, in 99.7% solution Adjusted energy to [CO]
state, from fermentation [BR]
1.002 kg | Ethylene [RoW] Adjusted energy and tap
water to [CO]
1.0 kg polyethylene, high density, granulate [RoW] | Adjusted energy to [CO]
SC-IN 18.57 kg | Sugarcane [IN]
2.084 kg | ethanol, without water, in 99.7% solution Adjusted energy to [IN]
state, from fermentation [BR]
1.002 kg | Ethylene [RoW] Adjusted energy and tap
water to [IN]
1 kg polyethylene, high density, granulate [RoW] | Adjusted energy to [IN]
SC-US 18.57 kg | Sugarcane [US]*
2.084 kg | ethanol, without water, in 99.7% solution Adjusted energy to [US]
state, from fermentation [US]
1.002 kg | Ethylene [RoW] Adjusted energy and tap
water to [US]
1 kg polyethylene, high density, granulate [RoW] | Adjusted energy to [US]
M-BR 6.72 kg maize grain [BR]
2.08 kg ethanol, without water, in 95% solution Adjusted energy and tap
state, from fermentation [US] water to [BR]
2.08 kg ethanol, without water, in 99.7% solution Adjusted energy to [BR]
state, from fermentation [US]
1.002 kg | Ethylene [RoW] Adjusted energy and tap
water to Brazil
1.0 kg polyethylene, high density, granulate [RoW] | Adjusted energy to Brazil
M-CA-QC | 6.72 kg maize grain [CA-QC]
2.08 kg ethanol, without water, in 95% solution Adjusted energy and tap
state, from fermentation [US] water to [CA-QC]
2.08 kg ethanol, without water, in 99.7% solution Adjusted energy to [CA-
state, from fermentation [US] QC]
1.002 kg | Ethylene [RoW] Adjusted energy and tap
water to [CA-QC]
1.0 kg polyethylene, high density, granulate [RoW] | Adjusted energy to [CA-

QC]




Table S3: continued.

Scenario Amount | Activity Adjustments
M-CN 6.72 kg maize grain [CN]*
2.08 kg ethanol, without water, in 95% solution Adjusted energy and tap
state, from fermentation [US] water to [CN]
2.08 kg ethanol, without water, in 99.7% solution Adjusted energy to [CN]
state, from fermentation [US]
1.002 kg | Ethylene [RoW] Adjusted energy and tap
water to [CN]
1.0 kg polyethylene, high density, granulate [RoW] | Adjusted energy to [CN]
M-IN 6.72 kg maize grain [IN]
2.08 kg ethanol, without water, in 95% solution Adjusted energy and tap
state, from fermentation [US] water to [IN]
2.08 kg ethanol, without water, in 99.7% solution Adjusted energy to [IN]
state, from fermentation [US]
1.002 kg | Ethylene [RoW] Adjusted energy and tap
water to [IN]
1.0 kg polyethylene, high density, granulate [RoW] | Adjusted energy to [IN]
M-US 6.72 kg maize grain [US]
2.08 kg ethanol, without water, in 95% solution
state, from fermentation [US]
2.08 kg ethanol, without water, in 99.7% solution
state, from fermentation [US]
1.002 kg | Ethylene [RoW] Adjusted energy and tap
water to [US]
1.0 kg polyethylene, high density, granulate [RoW] | Adjusted energy to [US]
M-ZA 6.72 kg maize grain [ZA]
2.08 kg ethanol, without water, in 95% solution Adjusted energy and tap
state, from fermentation [US] water to [ZA]
2.08 kg ethanol, without water, in 99.7% solution Adjusted energy to [ZA]
state, from fermentation [US]
1.002 kg | Ethylene [RoW] Adjusted energy and tap
water to [ZA]
1.0 kg polyethylene, high density, granulate [RoW] | Adjusted energy to [ZA]
M-CH 6.72 kg maize grain [CH]
2.08 kg ethanol, without water, in 95% solution Adjusted energy and tap
state, from fermentation [US] water to [CH]
2.08 kg ethanol, without water, in 99.7% solution Adjusted energy to [CH]
state, from fermentation [US]
1.002 kg | Ethylene [RER] Adjusted energy and tap
water to [CH]
1.0 kg polyethylene, high density, granulate [RER] | Adjusted energy to [CH]
M-DE 6.72 kg maize grain [DE]*
2.08 kg ethanol, without water, in 95% solution Adjusted energy and tap
state, from fermentation [US] water to [DE]
2.08 kg ethanol, without water, in 99.7% solution Adjusted energy to [DE]
state, from fermentation [US]
1.002 kg | Ethylene [RER] Adjusted energy and tap
water to [DE]
1.0 kg polyethylene, high density, granulate [RER] | Adjusted energy to [DE]




Table S3: continued

Scenario Amount | Activity Adjustments
M-FR 6.72 kg maize grain [FR]*
2.08 kg ethanol, without water, in 95% solution Adjusted energy and tap
state, from fermentation [US] water to [FR]
2.08 kg ethanol, without water, in 99.7% solution Adjusted energy to [FR]
state, from fermentation [US]
1.002 kg | Ethylene [RER] Adjusted energy and tap
water to [FR]
1.0 kg polyethylene, high density, granulate [RER] | Adjusted energy to [FR]
SB-US 13.56 kg | sugar beet [ US]
2.08 kg ethanol, without water, in 95% solution Adjusted energy and tap
state, from fermentation [CH] water to [US]
2.08 kg ethanol, without water, in 99.7% solution Adjusted energy to [US]
state, from fermentation [CH]
1.002 kg | Ethylene [RoW] Adjusted energy and tap
water to [US]
1.0 kg polyethylene, high density, granulate [RoW] | Adjusted energy to [US]
SB-CH 13.56 kg | sugar beet [CH]
2.08 kg ethanol, without water, in 95% solution
state, from fermentation [CH]
2.08 kg ethanol, without water, in 99.7% solution
state, from fermentation [CH]
1.002 kg | Ethylene [RER] Adjusted energy and tap
water to [CH]
1.0 kg polyethylene, high density, granulate [RER] | Adjusted energy to [CH]
SB-DE 13.56 kg | sugar beet [DE]
2.08 kg ethanol, without water, in 95% solution Adjusted energy and tap
state, from fermentation [CH] water to [DE]
2.08 kg ethanol, without water, in 99.7% solution Adjusted energy to [DE]
state, from fermentation [CH]
1.002 kg | Ethylene [RER] Adjusted energy and tap
water to [DE]
1.0 kg polyethylene, high density, granulate [RER] | Adjusted energy to [DE]
SB-FR 13.56 kg | sugar beet [FR]
2.08 kg ethanol, without water, in 95% solution Adjusted energy and tap
state, from fermentation [CH] water to [FR]
2.08 kg ethanol, without water, in 99.7% solution Adjusted energy to [FR]
state, from fermentation [CH]
1.002 kg | Ethylene [RER] Adjusted energy and tap
water to [FR]
1.0 kg polyethylene, high density, granulate [RER] | Adjusted energy to [FR]
SB-SE 13.56 kg | sugar beet [SE]*
2.08 kg ethanol, without water, in 95% solution Adjusted energy and tap
state, from fermentation [CH] water to [SE]
2.08 kg ethanol, without water, in 99.7% solution Adjusted energy to [SE]
state, from fermentation [CH]
1.002 kg | Ethylene [RER] Adjusted energy and tap
water to [SE]
1.0 kg polyethylene, high density, granulate [RER] | Adjusted energy to [SE]




Table S3: continued

Scenario Amount | Activity Adjustments
P-CA-QC 29.63 kg | Potato [CA-QC]
2.08 kg ethanol, without water, in 95% solution state, Adjusted energy and
from fermentation [CH] tap water to [CA-QC]
2.08 kg ethanol, without water, in 99.7% solution state, | Adjusted energy to
from fermentation [CH] [CA-QC]
1.002 kg | Ethylene [RoW] Adjusted energy and
tap water to [CA-QC]
1.0 kg polyethylene, high density, granulate [RoW] Adjusted energy to
[CA-QC]
P-CN 29.63 kg | Potato [CN]
2.08 kg ethanol, without water, in 95% solution state, Adjusted energy and
from fermentation [CH] tap water to [CN]
2.08 kg ethanol, without water, in 99.7% solution state, | Adjusted energy to
from fermentation [CH] [CN]
1.002 kg | Ethylene [RoW] Adjusted energy and
tap water to [CN]
1.0 kg polyethylene, high density, granulate [RoW] Adjusted energy to
[CN]
P-IN 29.63 kg | Potato [IN]
2.08 kg ethanol, without water, in 95% solution state, Adjusted energy and
from fermentation [CH] tap water to [IN]
2.08 kg ethanol, without water, in 99.7% solution state, | Adjusted energy to [IN]
from fermentation [CH]
1.002 kg | Ethylene [RoW] Adjusted energy and
tap water to [IN]
1.0 kg polyethylene, high density, granulate [RoW] Adjusted energy to [IN]
P-US 29.63 kg | Potato [US]
2.08 kg ethanol, without water, in 95% solution state, Adjusted energy and
from fermentation [CH] tap water to [US]
2.08 kg ethanol, without water, in 99.7% solution state, | Adjusted energy to
from fermentation [CH] [US]
1.002 kg | Ethylene [RoW] Adjusted energy and
tap water to [US]
1.0 kg polyethylene, high density, granulate [RoW] Adjusted energy to
[US]
P-CH 29.63 kg | Potato [CH]
2.08 kg ethanol, without water, in 95% solution state,
from fermentation [CH]
2.08 kg ethanol, without water, in 99.7% solution state,
from fermentation [CH]
1.002 kg | Ethylene [RER] Adjusted energy and
tap water to [CH]
1.0 kg polyethylene, high density, granulate [RER] Adjusted energy to
[CH]




Table S3: continued

Scenario Amount | Activity Adjustments
P-DE 29.63 kg | Potato [DE]*
2.08 kg ethanol, without water, in 95% solution state, Adjusted energy and
from fermentation [CH] tap water to [DE]
2.08 kg ethanol, without water, in 99.7% solution state, | Adjusted energy to
from fermentation [CH] [DE]
1.002 kg | Ethylene [RER] Adjusted energy and
tap water to [DE]
1.0 kg polyethylene, high density, granulate [RER] Adjusted energy to
[DE]
P-FR 29.63 kg | Potato [FR]*
2.08 kg ethanol, without water, in 95% solution state, Adjusted energy and
from fermentation [CH] tap water to [FR]
2.08 kg ethanol, without water, in 99.7% solution state, | Adjusted energy to
from fermentation [CH] [FR]
1.002 kg | Ethylene [RER] Adjusted energy and
tap water to [FR]
1.0 kg polyethylene, high density, granulate [RER] Adjusted energy to
[FR]
WO-CA- 7.93 kg wood chips, wet, measured as dry mass [CA-
QC QC]
2.08 kg ethanol, without water, in 95% solution state, Adjusted energy and
from fermentation [CH] tap water to [CA-QC]
2.08 kg ethanol, without water, in 99.7% solution state, | Adjusted energy to
from fermentation [CH] [CA-QC]
1.002 kg | Ethylene [RoW] Adjusted energy and
tap water to [CA-QC]
1.0 kg polyethylene, high density, granulate [RoW] Adjusted energy to
[CA-QC]
WO-CH 7.93 kg wood chips, wet, measured as dry mass [CH]
2.08 kg ethanol, without water, in 95% solution state,
from fermentation [CH]
2.08 kg ethanol, without water, in 99.7% solution state,
from fermentation [CH]
1.002 kg | Ethylene [RER] Adjusted energy and
tap water to [CH]
1.0 kg polyethylene, high density, granulate [RER] Adjusted energy to
[CH]
WO-DE 7.93 kg wood chips, wet, measured as dry mass [DE]
2.08 kg ethanol, without water, in 95% solution state, Adjusted energy and
from fermentation [CH] tap water to [DE]
2.08 kg ethanol, without water, in 99.7% solution state, | Adjusted energy to
from fermentation [CH] [DE]
1.002 kg | Ethylene [RER] Adjusted energy and
tap water to [DE]
1.0 kg polyethylene, high density, granulate [RER] Adjusted energy to
[DE]




Table S3: continued

Scenario Amount | Activity Adjustments
WO-SE 7.93 kg wood chips, wet, measured as dry mass [SE]
2.08 kg ethanol, without water, in 95% solution state, Adjusted energy and
from fermentation [CH] tap water to [SE]
2.08 kg ethanol, without water, in 99.7% solution state, | Adjusted energy to
from fermentation [CH] [SE]
1.002 kg | Ethylene [RER] Adjusted energy and
tap water to [SE]
1.0 kg polyethylene, high density, granulate [RER] Adjusted energy to
[SE]




Table S4: Overview of transport scenario 1.

Scenario Transport 1
SC-BR Truck [BR] 1.86 t-km
Truck [CN] 1.86 t-km
SC-CN
SC-CO Truck [CO] 1.86 t-km
SC-IN Truck [IN] 1.86 t-km
SC-US Truck JUS] 1.86 t-km
M-BR Truck [BR] 0.67 t-km
M-CA-QC Truck [CA-QC] | 0.67 t-km
M-CN Truck [CN] 0.67 t-km
M-IN Truck [IN] 0.67 t-km
M-US Truck JUS] 0.67 t-km
M-ZA Truck [ZA] 0.67 t-km
M-CH Truck [CH] 0.67 t-km
M-DE Truck [DE] 0.67 t-km
M-FR Truck [FR] 0.67 t-km
SB-US Truck [US] 1.36 t-km
SB-CH Truck [CH] 1.36 t-km
SB-DE Truck [DE] 1.36 t-km
SB-FR Truck [FR] 1.36 t-km
SB-SE Truck [SE] 1.36 t-km
P-CA-QC Truck [CA-QC] | 2.96 t-km
P-CN Truck [CN] 2.96 t-km
P-IN Truck [IN] 2.96 t-km
P-US Truck JUS] 2.96 t-km
P-CH Truck [CH] 2.96 t-km
P-DE Truck [DE] 2.96 t-km
P-FR Truck [FR] 2.96 t-km
P-SE Truck [SE] 2.96 t-km
WO-CA-QC | Truck [CA-QC] | 0.79 t-km
WO-CH Truck [CH] 0.79 t-km
WO-DE Truck [DE] 0.79 t-km
WO-SE Truck [SE] 0.79 t-km




Table S5: Overview of transport scenarios 2 and 3.

Scenario Transport References
SC-BR T2 Train To ethylene plant 2.98 t-km (Braskem, 2022; Google, n.d.; Wernet
et al., 2016)
T3 Train To Porto Alegre [BR] 1.26 t-km (Google, n.d.; Wernet et al., 2016)
T3 Freight ship | Porto Alegre [BR] — Port of Antwerp [BE] 23.56 t-km (Sea Distances, n.d.)
SC-CN T2/T3 Train Gianxi [CN] — Guangzhou [CN] 1.27 t-km (Google, n.d.; Peng, 2023; M. Zhang &
Govindaraju, 2018)
T2 Freight ship | Guangzhou [CN] — Porto Alegre [BR] 40.83 t-km (Sea Distances, n.d.)
T3 Freight ship | Guangzhou [CN] — Port of Antwerp [BE] 37.96 t-km (Sea Distances, n.d.)
SC-CO T2/T3 Truck Rio Cauca [CO] — Covenas [CO] 1.24 t-km (Google, n.d.; Wernet et al., 2016)
T2 Freight ship | Covenas [CO] — Porto Alegre [BR] 19.04 t-km (Sea Distances, n.d.)
T3 Freight ship | Covenas [CO] — Port of Antwerp [BE] 17.96 t-km (Sea Distances, n.d.)
SC-IN T2/T3 Train Rattipur [IN] — Kandla port [IN] 2.78 t-km (Google, n.d.; Indian Railways, n.d.;
Wernet et al., 2016)
T2 Freight ship | Kandla port [IN] — Porto Alegre [BR] 30.85 t-km (Sea Distances, n.d.)
T3 Freight ship | Kandla port [IN] — Port of Antwerp [BE] 24.06 t-km
SC-US T2/T3 Truck Lake Okeechobee [US] — Port of Palm Beach 0.19 t-km (Google, n.d.; U.S. Department of
[US] Transportation, 2022; United States
Department of Agriculture, 2022;
Wernet et al., 2016)
T2 Freight ship | Port of Palm Beach [US] — Porto Alegre [BR] | 20.66 t-km (Sea Distances, n.d.)
T3 Freight ship | Port of Palm Beach [US] — Port of Antwerp 15.63 t-km (Sea Distances, n.d.)
[BE]
M-BR T2 Train To ethylene plant 3.79 t-km (Braskem, 2022; Google, n.d.; Wernet
et al., 2016)
T3 Train To Porto Alegre [BR] 3.79 t-km
T3 Freight ship | Porto Alegre [BR] — Port of Antwerp [BE] 23.56 t-km (Sea Distances, n.d.)
M-CA-QC T2/T3 Train Ottowa [CA] — Quebec Port [CA] 0.93 t-km (Aberdeen Carolina & Western Railway
Company, n.d.-a; Google, n.d.; Wernet
et al., 2016)
T2 Freight ship | Quebec Port [CA] — Porto Alegre [BR] 23.39 t-km (Sea Distances, n.d.)
T3 Freight ship | Quebec Port [CA] — Port of Antwerp [BE] 12.18 t-km (Sea Distances, n.d.)

10




Table S5: continued.

M-CN T2/T3 Train Hebei [CN] — Tianjin port [CN] 0.77 t-km (Google, n.d.; Peng, 2023; Y. Zhang et
al., 2019)
T2 Freight ship | Tianjin port [CN] — Porto Alegre [BR] 45.55 t-km (Sea Distances, n.d.)
T3 Freight ship | Tianjin port [CN] — Port of Antwerp [BE] 42.67 t-km (Sea Distances, n.d.)
M-IN T2/T3 Train Rattipur [IN] — Kandla port [IN] 2.78 t-km (Google, n.d.; Indian Railways, n.d.;
Wernet et al., 2016)
T2 Freight ship | Kandla port [IN] — Porto Alegre [BR] 31.99 t-km (Sea Distances, n.d.)
T3 Freight ship | Kandla port [IN] — Port of Antwerp [BE] 24.06 t-km (Sea Distances, n.d.)
M-US T2/T3 Train lowa [US] — Chicago port [US] 1.04 t-km (Aberdeen Carolina & Western Railway
Company, n.d.-b; Google, n.d.; United
States Department of Agriculture, n.d.)
T2 Freight ship | Chicago port [US] — Porto Alegre [BR] 28.08 t-km (Sea Distances, n.d.)
T3 Freight ship | Chicago port [US] — Port of Antwerp [BE] 16.87 t-km (Sea Distances, n.d.)
M-ZA T2/T3 Truck Farm to Cape Town port (estimate) [ZA] 0.21 t-km (Google, n.d.)
T2 Freight ship | Cape Town port [ZA] — Porto Alergre [BR] 14.03 t-km (Sea Distances, n.d.)
T3 Freight ship | Cape Town port [ZA] — Port of Antwerp [BE] | 23.80 t-km (Sea Distances, n.d.)
M-CH T2/T3 Train Bern [CH] — Le Havre [FR] 1.59 t-km (Google, n.d.; Wernet et al., 2016)
T2 Freight ship | La Havre [FR] — Porto Alegre [BR] 22.75 t-km (Sea Distances, n.d.)
T3 Freight ship | Le Havre [FR] — Port of Antwerp [BE] 0.97 t-km (Sea Distances, n.d.)
M-DE T2/T3 Train Central Germany [DE] — Port of Hamburg [DE] | 1.88 t-km (Google, n.d.)
T2 Freight ship | Port of Hamburg [DE] — Porto Alegre [BR] 24.52 t-km (Sea Distances, n.d.)
T3 Freight ship | Port of Hamburg [DE] — Port of Antwerp [BE] | 1.56 t-km (Sea Distances, n.d.)
M-FR T2/T3 Train Central France [FR] — Le Havre [FR] 1.09 t-km (Google, n.d.)
T2 Freight ship | Le Havre [FR] — Porto Alegre [BR] 22.75 t-km (Sea Distances, n.d.)
T3 Freight ship | Le Havre [FR] — Port of Antwerp [BE] 0.97 t-km (Sea Distances, n.d.)
SB-US T2/T3 Train Minesota [US] — Port Duluth [US] 0.51 t-km (Aberdeen Carolina & Western Railway
Company, n.d.-b; Google, n.d.; United
States Department of Agriculture, 2022)
T2 Freight ship | Port Duluth [US] — Porto Alegre [BR] 28.40 t-km (Sea Distances, n.d.)
T3 Freight ship | Port Duluth [US] — Port of Antwerp [BE] 17.19 t-km (Sea Distances, n.d.)
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Table S5: continued.

SB-CH T2/T3 Train Bern [CH] — Le Havre [FR] 1.59 t-km (Google, n.d.; Wernet et al., 2016)
T2 Freight ship | La Havre [FR] — Porto Alegre [BR] 22.75 t-km (Sea Distances, n.d.)
T3 Freight ship | Le Havre [FR] — Port of Antwerp [BE] 0.97 t-km (Sea Distances, n.d.)
SB-DE T2/T3 Train Central Germany [DE] — Port of Hamburg [DE] | 1.88 t-km (Google, n.d.)
T2 Freight ship | Port of Hamburg [DE] — Porto Alegre [BR] 24.52 t-km (Sea Distances, n.d.)
T3 Freight ship | Port of Hamburg [DE] — Port of Antwerp [BE] | 1.56 t-km (Sea Distances, n.d.)
SB-FR T2/T3 Train Central France [FR] — Le Havre [FR] 1.09 t-km (Google, n.d.)
T2 Freight ship | Le Havre [FR] — Porto Alegre [BR] 22.75 t-km (Sea Distances, n.d.)
T3 Freight ship | Le Havre [FR] — Port of Antwerp [BE] 0.97 t-km (Sea Distances, n.d.)
SB-SE T2/T3 Truck Southern Sweden — Malmo Port [SE] (estimate) | 0.10 t-km (Google, n.d.)
T2 Freight ship | Malmo Port [SE] — Porto Alegre [BR] 25.70 t-km (Sea Distances, n.d.)
T3 Freight ship | Malmo Port [SE] — Port of Antwerp [BE] 2.74 t-km (Sea Distances, n.d.)
P-CA-QC T2/T3 Train Ottowa [CA] — Quebec Port [CA] 0.93 t-km (Aberdeen Carolina & Western Railway
Company, n.d.-a; Google, n.d.; Wernet
et al., 2016)
T2 Freight ship | Quebec Port [CA] — Porto Alegre [BR] 23.39 t-km (Sea Distances, n.d.)
T3 Freight ship | Quebec Port [CA] — Port of Antwerp [BE] 12.18 t-km (Sea Distances, n.d.)
P-CN T2/T3 Train Hebei [CN] — Tianjin port [CN] 0.77 t-km (IGoogI%)n.d.; Peng, 2023; Y. Zhang et
al., 201
T2 Freight ship | Tianjin port [CN] — Porto Alegre [BR] 45.55 t-km (Sea Distances, n.d.)
T3 Freight ship | Tianjin port [CN] — Port of Antwerp [BE] 42.67 t-km (Sea Distances, n.d.)
P-IN T2/T3 Train Rattipur [IN] — Kandla port [IN] 2.78 t-km (Google, n.d.; Indian Railways, n.d.;
Wernet et al., 2016)
T2 Freight ship | Kandla port [IN] — Porto Alegre [BR] 31.99 t-km (Sea Distances, n.d.)
T3 Freight ship | Kandla port [IN] — Port of Antwerp [BE] 24.06 t-km (Sea Distances, n.d.)
P-US T2/T3 Train Idaho [US] — Coos Bay Port [US] 2.55 t-km (Google, n.d.; Statista, n.d.)
T2 Freight ship | Coos Bay Port [US] — Porto Alegre [BR] 31.76 t-km (Sea Distances, n.d.)
T3 Freight ship | Coos Bay port [US] — Port of Antwerp [BE] 32.68 t-km (Sea Distances, n.d.)
P-CH T2/T3 Train Bern [CH] — Le Havre [FR] 1.59 t-km (Google, n.d.; Wernet et al., 2016)
T2 Freight ship | La Havre [FR] — Porto Alegre [BR] 22.75 t-km (Sea Distances, n.d.)
T3 Freight ship | Le Havre [FR] — Port of Antwerp [BE] 0.97 t-km (Sea Distances, n.d.)

12




Table S5: continued.

P-DE T2/T3 Train Central Germany [DE] — Port of Hamburg [DE] | 1.88 t-km (Google, n.d.)
T2 Freight ship | Port of Hamburg [DE] — Porto Alegre [BR] 24.52 t-km (Sea Distances, n.d.)
T3 Freight ship | Port of Hamburg [DE] — Port of Antwerp [BE] | 1.56 t-km (Sea Distances, n.d.)
P-FR T2/T3 Train Central France [FR] — Le Havre [FR] 1.09 t-km (Google, n.d.)
T2 Freight ship | Le Havre [FR] — Porto Alegre [BR] 22.75 t-km (Sea Distances, n.d.)
T3 Freight ship | Le Havre [FR] — Port of Antwerp [BE] 0.97 t-km (Sea Distances, n.d.)
P-SE T2/T3 Truck Southern Sweden — Malmo Port [SE] (estimate) | 0.10 t-km (Google, n.d.)
T2 Freight ship | Malmo Port [SE] — Porto Alegre [BR] 25.70 t-km (Sea Distances, n.d.)
T3 Freight ship | Malmo port [SE] — Port of Antwerp [BE] 2.72 t-km (Sea Distances, n.d.)
WO-CA-QC | T2/T3 Train Ottowa [CA] — Quebec Port [CA] 0.93 t-km (Aberdeen Carolina & Western Railway
Company, n.d.-a; Google, n.d.; Wernet
et al., 2016)
T2 Freight ship | Quebec Port [CA] — Porto Alegre [BR] 23.39 t-km (Sea Distances, n.d.)
T3 Freight ship | Quebec port [CA] — Port of Antwerp [BE] 12.18 t-km (Sea Distances, n.d.)
WO-CH T2/T3 Train Bern [CH] — Le Havre [FR] 1.59 t-km (Google, n.d.; Wernet et al., 2016)
T2 Freight ship | La Havre [FR] — Porto Alegre [BR] 22.75 t-km (Sea Distances, n.d.)
T3 Freight ship | Le Havre [FR] — Port of Antwerp [BE] 0.97 t-km (Sea Distances, n.d.)
WO-DE T2/T3 Train Central Germany [DE] — Port of Hamburg [DE] | 1.88 t-km (Google, n.d.; Wernet et al., 2016)
T2 Freight ship | Port of Hamburg [DE] — Porto Alegre [BR] 24.52 t-km (Sea Distances, n.d.)
T3 Freight ship | Port of Hamburg [DE] — Port of Antwerp [BE] | 1.56 t-km (Sea Distances, n.d.)
WO-SE T2/T3 Truck Southern Sweden — Malmo Port [SE] (estimate) | 0.10 t-km (Google, n.d.; Wernet et al., 2016)
T2 Freight ship | Malmo Port [SE] — Porto Alegre [BR] 25.70 t-km (Sea Distances, n.d.)
T3 Freight ship | Malmo Port[SE] — Port of Antwerp [BE] 2.72 t-km (Sea Distances, n.d.)
Truck T2 | Porto Alegre [BR] — Ethylene factory [BR] 0.10 t-km (Braskem, 2022; Google, n.d.)
Train T2 | Ethylene factory [BR] — polyethylene factory [BR] | 1.21 t-km (Braskem, 2022; Google, n.d.)
Truck T3 | Port of Antwerp [BE] — Factory [BE] 0.02 t-km (Google, n.d.)
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Table S6: Overview of land-use change emissions results.

Total Percentage Percentage LUC
Total LUC LUC emissions with biogenic

Scenario emissions | emissions | emissions carbon

SC-BR 1.64 | 9.74E-04 0.06% 0.07%
SC-CN 3.02 | 3.06E-04 0.01% 0.26%
SC-CO 1.11 | 4.16E-05 0.00% 0.00%
SC-IN 2.62 | 6.62E-05 0.00% 0.01%
SC-US 2.74 | 1.90E-04 0.01% 0.05%
M-BR 5.67 | 8.23E-04 0.01% 0.03%
M-CA-QC 7.22 | 1.56E-04 0.00% 0.00%
M-CN 5.18 | 8.11E-02 1.57% 3.98%
M-IN 8.39 | 1.72E-01 2.05% 3.27%
M-US 5.79 | 2.06E-04 0.00% 0.01%
M-ZA 6.46 | 7.56E-04 0.01% 0.02%
M-CH 3.73 | 8.74E-05 0.00% 0.01%
M-DE 3.91 | 1.54E-02 0.39% 2.00%
M-FR 3.40 | 3.95E-04 0.01% 0.15%
SB-US 2.65 | 8.63E-05 0.00% 0.02%
SB-CH 1.32 | 2.90E-05 0.00% 0.00%
SB-DE 2.48 | 6.82E-05 0.00% 0.01%
SB-FR 159 | 4.17E-05 0.00% 0.00%
SB-SE 2.47 | 1.70E-04 0.01% 0.03%
P-CA-QC 10.70 | 3.07E-03 0.03% 0.04%
P-CN 12.15 | 5.72E-04 0.00% 0.01%
P-IN 12.74 | 8.54E-01 6.70% 8.89%
P-US 7.95 | 5.17E-04 0.01% 0.01%
P-CH 4,71 | 1.89E-04 0.00% 0.01%
P-DE 4,66 | 1.40E-03 0.03% 0.09%
P-FR 5.29 | 2.13E-01 4.03% 9.91%
P-SE 3.63 | 3.75E-03 0.10% 0.76%
WO-CA-QC 2.31 | 7.49E-05 0.00% 0.01%
WO-CH 1.66 | 4.21E-04 0.03% 0.03%
WO-DE 2.33 | 4.98E-04 0.02% 0.06%
WO-SE 1.85| 1.99E-04 0.01% 0.02%
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(e) Global warming potential (GWP100).
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Figure S1: Comparison of the environmental impact of petro-HDPE and bio-HDPE from various
resources according to the ReCiPe impact categories.
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(c) Freshwater ecotoxicity.
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Figure S3: Comparison of the environmental impact of three end-of-life treatment options for bio-
HDPE and petro-HDPE.
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Figure S3: Continued.
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Figure S3: Continued.
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(o) Terrestrial acidification.
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Figure S3: Continued.
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(a) GWP100 due to transport scenario 1: 100 km transport of biomass to ethanol plant by truck.
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(b) GWP100 due to transport scenario 2: ethanol transport from cultivation location to Brazil.
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(c) GWP100 due to transport scenario 3: ethanol transport from cultivation location to Belgium.
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Figure S4: GWP100 results for the transport scenarios.

30



References

Aberdeen Carolina & Western Railway Company. (n.d.-a). Canadian National Railway Map.
https://www.acwr.com/economic-development/rail-maps/canadian-national

Aberdeen Carolina & Western Railway Company. (n.d.-b). Interactive maps of U.S. Freight
railroads. https://www.acwr.com/economic-development/rail-maps

Braskem. (2022). I'm green™ bio-based PE Life Cycle Assessment.
Google. (n.d.). Maps. Retrieved August 31, 2023, from https://www.google.com/maps

Indian Railways. (n.d.). Indian Railways - Freight terminals dashboard. Retrieved August 31, 2023,
from https://www.fois.indianrail.gov.in/RailSAHAY /index.jsp

Peng, K. (2023). China Railway Map. http://cnrail.geogv.org/enus/about

Sea Distances. (n.d.). Sea Distances / Port Distances. Retrieved August 31, 2023, from https://sea-
distances.org/

Statista. (n.d.). Potato production in the United States in 2022, by state. Retrieved August 31, 2023,
from https://www.statista.com/statistics/382166/us-potato-production-by-state/

U.S. Department of Transportation. (2022). Rail system map. https://gis-
fdot.opendata.arcgis.com/apps/rail-system-map-3/explore

United States Department of Agriculture. (n.d.). Quick Stats. Retrieved August 31, 2023, from
https://quickstats.nass.usda.gov/

United States Department of Agriculture. (2022). Sugar and Sweeteners Outlook: September 2023
(Issue October).

Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema, B. (2016). The
ecoinvent database version 3 (part I): overview and methodology. The International Journal of
Life Cycle Assessment, 21, 1218-1230. https://doi.org/10.1007/s11367-016-1087-8

Zhang, M., & Govindaraju, M. (2018). Sugarcane Production in China. In A. De Olivera (Ed.),
Sugarcane - Technology and Research. InTechOpen. https://doi.org/10.5772/intechopen.73113

Zhang, Y., Qi, Y., Shen, Y., Wang, H., & Pan, X. (2019). Mapping the agricultural land use of the
North China Plain in 2002 and 2012. Journal of Geographical Sciences, 29(6), 909-921.
https://doi.org/10.1007/s11442-019-1636-8

31



